×
27.09.2014
216.012.f8af

КАТАЛИЗАТОР ДЛЯ ОКИСЛЕНИЯ СЕРНИСТЫХ СОЕДИНЕНИЙ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002529500
Дата охранного документа
27.09.2014
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к производству гетерогенных катализаторов для жидкофазного окисления сернистых соединений, а именно к катализатору окисления сернистых соединений на полимерном носителе из полиэтилена низкого давления (ПЭНД) или полипропилена. Катализатор содержит фталоцианин кобальта и/или его водонерастворимое производное, такое как дихлорфталоцианин кобальта, и оксид металла переменной валентности, а именно оксид марганца (IV), и/или оксид меди (II), и/или оксид никеля (II), и/или оксид кобальта (III). Содержание компонентов, мас.%, следующее: фталоцианин кобальта и/или дихлорфталоцианин кобальта - 0,05-20,0; оксид марганца (IV), и/или оксид меди (II), и/или оксид кобальта, и/или оксид никеля (II) - 0,05-20,0, ПЭНД или полипропилен - остальное. Изобретение позволяет получить катализатор с повышенной активностью при окислении сульфидов и меркаптидов и менее чувствительный к воздействию примесей органических аминов. 3 табл., 4 пр.
Основные результаты: Катализатор окисления сернистых соединений на полимерном носителе из полиэтилена низкого давления (ПЭНД) или полипропилена, содержащий фталоцианин кобальта и/или его водонерастворимое производное и оксид металла переменной валентности, отличающийся тем, что в качестве водонерастворимого производного фталоцианина кобальта он содержит дихлорфталоцианин кобальта, а в качестве оксида металла переменной валентности - оксид марганца (IV), и/или оксид меди (II), и/или оксид никеля (II), и/или оксид кобальта (III) при следующем содержании компонентов, мас.%:
Реферат Свернуть Развернуть

Настоящее изобретение относится к производству гетерогенных катализаторов для жидкофазного окисления сернистых соединений и может быть использовано в газовой, нефтедобывающей, нефтеперерабатывающей, нефтехимической, кожевенной, целлюлозно-бумажной, алмазодобывающей и в других отраслях промышленности.

Известен гетерогенный катализатор демеркаптанизации нефтяных дистиллятов, содержащий 0,01-10,0% мас. водорастворимой неорганической соли меди, железа, никеля или кобальта на углеродном волокнистом материале [1], и катализатор, содержащий 10-20% сульфата меди на углеродной волокнистой ткани [2].

Недостатком этих катализаторов является недостаточная прочность адсорбционной связи между каталитически активной солью, щелочью и углеродным носителем, приводящая к постепенному уносу водорастворимой соли и щелочного агента с поверхности углеродного носителя, снижению активности катализатора и необходимости его периодической подпитки солями металлов переменной валентности и щелочным агентом.

Известен гетерогенный катализатор для окисления сернистых соединений, содержащий в качестве каталитически активного компонента пиритный огарок (33-37% масс.), введенный в глиняную массу [3], а также катализатор, содержащий в качестве активного компонента композицию пиритного огарка (10-15 мас.) с оксидом хрома (VI) 3-5; оксидом меди 5-10; оксидом ванадия (V) 3-5; нефтяным коксом 7-10; оксидом цинка 5-10 на глиняном носителе [4].

Общим недостатком этих катализаторов является их недолговечность из-за использования в качестве носителя глины, подверженной щелочному гидролизу в процессе сероочистки газов и жидких нефтепродуктов, протекающих в щелочных средах.

Известны также катализаторы окисления сернистых соединений на полиэтилене высокого давления (ПВД), содержащие в качестве основного каталитически активного компонента пиритный огарок в сочетании с различными оксидами металлов переменной валентности: с оксидом сурьмы (III) [5], с оксидами сурьмы (III) и марганца [6], с оксидами меди (II) и марганца (IV) [7], с оксидами сурьмы (III), марганца (IV) и хрома (VI) [8] или использующие в качестве активного компонента оксид марганца (IV) 35-37; оксид хрома (VI) 2-3 [9].

Общим недостатком указанных катализаторов является их недостаточно высокая термическая и химическая стойкость из-за использования в качестве носителя ПВД, имеющего относительно низкую температуру плавления (100÷110°C) и нестойкого к воздействию непредельных и ароматических углеводородов при нагревании до 80°C. Это препятствует широкому и безопасному использованию данных катализаторов в промышленных условиях для обезвреживания сульфидных стоков [10].

Известен также гетерогенный катализатор окисления сернистых соединений, содержащий в качестве активного компонента оксиды и/или гидроксиды, и/или шпинели металлов переменной валентности на полимерном носителе - полиэтилене, полипропилене, полистироле или др. полимере, отличающийся дополнительным содержанием в нем модифицирующей добавки - органического основания, и/или гетерополикислоты, и/или углеродсодержащего материала при следующем содержании компонентов: активный компонент (15-50%), модифицирующая добавка (0.5-20%), носитель - остальное [11].

