×
01.07.2018
218.016.692e

Результат интеллектуальной деятельности: Способ выращивания кристаллов многокомпонентных фторидов со структурой флюорита в системах MF-CeF

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии выращивания кристаллов многокомпонентных фторидов со структурой флюорита в системах MF-CeF, которые широко используются в оптике, фотонике, физике высоких энергий. Способ включает кристаллизацию из расплава шихты, состоящей из смеси фторидов одного или нескольких фторидов щелочноземельных металлов M=Са, Sr, Ва и церия при мольном содержании фторида церия от 0,05 до 50% в атмосфере фторирующих агентов с последующим послеростовым охлаждением до температуры 400-500°С, после достижения этой температуры из ростовой зоны удаляют газообразные фторирующие агенты и ведут термообработку в неокисительной атмосфере при температуре 400-500°С не менее 5 часов, а затем медленно охлаждают кристалл до комнатной температуры. Изобретение направлено на получение кристаллов с высоким оптическим качеством при отсутствии экологически вредных выбросов легколетучих фторидов. 6 з.п. ф-лы, 3 ил., 1 пр.

Изобретение относится к технологии выращивания кристаллов неорганических соединений из расплава методом вертикальной направленной кристаллизации, в частности фторидных кристаллов, которые широко используются, например, в оптике, фотонике, физике высоких энергий. Конкретно способ направлен на создание технологии, обеспечивающей выращивание кристаллов многокомпонентных фторидов со структурой флюорита в системах MF2-CeF3 (где М - один или несколько металлов из группы Са, Sr, Ва) с высоким светопропусканием в ближней УФ- и в видимой области спектра, не требующей применения фторирующих агентов на основе летучих фторидов металлов (например, фторида свинца PbF2, фторида цинка ZnF2, фторида кобальта CoF2, фторида кадмия CdF2), приводящих к экологически опасным выбросам и к загрязнению получаемых кристаллов этими компонентами.

Кристаллы гетеровалентных твердых растворов в системах M/F2-CeF3 (где М - один или несколько металлов из группы Са, Sr, Ва, содержание CeF3 от 0 до 50% мол.) являются перспективными полифункциональными материалами, физическими свойствами которых можно управлять в широких пределах. Они представляют интерес для оптического приборостроения специального назначения, поскольку для широкого круга задач в области селективной фильтрации излучения в указанном ряду материалов могут быть подобраны оптимальные составы. В отличие от широко применяемых в УФ-оптике кристаллов М'Т2 (где М' - металлы группы IIA), материалы в системе MF2-CeF3 обладают улучшенными механическими свойствами (в частности, слабой выраженностью спайности), что облегчает их оптическую обработку и повышает надежность изделий.

Кристаллы гетеровалентных твердых растворов в системах МF2-СеF3 (где M - один или несколько металлов из группы Са, Sr, Ва) так же, как и большинство других фторидных кристаллов, во избежание пирогидролиза, приводящего к ухудшению оптических характеристик, традиционно выращивают во фторирующей атмосфере. Для этого в ростовую зону вводятся газообразные фторирующие агенты (тетрафторметан CF4, продукты пиролиза политетрафторэлитена, фтороводород HF, фторид бора BF3, фторид серы SF6 (R.C Pastor // Journal of Crystal Growth. 1999. Vol. 203. Issue 3. P. 421-424)). По опыту выращивания кристаллов большого количества составов в системах MF2-CeF3 известно, что в таких условиях (во всех газообразных фторирующих агентах, кроме фтороводорода HF) у выращенных материалов появляется желтоватая или коричневая окраска, препятствующая применению кристаллов в качестве прозрачных светофильтров. Окрашивание кристаллов связано с высокой окислительной способностью фторсодержащей атмосферы и способностью ионов церия Се3+ окисляться, что генерирует образование центров окраски.

