×
20.01.2018
218.016.1887

Способ микроструктурирования поверхности прозрачных материалов

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу микроструктурирования поверхности прозрачных материалов путем формирования отверстий, каналов и других структур с помощью воздействия сфокусированным лазерным лучом на границу прозрачного материала и поглощающей жидкости, и может быть использовано, например, для изготовления элементов микрооптики, волоконной и интегральной оптики, плазмоники, микрофлюидики. Способ включает воздействие сфокусированным импульсным лазерным излучением на обратную поверхность образца из прозрачного материала, находящегося в контакте с поглощающей лазерное излучение жидкостью, в качестве которой используются прекурсоры благородных металлов. Под воздействием лазерного излучения прекурсоры восстанавливаются до атомов соответствующего металла, которые собираются в наночастицы и агрегаты, формируя на границе с обрабатываемым материалом область повышенного поглощения. При перекрытии длины волны воздействующего лазерного излучения с полосой плазмонного поглощения наночастиц и агрегатов указанные процессы резонансно усиливаются, что обеспечивает эффективное травление поверхности обрабатываемого материала, в частности, существенное увеличение глубины травления. 2 з.п. ф- лы, 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к технологиям микроструктурирования материалов, а именно к технологии микроструктурирования поверхности прозрачных материалов путем формирования отверстий, каналов и других структур с помощью воздействия сфокусированным лазерным лучом на границу прозрачного материала и поглощающего вещества, и может быть использовано, например, для изготовления элементов микрооптики, волоконной и интегральной оптики, плазмоники, микрофлюидики.

Известен способ микроструктурирования поверхности прозрачных материалов с помощью лазерного излучения [Патент US 6362453 В1]. В известном способе сфокусированный лазерный луч с плотностью энергии лазерного излучения 0,01-100 Дж/см2 облучает обратную поверхность образца из прозрачного твердого материала, которая находится в контакте с поглощающей лазерное излучение жидкостью. Для осуществления известного способа требуется, чтобы по крайней мере 10% лазерной энергии поглощалось в слое поглощающей жидкости толщиной 0,1 мм. В качестве поглощающей жидкости используются органические красители или такие органические жидкости, как бензин, толуол, тетрахлорметан, а также дисперсные растворы, содержащие органические и неорганические пигменты. Для осуществления известного способа могут применяться излучения таких лазерных источников, как: ArF эксимерный лазер (длина волны 193 нм), KrCl эксимерный лазер (222 нм), KrF эксимерный лазер (248 нм), XeCl эксимерный лазер (308 нм), XeF эксимерный лазер (351 нм), Kr ионный лазер, Ar ионный лазер, лазер на красителях, лазер на парах меди. Также могут быть использованы гармоники излучений твердотельных лазеров на кристаллах YAG и YLF. Наибольшее предпочтение при этом отдается лазерному излучению в ультрафиолетовой области и лазерам с длительностью импульсов в области 10-100 нс. Известный способ позволяет проводить травление и микроструктурирование различных оптически прозрачных твердых материалов, как органических, так и неорганических, при этом для получения гладких поверхностей получены скорости травления 4-10 нм/импульс. К недостаткам способа относится недостаточная скорость травления материала.

Известен наиболее близкий к заявляемому способ непрямой импульсной лазерной обработки прозрачных материалов [Патент EP 2076353 А1]. Известный способ заключается в том, что сфокусированное импульсное лазерное излучение воздействует на обратную поверхность образца из прозрачного материала, на которую нанесено поглощающее покрытие, при этом поглощенной в покрытии энергии лазерных импульсов достаточно для полного выкипания материала поглощающего покрытия. Удаление части прозрачного материала в области лазерного воздействия происходит из-за импульсного кипения материала поглощающего покрытия, при котором происходит импульсный нагрев, разрушение и удаление граничащей с поглощающим покрытием части вещества образца прозрачного материала. В известном способе обработка прозрачных материалов происходит при плотности энергии лазерного излучения 0,01-10 Дж/см2, длительности импульса 10-100 нс, а поглощающее покрытие наносится на поверхность образца из прозрачного материала путем вакуумного напыления, химического нанесения из газовой фазы, осаждения паров или распыления.

Для осуществления известного способа могут применяться различные лазерные источники: ArF эксимерный лазер (длина волны 193 nm), KrCl эксимерный лазер (222 nm), KrF эксимерный лазер (248 nm), XeCl эксимерный лазер (308 nm), XeF эксимерный лазер (351 nm), различные лазеры на красителях, Kr ионный лазер, Ar ионный лазер и лазер на парах меди. Также могут быть использованы гармоники излучения твердотельных лазеров на кристаллах YAG и YLF. Толщина поглощающего слоя, который может быть выполнен из металла, углерода или полимера, лежит в интервалах 50-150 нм, при этом температура точки кипения материала поглощающего слоя должна быть выше температуры плавления образца из прозрачного материала. В частности, поглощающий слой может быть выполнен из алюминия или серебра.

Известный способ позволяет проводить эффективное микроструктурирование различных оптически прозрачных твердых материалов. как органических, так и неорганических со скоростями удаления части прозрачного материала в области лазерного воздействия 15-600 нм/импульс. К недостаткам способа относится то, что глубина травления прозрачных материалов ограничена 5-20 мкм, поскольку при длительном лазерном воздействии в одну область поглощающее покрытие в этом месте из-за испарения и выбросов полностью удаляется и процесс травления прекращается.