Общим недостатком указанных катализаторов является неэффективная форма их исполнения - в виде шарообразных гранул размером 10-12 мм, значительно снижающая геометрическую поверхность и свободный объем катализатора, т.е. долю реакционного раствора в единице объема реактора, обуславливая увеличение объема очистных сооружений и размера капитальных и эксплуатационных затрат на проведение очистки.

Наиболее близким к изобретению по технической сущности и достигаемому результату является используемый в промышленности катализатор окисления сернистых соединений на носителе из полипропилена (ПП) или полиэтилена низкого давления (ПНД), содержащий 0,05÷20,0 мас.% фталоцианина кобальта и/или его водонерастворимого производного, выбранного из группы, включающей тетрахлорфталоцианин, тетрахлорметилфталоцианин и тетратретбутилфталоцианин кобальта и 0,05÷20,0 мас.% двуокиси титана [12].

Указанный катализатор в виде блочной насадки с развитой геометрической поверхностью используется для регенерации меркаптидсодержащих щелочных растворов на установках демеркаптанизации сжиженных газов и для обезвреживания сульфидсодержащих стоков на нефтеперерабатывающих предприятиях России, Литвы и Украины [13].

Его недостатком является чувствительность к ингибирующему воздействию органических аминов, попадающих в щелочной раствор при демеркаптанизации сжиженных газов, предварительно прошедших аминовую очистку от сероводорода. По мере накопления органических аминов в циркулирующем щелочном растворе происходит постепенное снижение активности катализатора в процессе окислительной регенерации щелочи, что сужает область эффективного применения данного катализатора [14].

Цель изобретения - повышение активности катализатора при окислении сульфидов и меркаптидов в щелочном растворе, менее чувствительного к ингибирующему воздействию примесей органических аминов, присутствующих в сжиженных углеводородных газах или рефлюксах, прошедших аминовую очистку от сероводорода перед щелочной демеркаптанизацией.

Согласно изобретению поставленная цель достигается тем, что предлагаемый катализатор окисления сернистых соединений на полимерном носителе из полипропилена (ПП) или полиэтилена низкого давления (ПЭНД), содержащий фталоцианин кобальта и/или его водонерастворимое производное и оксид металла переменной валентности, отличается тем, что в качестве водонерастворимого производного фталоцианина кобальта используют не заявленный ранее дихлорфталоцианин кобальта, а в качестве оксида металла переменной валентности - оксид марганца (IV), и/или оксид меди (II), и/или оксид никеля (II), и/или оксид кобальта (III) при следующем содержании компонентов, мас.%:

Фталоцианин кобальта и/или дихлорфталоцианин кобальта - 0,05-20,0;

Оксид марганца (IV) - 0,05-20,0;

Оксид меди (II) - 0,05-20,0;

Оксид кобальта - 0,05-20,0,

Оксид никеля (II) - 0,05-20,0;

ПП или ПЭНД - остальное.

В зависимости от конкретных условий применения катализатора - природы и концентрации окисляемых сернистых соединений - используют полимерные композиции фталоцианина кобальта и/или дихлорфталоцианина кобальта с различными оксидами металлов переменной валентности. Например, для окисления меркаптидов в щелочном растворе, содержащем органические амины, вместо фталоцианина кобальта предпочтительнее использовать дихлорфталоцианин кобальта в композиции с оксидом меди на носителе из ПЭНД или ПП. При обезвреживании концентрированных сульфидсодержащих сернисто-щелочных стоков (СЩС) целесообразнее использовать фталоцианин кобальта в композиции с оксидом марганца и оксидом меди на ПП или ПЭНД.

Отличительным признаком предлагаемого катализатора от прототипа является его состав, а именно: использование в качестве каталитически активного компонента катализатора наряду с фталоцианином кобальта дихлорфталоцианина кобальта в комплексе с оксидом меди (II), и/или оксидом марганца (IV), и/или оксидом никеля (II), и/или оксидом кобальта (III), вводимым в ПП или ПЭНД в количестве 0,05-20,0% мас.

Указанный отличительный признак предлагаемого катализатора определяет его новизну и изобретательский уровень в сравнении с известными катализаторами, так как использование фталоцианина кобальта и/или дихлорфталоцианина кобальта в композиции с перечисленными оксидами металлов переменной валентности - оксидом меди (II), и/или оксидом марганца (IV), и/или оксидом никеля (II), и/или оксидом кобальта (III) на носителе из ПП или ПЭНД в литературе не описано и позволяет получить катализатор окисления сернистых соединений с более высокой каталитической активностью, менее чувствительного к присутствию органических аминов в водно-щелочном растворе.