Известен способ получения бесцветных кристаллов высокого оптического качества, основанный на применений в качестве фторирующего агента фтороводорода HF (Н. Guggenheim // J. Appl. Phys. 1963. Vol. 34. No. 8. P. 2482-2485), который не является окислителем и, соответственно, не окисляет ионы Се3+ и не генерирует образование центров окраски.

Недостатками описанного способа являются:

- высокая токсичность фтороводорода HF;

- высокая коррозионная активность фтороводорода HF, что создает риск повреждения ростового оборудования.

Известен способ получения бесцветных кристаллов в ряду MF2-CeF3 (Д.H. Каримов, Н.А. Ивановская, Н.В. Самсонова, Н.И. Сорокин, Б.П. Соболев, П.А. Попов // Кристаллография. 2013. Т. 58. №5. с. 737-741).

Известен способ выращивания кристаллов многокомпонентных фторидов со структурой флюорита, включающий кристаллизацию из расплава шихты фторидов щелочноземельных металлов и церия в атмосфере фторирующих агентов способом вертикальной направленной кристаллизации с последующим послеростовым охлаждением и термообработкой (Д.Н. Каримов, Н.А. Ивановская, Н.В. Самсонова, Н.И. Сорокин, Б.П. Соболев, П.А. Попов // Кристаллография. 2013. Т. 58. №5. с. 737-741). Этот способ позволяет выращивать бесцветные кристаллы в ряду МF2-СеF3. Однако выращивание бесцветных фторидных кристаллов обеспечивалось тем, что для создания фторирующей атмосферы вместо обычно применяемого тетрафторметана CF4 использовались твердые фторирующие агенты - фториды металлов, реагирующие с основным расплавом, извлекая из него кислород в виде летучих соединений. Условием применения твердых фторирующих агентов является их собственная высокая летучесть, сочетающаяся с летучестью кислородсодержащих продуктов реакции «очистки». Избыток (против стехиометрии реакции очистки) самих агентов и продукты всех реакций, кроме основного фторидного расплава, удаляются из него испарением. В указанной работе в качестве твердых фторирующих агентов использовались фторид свинца PbF2 и фторид цинка ZnF2. В результате были получены визуально бесцветные кристаллы твердого раствора со структурой флюорита в системе SrF2-CeF3, высокая прозрачность в УФ- и видимой диапазонах подтверждена спектроскопически.

Недостатками описанного способа, принятого за прототип, являются:

- экологически вредные выбросы легколетучих фторидов металлов;

- загрязнение кристаллов металлами, входящими в состав твердых фторирующих агентов.

Технической задачей предлагаемого способа является создание технологии, в которой преодолены указанные недостатки.

Техническим результатом является создание технологии, обеспечивающей получение в ростовом цикле кристаллов в системах MF2-CeF3 (где М - один или несколько металлов из группы Са, Sr, Ва) высокого качества при отсутствии экологически вредных выбросов легколетучих фторидов и не требующей применения высокоагрессивных веществ, способных повреждать ростовое оборудование.

Решение поставленной технической задачи и достижение технического результата обеспечиваются тем, что в способе выращивания кристаллов многокомпонентных фторидов со структурой флюорита в системах MF2-CeF3, включающем кристаллизацию из расплава шихты, состоящей из фторидов щелочноземельных металлов и церия, в атмосфере фторирующих агентов способом вертикальной направленной кристаллизации с последующим послеростовым охлаждением в качестве шихты применяют смесь фторидов одного или нескольких щелочноземельных металлов (Са, Sr, Ва) и фторида церия при мольном содержании фторида церия от 0,05 до 50%, что обеспечивает получение флюоритовой фазы, процесс послеростового охлаждения ведут до температуры в интервале 400-500°С, после достижения этой температуры из ростовой зоны удаляют газообразные фторирующие агенты и ведут термообработку в неокислительной атмосфере при температуре 400-500°С не менее 5 часов, а затем медленно охлаждают кристалл до комнатной температуры. В качестве способа вертикальной направленной кристаллизации возможно применение способа Бриджмена-Стокбаргера. Неокислительную атмосферу в процессе термообработки создают вакуумированием зоны термообработки до давления не выше 5⋅10-6 мм рт.ст., причем после создания вакуума зона термообработки может быть заполнена инертным газом, например аргоном.