Предлагаемое содержание оксида меди (II), и/или оксида марганца (IV), и/или оксида никеля (II), и/или оксида кобальта (III) в смеси с фталоцианином кобальта и/или с дихлорфталоцианином кобальта в составе катализатора в количестве по 0,05-20,0% мас. является оптимальным, т.к. при их содержании ниже 0,05 мас.% не достигается существенного повышения каталитической активности и стабильности катализатора, а увеличение их содержания выше 20,0 мас.% не приводит к дальнейшему существенному повышению каталитической активности, т.е. экономически нецелесообразно.

Предлагаемый катализатор получен и испытан в лабораторных условиях. Ниже приведены примеры и результаты проведенных экспериментов.

Пример 1.

Для приготовления испытуемого образца катализатора рассчитанные количества порошкообразных оксида меди (II) (CuO), и/или оксида марганца (IV) (MnO2), и/или оксида никеля (II), и/или оксида кобальта (III) и фталоцианина кобальта (ФЦСо) и/или его водонерастворимого производного - дихлорфталоцианина кобальта (ДХФЦСо), полипропилена (ПП) или полиэтилена низкого давления (ПЭНД) смешивают на обогреваемых лабораторных вальцах при температуре размягчения полимерного носителя (ПП - при 160-180°C, ПЭНД - при 140-160°C) до получения однородной катализаторной массы, из которой затем на прессе изготавливают пластину толщиной 1-2 мм. Полученную пластину нарезают на частицы размером 2-3 мм.

Поскольку от природы полимерного носителя зависят только физико-механические свойства катализатора (термо- и хемостойкость, а также механическая прочность), а его активность определяется лишь составом и концентрацией каталитически активных компонентов, то для испытания влияния состава активных компонентов на эффективность катализатора в реакциях окисления сульфидной и меркаптидной серы могут быть использованы катализаторы на любом из полимерных носителей. В качестве такого носителя для испытаний был выбран ПЭНД, легче перерабатываемый в лабораторных условиях.

Пример 2.

Определенный объем раствора сульфида натрия помещают в обогреваемый стеклянный реактор периодического действия объемом 75 мл и нагревают до заданной температуры. Затем сюда же помещают определенную навеску нарезанных частиц катализатора и интенсивно перемешивают смесь на магнитной мешалке в атмосфере воздуха. Об активности катализаторов судят по изменению остаточного содержания окисляемого сернистого соединения во времени потенциометрическим титрованием по ГОСТ 22985-90. Условия проведения испытаний катализаторов: масса катализатора 5 г, объем раствора сульфида натрия - 50 мл, температура опытов - 55°C, время окисления - 30 мин, исходная концентрация сульфидной серы 0,76% мас.

Составы приготовленных по примеру 1 катализаторов и результаты испытаний их каталитической активности в реакциях окисления сульфидной серы приведены в табл.1. Здесь же для сравнения приведены данные по степени окисления сульфидной серы в присутствии известных катализаторов по прототипу.

Из приведенных в табл.1 данных видно, что предлагаемый катализатор в широком диапазоне соотношения концентраций оксида меди, и/или оксида марганца, и/или оксида никеля, и/или оксида кобальта с фталоцианином кобальта и/или его водонерастворимым производным ДХФЦСо является более активным в реакции окисления сульфидной серы по сравнению с известными катализаторами. Установлено, что предпочтительным является соотношение оксида меди, оксида марганца и фталоцианина кобальта, равное 1:1:2, при котором наблюдается наибольшая каталитическая активность (табл.1, оп.7). Поэтому оценку активности катализатора, содержащего оксид меди, оксид марганца и водонерастворимого производного фталоцианина кобальта - ДХФЦСо проводят при данном соотношении этих компонентов (табл.1, оп.8).

Пример 3.

Испытания каталитической активности предлагаемых катализаторов по отношению к меркаптидной сере проводят аналогично примеру 2 с использованием катализатора на ПЭНД с соотношением оксида меди (II), и/или оксида марганца (IV), и/или оксида никеля (II), и/или оксида кобальта (III) к фталоцианину кобальта и/или его водонерастворимому производному ДХФЦСо, равным 1:1. Условия проведения испытаний катализаторов: масса катализатора - 5 г, объем 10%-ного раствора гидроксида натрия с этилмеркаптидом натрия - 50 мл, температура опытов 40°C, время окисления - 30 мин, исходная концентрация меркаптидной серы - 0,273 мас.%. Об активности катализаторов судят по изменению остаточного содержания меркаптидной серы во времени потенциометрическим титрованием по ГОСТ 22985-90.

Составы приготовленных по примеру 1 катализаторов и результаты их испытаний на каталитическую активность в реакциях окисления меркаптидной серы приведены в табл.2. Здесь же для сравнения приведены данные по степени окисления меркаптидной серы в присутствии известного катализатора по прототипу.

Из приведенных в табл.2 данных видно, что предлагаемый катализатор является более активным при окислении меркаптидной серы по сравнению с известным катализатором.

Пример 4

Испытания каталитической активности предлагаемых катализаторов при окислении меркаптидной серы в присутствии органического амина проводят аналогично примеру 3 с использованием катализатора на ПЭНД с оптимальным соотношением оксида меди (II), и/или оксида марганца (IV), и/или оксида никеля (II), и/или оксида кобальта (III) к фталоцианину кобальта и/или его водонерастворимому производному - ДХФЦСо, равным 1:1, в присутствии моноэтаноламина (МЭА).

Условия проведения испытаний катализаторов: масса катализатора - 5 г, объем 10%-ного раствора гидроксида натрия с этилмеркаптидом натрия - 50 мл, температура опытов - 40°C, время окисления - 30 мин, исходная концентрация меркаптидной серы - 0,273 мас.%, концентрация МЭА в щелочном растворе меркаптида натрия - 0,5% мас. Об активности катализаторов судят по изменению остаточного содержания меркаптидной серы во времени потенциометрическим титрованием по ГОСТ 22985-90.

Составы приготовленных по примеру 1 катализаторов и результаты их испытаний на каталитическую активность в реакциях окисления меркаптидной серы в присутствии МЭА приведены в табл.3. Здесь же для сравнения приведены данные по степени окисления меркаптидной серы в присутствии МЭА на известных катализаторах (по прототипу).

Из приведенных в табл.3 данных видно, что предлагаемые составы катализатора на ПЭНД с оптимальным соотношением оксидов металлов к фталоцианину кобальта и/или его водонерастворимому производному ДХФЦСо, равным 1:1, является более активным в реакции окисления меркаптидной серы в присутствии МЭА по сравнению с известными катализаторами.

Таблица 1
Опыт Катализатор Состав, мас.% Степень окисления сульфидной серы, % отн.
Предлагаемые
1. ФЦСо 19,95 54,4
CuO 0,05
ПЭНД 80
2. ФЦСо 19,95 53,2
MnO2 0,05
ПЭНД 80
3. ФЦСо 10,0 61,7
CuO 10,0
ПЭНД 80
4. ФЦСо 10,0 70,9
MnO2 10,0
ПЭНД 80
5. ФЦСо 0,05 52,9
CuO 19,95
ПЭНД 80,0

Опыт Катализатор Состав, мас.% Степень окисления сульфидной серы, % отн.
6. ФЦСо 0,05 73,2
MnO2 19,95
ПЭНД 80,0
7. ФЦСо 10,0 75,8
CuO 5,0
MnO2 5,0
ПЭНД 80,0
8. ДХФЦСо 10,0 79,1
CuO 5,0
MnO2 5,0
ПЭНД 80,0
9. ФЦСо 10,0 56,3
NiO 10,0
ПЭНД 80
10. ФЦСо 10,0 59,9
Co3O4 10,0
ПЭНД 80
Известные
11. ФЦСо 20,0 47,7
ПЭНД 80,0
12. ФЦСо 10,0 51,8
TiO2 10,0
ПЭНД 80,0
13. ТХФЦСо 10,0 54,9
TiO2 10,0
ПЭНД 80,0
14. ТХМФЦСо 10,0 53,0
TiO2 10,0
ПЭНД 80,0

Таблица 2
Опыт Катализатор Состав, мас.% Степень окисления меркаптидной серы, % отн.
Предлагаемые
1. ФЦСо 10,0 74,2
CuO 10,0
ПЭНД 80,0
2. ДХФЦСо 10,0 79,4
CuO 10,0
ПЭНД 80,0
3. ФЦСо 10,0 58,3
MnO2 10,0
ПЭНД 80,0
4. ФЦСо 10,0 68,7
CuO 5,0
MnO2 5,0
ПЭНД 80,0
5. ДХФЦСо 10,0 72,3
CuO 5,0
MnO2 5,0
ПЭНД 80,0

6. ФЦСо 10,0 54,3
NiO 10,0
ПЭНД 80
7. ФЦСо 10,0 55,1
Co3O4 10,0
ПЭНД 80
Известные
8. ФЦСо 20,0 44,8
ПЭНД 80,0
9. ФЦСо 10,0 51,0
TiO2 10,0
ПЭНД 80,0
10. ТХФЦСо 10,0 52,3
TiO2 10,0
ПЭНД 80,0
11. ТХМФЦСо 10,0 53,0
TiO2 10,0
ПЭНД 80,0
12. ТТБФЦСо 10,0 52,6
TiO2 10,0
ПЭНД 80,0