Охлаждение выращенного кристалла до комнатной температуры ведут со скоростью не более 50°C/ч. Для создания фторирующей атмосферы либо в шихту вводят политетрафторэтилен, разлагающийся при нагревании с образованием фторирующих газов, либо заполняют ростовую зону фторсодержащим газом, например тетрафторметаном, фторидами серы или бора.

Реализация предлагаемого способа и полученные результаты иллюстрируются на чертежах, где

фиг. 1 - блок схема операций, осуществляемых в способе;

фиг. 2 - график изменения коэффициента пропускания кристаллов Sr0.35Ba0.35Ce0.30F2.30 в зависимости от длины волны:

кривая 1 - окрашенный кристалл, выращенный в соответствии со способом, принятым за прототип;

кривая 2 - бесцветный кристалл, выращенный предлагаемым способом с использованием термической обработки при 470±20°C в атмосфере инертного газа (аргон) в течение 5 часов;

фиг. 3 - фотографии кристаллов, выращенных известным способом (позиция 1) и предлагаемым способом (позиция 2).

Пример реализации способа

Последовательность технологических действий приведена на фиг. 1.

Рост кристаллов осуществляли методом направленной кристаллизации на установке КРФ (производство СКБ ИК РАН) в графитовых многоячеистом тигле и тепловом узле. Выращивание фторидных кристаллов в атмосфере газообразных фторирующих агентов (тетрафторметан CF4) вели без добавления твердых фторирующих агентов. Температурный градиент в ростовой зоне составлял ~45°C/см, скорость опускания тигля - 5 мм/ч. В процессе послеростового охлаждения из ростовой зоны удаляли газообразные фторирующие агенты. Удаление начинали производить в температурном интервале 400-500°C, что определяется температурой начала процесса пирогидролиза (выше 500°C) и кинетикой распада центров окраски (происходит достаточно эффективно при температуре порядка 400°C и выше). Создание неокислительной атмосферы обеспечивали вакуумированием ростовой зоны до остаточного давления не выше 5⋅10-6 мм рт.ст., которое и поддерживали в течение 5 часов. В другом эксперименте после достижения названной величины вакуума в рабочее пространство печи вводили высокочистый инертный газ. В качестве последнего применяли как гелий, так и аргон. При этом поддерживали избыточное давление инертного газа до 800 мм рт. ст. Заполнение рабочего пространства печи инертным газом позволяет прекратить процесс вакуумирования, что снижает энергозатраты, связанные с выращиванием кристаллов. По истечении 5 часов термообработки выращенный кристалл охлаждали со скоростью не более 50°C/ч до комнатной температуры и извлекали его из кристаллизационной установки.

Промышленная применимость способа подтверждена успешными экспериментами по выращиванию кристаллов составов Sr0.7Ce0.3F2.3, Ba0.75Ce0.25F2.25, Ca0.85Ce0.15F2.15, Sr0.35Ba0.35Ce0.30F2.30 и др. Использование заявляемой технологии позволило получить прозрачные в ближней УФ- и видимой областях спектра кристаллы, свободные от загрязнений свинцом, цинком и другими агентами, и избавится от экологически вредных выбросов летучих фторидов. В качестве примера на фиг. 2 приведены спектры пропускания кристаллов Sr0.35Ba0.35Ce0.30F2.30, выращенных с применением термообработки в неокислительной атмосфере и без нее; а на фиг. 3 приведен их внешний вид, где индексом 1 обозначен кристалл, выращенный известным способом, и индексом 2 кристалл, выращенный предлагаемым способом.