Таблица 3
Опыт Катализатор Состав, мас.% Степень окисления меркаптидной серы в присутствии 0.5% мас. МЭА, % отн.
Предлагаемые
1. ФЦСо 10,0 58,6
CuO 10,0
ПЭНД 80,0
2. ДХФЦСо 10,0 69,0
CuO 10,0
ПЭНД 80,0
3. ФЦСо 10,0 52,8
MnO2 10,0
ПЭНД 80,0
4. ДХФЦСо 10,0 56,1
MnO2 10,0
ПЭНД 80,0
5. ФЦСо 10,0 42,4
NiO 10,0
ПЭНД 80
6. ДХФЦСо 10,0 47,1
NiO 10,0
ПЭНД 80
7. ФЦСо 10,0 45,8
Co3O4 10,0
ПЭНД 80
Известные
8. ФЦСо 20,0 20,3
ПЭНД 80,0
9. ФЦСо 10,0 27,6

Опыт Катализатор Состав, мас.% Степень окисления меркаптидной серы в присутствии 0.5% мас. МЭА, % отн.
TiO2 10,0
ПЭНД 80,0
10. ТХФЦСо 10,0 29,0
TiO2 10,0
ПЭНД 80,0
11. ТХМФЦСо 10,0 32,4
TiO2 10,0
ПЭНД 80,0
12. ТТБФЦСо 10,0 31,2
TiO2 10,0
ПЭНД 80,0

Литература

1. Пат. 2076892 Российская Федерация, МКП7 C10G 27/04. Способ демеркаптанизации нефтяных дистиллятов / Вильданов А.Ф.; Мазгаров A.M.; Бажирова Н.Г.; Луговской А.И.; Борисенкова С.А., заявитель и патентообладатель Всероссийский научно-исследовательский институт углеводородного сырья. - №94039238/04. - Заявл. 18.10.1994, опубл. 10.04.1997.

2. Пат. 2106387 Российская Федерация, МКП7 C10G 27/04. Способ демеркаптанизации нефтяных дистиллятов / Мазгаров A.M.; Вильданов А.Ф.; Бажирова Н.Г.; Коробков Ф.А.; Крылов В.А.; Аликин А.Г.; Камлык А.С.; Безворотный П.В.; Веселкин В.А., заявитель и патентообладатель Акционерное общество открытого типа ″ЛУКойл - Пермнефтеоргсинтез″; Всероссийский научно-исследовательский институт углеводородного сырья. - №96108772/04. - Заявл. 06.05.1996, опубл. 10.03.1998.

3. Пат. 2089287 Российская Федерация, МКП7 B01J 23/78, B01J 23/86, B01D 53/78, B01J 23/86, В01J 101:64. Катализатор окисления сернистых соединений / Кочеткова Р.П.; Кочетков А.Ю.; Панфилова И.В.; Коваленко Н.А.; Боровский В.М.; Куимов С.В.; Бабиков А.Ф.; Яскин В.П.; Ан Е.Д.; Глазырин В.В.; Зайкова P.M.; Семилетко С.В.; Шапкин С.В.; Тихонов Г.П., заявитель и патентообладатель Частное индивидуальное научно-производственное предприятие ″Катализ″. - №95113808/04. - Заявл. 01.08.1995, опубл. 10.09.1997.

4. Пат. 2059428 Российская Федерация, МКП7 B01J 23/86, В01J 103:40, B01J 103:20. Катализатор окисления сернистых соединений / Кочеткова Р.П.; Кочетков А.Ю.; Коваленко Н.А.; Боровский В.М.; Куимов С.В.; Глазырин В.В.; Зайкова P.M.; Бабиков А.Ф.; Яскин В.П., заявитель и патентообладатель Частное индивидуальное научно-производственное предприятие ″Катализ″. - №93029900/04. - Заявл. 17.06.1993, опубл. 10.05.1996.

5. Пат. 2089288 Российская Федерация, МКП7 B01J 23/843, B01D 53/50, B01J 23/843, B01J 105:94. Катализатор окисления сернистых соединений / Кочеткова Р.П.; Кочетков А.Ю.; Панфилова И.В.; Коваленко Н.А.; Боровский В.М.; Куимов С.В.; Бабиков А.Ф.; Яскин В.П.; Ан Е.Д.; Глазырин В.В.; Зайкова P.M.; Семилетко С.В.; Шапкин С.В.; Тихонов Г.П., заявитель и патентообладатель Частное индивидуальное научно-производственное предприятие ″Катализ″. - №95112979/04. - Заявл. 25.07.1995, опубл. 10.09.1997.

6. Пат. 2053015 Российская Федерация, МКП7 B01J 23/16, B01J 23/34, B01J 23/64, B01J 23/74, B01J 23/16, B01J 105:94. Катализатор окисления сульфидной серы белого щелока / Кочеткова Р.П.; Кочетков А.Ю.; Глазырин В.В.; Евтушенко Э.Г.; Богдан В.М.; Панфилова И.В.; Шиверская И.П., заявитель и патентообладатель Частное индивидуальное научно-производственное предприятие ″Катализ″. - №5068351/04. - Заявл. 07.08.1992, опубл. 27.01.1996.

7. Пат. 2053016 Российская Федерация, МКП7 B01J 23/34, B01J 23/34, B01J 23/70, B01J 23/72, B01J 103:12. Катализатор для окисления сернистых соединений / Кочеткова Р.П.; Кочетков А.Ю.; Глазырин В.В.; Богдан В.М.; Евтушенко Э.Г.; Панфилова И.В.; Коваленко Н.А.; Шиверская И.П., заявитель и патентообладатель Частное индивидуальное научно-производственное предприятие ″Катализ″. - №5068352/04. - Заявл. 07.08.1992, опубл. 27.01.1996.

8. Пат. 2058188 Российская Федерация, МКП7 B01J 23/16, B01J 23/34, B01J 23/74. Катализатор окисления сульфидной серы белого щелока / Кочеткова Р.П.; Кочетков А.Ю.; Боровский В.М.; Куимов С.В.; Глазырин В.В.; Зайкова P.M.; Семилетко С.В.; Панфилова И.В.; Ан Е.Д.; Коваленко Н.А., заявитель и патентообладатель Частное индивидуальное научно-производственное предприятие ″Катализ″. - №93032014/04. - Заявл. 17.06.1993, опубл. 20.04.1996.

9. Пат. 2053840 Российская Федерация, МКП7 B01J 23/26, B01J 23/34, B01J 23/26, B01J 103:54, B01J 105:94. Катализатор для окисления сернистых соединений в процессе биологической очистки сточных вод / Кочеткова Р.П.; Кочетков А.Ю.; Коваленко Н.А.; Боровский В.М.; Куимов С.В.; Глазырин В.В.; Зайкова P.M.; Семилетко С.В.; Бабиков А.Ф.; Яскин В.П.; Ан Е.Д., заявитель и патентообладатель Частное индивидуальное научно-производственное предприятие ″Катализ″. - №93032019/04. - Заявл. 17.06.1993, опубл. 10.02.1996.

10. Опыт промышленной эксплуатации гетерогенных катализаторов в процессах окислительного обезвреживания сернисто-щелочных стоков и водных технологических конденсатов. А.Г. Ахмадуллина, Б.В. Кижаев, И.К. Хрущева, Н.М. Абрамова, Г.М. Нургалиева, А.Т. Бекбулатова, А.С. Шабаева. Нефтепереработка и нефтехимия, №2, 1993, с.19.

11. Пат. 2255805 Российская Федерация, МКП7 B01J 23/70, B01J 23/94, B01D 53/86. Гетерогенный катализатор окисления неорганических и/или органических соединений на полимерном носителе/ Кочеткова Р.П.; Кочетков А.Ю.; Коваленко Н.А.; патентообладатель Кочетков А.Ю. - №2003105374/04. - Заявл. 25.02.2003, опубл. 10.07.2005.

12. Пат. 2110324 Российская Федерация, МКП7 B01J 31/18, B01J 23/75, B01J 21/06. Катализатор для окисления сернистых соединений / Ахмадуллина А.Г.; Шабаева А.С.; Нургалиева Г.М.; патентообладатель Ахмадуллина А.Г. - №96114234/04. - Заявл. 16.07.1996, опубл. 10.05.1998.

13. Сероочистка нефтепродуктов и обезвреживание стоков на полимерном катализаторе КСМ. P.M. Ахмадуллин, А.Г. Ахмадуллина, С.И. Агаджанян, А.Р. Зарипова. Нефтепереработка и нефтехимия, №6, 2012.

14. Опыт гетерогенно-каталитической демеркаптанизации сырья МТБЭ в ОАО «Славнефть-ЯНОС». А.Г. Ахмадуллина, P.M. Ахмадуллин, В.А. Смирнов, Л.Ф. Титова, С.А. Егоров. Нефтепереработка и нефтехимия, №3, 2005 г, стр.15-17.

Катализатор окисления сернистых соединений на полимерном носителе из полиэтилена низкого давления (ПЭНД) или полипропилена, содержащий фталоцианин кобальта и/или его водонерастворимое производное и оксид металла переменной валентности, отличающийся тем, что в качестве водонерастворимого производного фталоцианина кобальта он содержит дихлорфталоцианин кобальта, а в качестве оксида металла переменной валентности - оксид марганца (IV), и/или оксид меди (II), и/или оксид никеля (II), и/или оксид кобальта (III) при следующем содержании компонентов, мас.%:
Источник поступления информации: Роспатент

Показаны записи 1-10 из 13.
10.02.2015
№216.013.21dc

Способ очистки легкого углеводородного сырья от карбонилсульфида

Изобретение относится к области очистки углеводородов от сернистых соединений и может быть использовано в нефтяной, газовой и нефтехимической отраслях промышленности. Изобретение касается способа очистки легкого углеводородного сырья от карбонилсульфида путем его разложения в углеводороде...
Тип: Изобретение
Номер охранного документа: 0002540121
Дата охранного документа: 10.02.2015
10.06.2015
№216.013.5203