Способ выращивания кристаллов многокомпонентных фторидов со структурой флюорита в системах MF-CeF
Способ выращивания кристаллов многокомпонентных фторидов со структурой флюорита в системах MF-CeF
Источник поступления информации: Роспатент

Показаны записи 1-10 из 39.
25.08.2017
№217.015.a2f2

Способ получения трёхмерных матриц

Изобретение может быть использовано для создания матриц для индивидуальных биоактивных имплантатов и искусственных органов. Для получения трехмерных матриц используют установку, состоящую из системы управления, трехкоординатной системы перемещения шприцевого диспенсера и рабочего резервуара. В...
Тип: Изобретение
Номер охранного документа: 0002607226
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a924

Способ активации процесса фотополимеризации ближним инфракрасным излучением

Изобретение относится к аддитивным технологиям, биотехнологии и медицине, а именно к cпособу получения трехмерных конструкций в объеме полимеризуемого материала. Способ характеризуется тем, что осуществляют облучение фотоктиватора глубоко проникающим в полимеризуемую композицию непрерывным...
Тип: Изобретение
Номер охранного документа: 0002611395
Дата охранного документа: 21.02.2017
26.08.2017
№217.015.e479

Способ определения условий кристаллизации белков

Изобретение относится к химической промышленности. Способ кристаллизации белков предусматривает подготовку исходных растворов белка в буфере, фильтрование полученного раствора, центрифугирование и заполнение раствором капилляров. Первую часть полученных после центрифугирования белковых...
Тип: Изобретение
Номер охранного документа: 0002626576
Дата охранного документа: 28.07.2017
29.12.2017
№217.015.f956

Конгруэнтно плавящийся фтор-проводящий твердый электролит mrf с флюоритовой структурой для высокотемпературных термодинамических исследований

Изобретение относится к области фтор-проводящих твердых электролитов (ФТЭЛ). Предложены фтор-проводящие твердые электролиты MRV с флюоритовой структурой в монокристаллической форме для высокотемпературных термодинамических исследований химических веществ, содержащие фториды щелочноземельного...
Тип: Изобретение
Номер охранного документа: 0002639882
Дата охранного документа: 25.12.2017
20.01.2018
№218.016.1887

Способ микроструктурирования поверхности прозрачных материалов

Изобретение относится к способу микроструктурирования поверхности прозрачных материалов путем формирования отверстий, каналов и других структур с помощью воздействия сфокусированным лазерным лучом на границу прозрачного материала и поглощающей жидкости, и может быть использовано, например, для...
Тип: Изобретение
Номер охранного документа: 0002635494
Дата охранного документа: 13.11.2017
20.01.2018
№218.016.1bf5

Способ получения сложного гидросульфатфосфата цезия состава cs(hso)(hpo)

Изобретение относится к неорганической химии, в частности к синтезу сложного гидросульфатфосфата цезия состава Cs(HSO)(HPO), который может быть использован в качестве среднетемпературного твердого протонпроводящего материала. Cs(HSO)(HPO) получают методом твердофазного синтеза из шихты с...
Тип: Изобретение
Номер охранного документа: 0002636713
Дата охранного документа: 27.11.2017
10.05.2018
№218.016.3ed7

Способ получения структурированных гидрогелей

Изобретение относится к медицине, в частности к биомедицинскому материаловедению, и раскрывает метод получения гидрогелей с заданными механическими свойствами и архитектоникой. Способ включает формирование тонких слоев жидкой фотополимеризующейся композиции, содержащей 3 масс. % раствор...
Тип: Изобретение
Номер охранного документа: 0002648514
Дата охранного документа: 26.03.2018
29.05.2018
№218.016.5506