Способ получения полихинонов

Изобретение относится к способу получения полихинона окислительным дегидрированием исходного мономера: гидрохинона, и/или бензохинона, и/или хингидрона, и/или пирокатехина, и/или их смесей в присутствии мягкого дегидрирующего агента, пространственно замещенного дифенохинона общей формулы (1) с...
Тип: Изобретение
Номер охранного документа: 0002552516
Дата охранного документа: 10.06.2015
13.01.2017
№217.015.8780

Способ демеркаптанизации углеводородного сырья

Изобретение относится к способу щелочной демеркаптанизации углеводородного сырья с последующей окислительно-каталитической регенерацией насыщенного меркаптидами щелочного агента либо непосредственным окислением содержащихся в углеводородном сырье меркаптанов кислородом воздуха в присутствии...
Тип: Изобретение
Номер охранного документа: 0002603635
Дата охранного документа: 27.11.2016
04.04.2018
№218.016.30da

Катализатор для жидкофазного окисления сульфида натрия

Настоящее изобретение относится к катализатору жидкофазного окисления сульфида натрия в водной среде и может быть использовано в газовой, нефтеперерабатывающей, нефтяной, химической, кожевенной и других отраслях промышленности при обезвреживании сточных вод, содержащих неорганические сульфиды....
Тип: Изобретение
Номер охранного документа: 0002644779
Дата охранного документа: 14.02.2018
10.05.2018
№218.016.3a7f

Способ совместного получения полихинонов и этиленбисфенола

Настоящее изобретение относится к способу получения полихинона и этиленбисфенола общей формулы (3), являющегося эффективным антиоксидантом для синтетических каучуков, полиолефинов и масел. Способ включает окисление мономеров: гидрохинона, и/или бензохинона, и/или хингидрона, и/или...
Тип: Изобретение
Номер охранного документа: 0002647591
Дата охранного документа: 16.03.2018
29.05.2018
№218.016.5468

Способ кормления животных и птицы

Изобретение относится к сельскому хозяйству, а именно к кормопроизводству, и может быть использовано в птицеводстве и животноводстве в качестве добавки к рациону при кормлении животных и птиц. Способ кормления, включающий дачу комбикорма со стабилизирующей добавкой. В качестве стабилизирующей...
Тип: Изобретение
Номер охранного документа: 0002654095
Дата охранного документа: 16.05.2018
01.07.2018
№218.016.693f

Способ очистки сточных вод от сульфидной и/или меркаптидной серы и установка для его осуществления

Изобретение может быть использовано для окислительного обезвреживания водных технологических конденсатов и/или сернисто-щелочных стоков, загрязненных токсичной сульфидной и/или меркаптидной серой, поступающих с предприятий нефтяной, газовой, химической, целлюлозно-бумажной, металлургической...
Тип: Изобретение
Номер охранного документа: 0002659269
Дата охранного документа: 29.06.2018
28.08.2018
№218.016.8008

Новое химическое соединение бис(3,5-ди-трет-бутил-4-гидроксифенил)пропил)фосфонат

Изобретение относится к новому соединению, которое может быть использовано в качестве антиоксиданта при стабилизации каучуков и смазочных масел, бис(3,5-ди-трет-бутил-4-гидроксифенил)пропил)-фосфонат формулы: Технический результат - получено новое химическое соединение, являющееся эффективным...
Тип: Изобретение
Номер охранного документа: 0002665039
Дата охранного документа: 27.08.2018
18.01.2019
№219.016.b160

Новые металлокомплексные соединения олигопирокатехина и способ получения катализаторов окисления сернистых соединений на их основе

Изобретение относится к новым химическим соединениям - олигопирокатехолатам металлов переменной валентности формулы (I), где Me - двухвалентный переходный металл в ряду Cu, Со, Fe, Mn, Ni, n=5÷15. Также предложен катализатор окисления сернистых соединений на полимерном носителе, содержащий...
Тип: Изобретение
Номер охранного документа: 0002677226
Дата охранного документа: 16.01.2019
23.02.2019
№219.016.c70d

Способ регенеративной очистки углеводородного сырья от кислых примесей

Изобретение относится к способам очистки бензиновых, керосиновых, дизельных фракций, легких нефтей и газоконденсатов от кислых примесей и может быть использовано в нефтеперерабатывающей, нефтедобывающей и нефтехимической отраслях промышленности. В описанном способе щелочной очистки...
Тип: Изобретение
Номер охранного документа: 0002680522
Дата охранного документа: 22.02.2019
Показаны записи 1-10 из 13.
10.02.2015
№216.013.21dc