Дифрактометр

Изобретение относится к устройствам для проведения рентгенодифракционных исследований материалов. Дифрактометр содержит источник рентгеновского излучения, размещенные за ним последовательно по ходу рентгеновского луча первую щелевую диафрагму, первый гониометр, вторую щелевую диафрагму, второй...
Тип: Изобретение
Номер охранного документа: 0002654375
Дата охранного документа: 18.05.2018
08.07.2018
№218.016.6d97

Способ упрочнения гидрогелей

Изобретение относится к медицине, а именно к тканевой инженерии и регенеративной медицине, и предназначено для восстановления различных дефектов ткани. Для упрочнения гидрогелей осуществляют обработку гидрогелевого скаффолда в реакторе в среде сверхкритического диоксида углерода при температуре...
Тип: Изобретение
Номер охранного документа: 0002660588
Дата охранного документа: 06.07.2018
25.08.2018
№218.016.7f79

Перестраиваемое волоконно-оптическое фокусирующее устройство

Изобретение относится к устройствам для фокусировки лазерного излучения, предназначено для интегрирования в волоконно-оптические системы, где требуется оперативная подстройка фокусирующих свойств волоконных световодов. Устройство содержит последовательно расположенные и оптически связанные...
Тип: Изобретение
Номер охранного документа: 0002664787
Дата охранного документа: 22.08.2018
Показаны записи 1-5 из 5.
27.07.2015
№216.013.658c

Фтор-проводящий твердый электролит rmf с тисонитовой структурой и способ его получения

Изобретение относится к фтор-проводящему твердому электролиту RMF с тисонитовой структурой, содержащему фториды редкоземельного и щелочно-земельного металлов. Электролит характеризуется тем, что он имеет монокристаллическую форму и содержит трифторид RF(R=La, Се, Pr, Nd) и дифторид MF(М=Са, Sr,...
Тип: Изобретение
Номер охранного документа: 0002557549
Дата охранного документа: 27.07.2015
26.08.2017
№217.015.e8c1

Способ получения кристаллов дифторида европия (ii) euf

Изобретение относится к технологии получения новых многофункциональных фторидных материалов для фотоники и ионики твердого тела, оптического материаловедения, магнитооптики, систем оптической записи информации. Способ получения кристаллов дифторида европия (II) EuF осуществляют в две стадии,...
Тип: Изобретение
Номер охранного документа: 0002627394
Дата охранного документа: 08.08.2017
29.12.2017
№217.015.f956

Конгруэнтно плавящийся фтор-проводящий твердый электролит mrf с флюоритовой структурой для высокотемпературных термодинамических исследований

Изобретение относится к области фтор-проводящих твердых электролитов (ФТЭЛ). Предложены фтор-проводящие твердые электролиты MRV с флюоритовой структурой в монокристаллической форме для высокотемпературных термодинамических исследований химических веществ, содержащие фториды щелочноземельного...
Тип: Изобретение
Номер охранного документа: 0002639882
Дата охранного документа: 25.12.2017
30.08.2018
№218.016.8184

Фтор-проводящий стеклообразный твердый электролит

Изобретение относится к области фтор-проводящих твердых электролитов, обладающих высокой анионной электропроводностью по ионам фтора. Фтор-проводящий твердый электролит на основе фторидного стекла PbF+InF+BaF имеет состав, мол. %: PbF 7-54, InF 11-49, BaF 7-32, AlF 2-20 и LiF 10-20. Электролиты...
Тип: Изобретение
Номер охранного документа: 0002665314
Дата охранного документа: 29.08.2018
17.10.2019
№219.017.d6c7

Фтор-проводящий композитный электролит и способ его получения

Изобретение относится к фтор-проводящим твердым электролитам (ФТЭЛ), которые используются в различных областях ионики твердого тела, электрохимии, сенсорных систем и низковольтной энергетики, а также к способу его получения. Фтор-проводящий композитный электролит получают кристаллизацией...
Тип: Изобретение
Номер охранного документа: 0002702905
Дата охранного документа: 14.10.2019
+ добавить свой РИД