Способ очистки легкого углеводородного сырья от карбонилсульфида

Изобретение относится к области очистки углеводородов от сернистых соединений и может быть использовано в нефтяной, газовой и нефтехимической отраслях промышленности. Изобретение касается способа очистки легкого углеводородного сырья от карбонилсульфида путем его разложения в углеводороде...
Тип: Изобретение
Номер охранного документа: 0002540121
Дата охранного документа: 10.02.2015
10.06.2015
№216.013.5203

Способ получения полихинонов

Изобретение относится к способу получения полихинона окислительным дегидрированием исходного мономера: гидрохинона, и/или бензохинона, и/или хингидрона, и/или пирокатехина, и/или их смесей в присутствии мягкого дегидрирующего агента, пространственно замещенного дифенохинона общей формулы (1) с...
Тип: Изобретение
Номер охранного документа: 0002552516
Дата охранного документа: 10.06.2015
13.01.2017
№217.015.8780

Способ демеркаптанизации углеводородного сырья

Изобретение относится к способу щелочной демеркаптанизации углеводородного сырья с последующей окислительно-каталитической регенерацией насыщенного меркаптидами щелочного агента либо непосредственным окислением содержащихся в углеводородном сырье меркаптанов кислородом воздуха в присутствии...
Тип: Изобретение
Номер охранного документа: 0002603635
Дата охранного документа: 27.11.2016
04.04.2018
№218.016.30da

Катализатор для жидкофазного окисления сульфида натрия

Настоящее изобретение относится к катализатору жидкофазного окисления сульфида натрия в водной среде и может быть использовано в газовой, нефтеперерабатывающей, нефтяной, химической, кожевенной и других отраслях промышленности при обезвреживании сточных вод, содержащих неорганические сульфиды....
Тип: Изобретение
Номер охранного документа: 0002644779
Дата охранного документа: 14.02.2018
10.05.2018
№218.016.3a7f

Способ совместного получения полихинонов и этиленбисфенола

Настоящее изобретение относится к способу получения полихинона и этиленбисфенола общей формулы (3), являющегося эффективным антиоксидантом для синтетических каучуков, полиолефинов и масел. Способ включает окисление мономеров: гидрохинона, и/или бензохинона, и/или хингидрона, и/или...
Тип: Изобретение
Номер охранного документа: 0002647591
Дата охранного документа: 16.03.2018
29.05.2018
№218.016.5468

Способ кормления животных и птицы

Изобретение относится к сельскому хозяйству, а именно к кормопроизводству, и может быть использовано в птицеводстве и животноводстве в качестве добавки к рациону при кормлении животных и птиц. Способ кормления, включающий дачу комбикорма со стабилизирующей добавкой. В качестве стабилизирующей...
Тип: Изобретение
Номер охранного документа: 0002654095
Дата охранного документа: 16.05.2018
01.07.2018
№218.016.693f

Способ очистки сточных вод от сульфидной и/или меркаптидной серы и установка для его осуществления

Изобретение может быть использовано для окислительного обезвреживания водных технологических конденсатов и/или сернисто-щелочных стоков, загрязненных токсичной сульфидной и/или меркаптидной серой, поступающих с предприятий нефтяной, газовой, химической, целлюлозно-бумажной, металлургической...
Тип: Изобретение
Номер охранного документа: 0002659269
Дата охранного документа: 29.06.2018
28.08.2018
№218.016.8008

Новое химическое соединение бис(3,5-ди-трет-бутил-4-гидроксифенил)пропил)фосфонат

Изобретение относится к новому соединению, которое может быть использовано в качестве антиоксиданта при стабилизации каучуков и смазочных масел, бис(3,5-ди-трет-бутил-4-гидроксифенил)пропил)-фосфонат формулы: Технический результат - получено новое химическое соединение, являющееся эффективным...
Тип: Изобретение
Номер охранного документа: 0002665039
Дата охранного документа: 27.08.2018
18.01.2019
№219.016.b160

Новые металлокомплексные соединения олигопирокатехина и способ получения катализаторов окисления сернистых соединений на их основе

Изобретение относится к новым химическим соединениям - олигопирокатехолатам металлов переменной валентности формулы (I), где Me - двухвалентный переходный металл в ряду Cu, Со, Fe, Mn, Ni, n=5÷15. Также предложен катализатор окисления сернистых соединений на полимерном носителе, содержащий...
Тип: Изобретение
Номер охранного документа: 0002677226
Дата охранного документа: 16.01.2019
23.02.2019
№219.016.c70d

Способ регенеративной очистки углеводородного сырья от кислых примесей

Изобретение относится к способам очистки бензиновых, керосиновых, дизельных фракций, легких нефтей и газоконденсатов от кислых примесей и может быть использовано в нефтеперерабатывающей, нефтедобывающей и нефтехимической отраслях промышленности. В описанном способе щелочной очистки...
Тип: Изобретение
Номер охранного документа: 0002680522
Дата охранного документа: 22.02.2019
+ добавить свой РИД