Задача изобретения состоит в увеличении глубины лазерного травления.

Поставленная задача решается способом микроструктурирования поверхности прозрачных материалов, при котором сфокусированное импульсное лазерное излучение видимой области спектра с длительностью импульсов 1-50 нс при плотности энергии 5-500 Дж/см2 воздействует на обратную поверхность образца из прозрачного материала, находящегося в контакте с поглощающей лазерное излучение жидкостью, в качестве которой используются прекурсоры благородных металлов, а формирование необходимой конфигурации отверстий и каналов на поверхности и в объеме образца из прозрачного материала происходит при его перемещении в пространстве по заданной траектории.

Заявленный способ основан на том, что под воздействием лазерного излучения высокой интенсивности происходит фотохимическое разложение прекурсора благородного металла и формируются наночастицы и агрегаты металла (Kreibig M., Volmer U. Optical Properties of Metal Clusters. Springer, 1995). Например, для прекурсора серебра - нитрата серебра, такое фотохимическое разложение происходит по схеме:

2AgNO3→2Ag+2NO2+O2

В результате в области импульсного лазерного воздействия в жидкости формируются атомы серебра, которые постепенно объединяются в наночастицы и кластеры, формирующие поглощающую область вблизи поверхности прозрачного материала. Поглощение лазерного излучения в тонком слое на границе прозрачного материала значительно увеличивается, что приводит к увеличению температуры этого слоя и усилению термолиза - термического разложения прекурсора благородного металла. Через некоторое время из-за большой плотности наночастиц и кластеров лазерное излучение практически полностью в этом тонком слое поглощается, еще больше разогревая его. В результате импульсного термического нагрева приповерхностной зоны прозрачного материала до высоких температур, сопровождающегося известными гидродинамическими процессами, происходит постепенное послойное удаление вещества прозрачного материала (K. Zimmer, М. Ehrhardt, R. Böhme, Laser-Induced Backside Wet Etching: Processes, Results, and Applications. in: G. Yang Laser Ablation in Liquids: Principles and Applications in the Preparation of Nanomaterials (Pan Stanford Publishing, Singapore, 2012).

Способ осуществляется следующим образом.

С помощью оптических систем импульсное лазерное излучение фокусируют на обратную поверхность образца из прозрачного материала, установленного на 3D-подвижке, находящейся в контакте с поглощающей лазерное излучение жидкостью, в качестве которой используются прекурсоры благородных металлов. Далее производится необходимое лазерное воздействие, при котором образец прозрачного материала смещается по установленной траектории таким образом, чтобы на поверхности и внутри объема образца из прозрачного материала сформировались отверстия или каналы необходимой конфигурации.

В отличие от прототипа, в котором удаление материала образца происходит за счет импульсного нагрева пленки, нанесенной на поверхность образца прозрачного материала, в предложенном способе тонкая область поглощения у поверхности образца прозрачного материала формируется постоянно под действием лазерных импульсов из-за разложения прекурсора и формирования наночастиц и кластеров металлов, что и приводит к увеличению глубины лазерного травления по сравнению с прототипом.

Требуемые характеристики при осуществлении способа, а именно конкретный вид прекурсора благородного металла, его концентрация, а также параметры лазерного излучения: длина волны, энергия импульсов, плотность энергии, длительность и частота следования импульсов, параметры фокусировки, параметры 3D-подвижки (точность позиционирования и скорость перемещения) выбирают стандартным образом в зависимости от вещества прозрачного материала и необходимых геометрических параметров создаваемых структур.

Эффективное микроструктурирование прозрачных материалов происходит при плотности энергии лазерного излучения 5-500 Дж/см2, длительности импульса 1-50 нс, а в качестве прекурсора благородного металла выбираются, например, прекурсоры золота, меди или серебра, в частности, прекурсор серебра - нитрат серебра.

В качестве лазерных источников могут использоваться, например, лазеры на парах меди, а также дешевые и коммерчески доступные твердотельные лазеры с диодной накачкой, вторая гармоника излучения которых перекрывается с пиком плазмонного поглощения наночастиц и кластеров благородных металлов. Наночастицы благородных металлов характеризуются резонансным плазменным поглощением в области ~400-600 нм, при этом по мере роста наночастиц пик плазмонного поглощения сдвигается в длинноволновую область (Maier S.A. Plasmonics: Fundamentals and Applications. Springer, 2007). При попадании длины волны импульсного лазерного излучения в полосу плазмонного поглощения образующихся наночастиц и кластеров эффективность микроструктурирования прозрачного материала возрастет.

Авторами проведено испытание способа лазерно-плазмонного микроструктурирования прозрачных материалов. В качестве импульсного лазерного излучения использовалась вторая гармоника твердотельного лазера с диодной накачкой ТЕСН-527 Basic (Лазер-компакт, Россия) с длиной волны 527 нм и длительностью лазерного импульса ~5 нс. В качестве образцов прозрачного материала использовались стандартные предметные микроскопические стекла из силикатного стекла, которые устанавливались на месте передней стенки разборной кюветы, заполняемой прекурсором благородного металла. В качестве прекурсора использовался 5-мольный водный раствор AgNO3. Кювету с образцом помещали на трехкоординатную подвижку 8МТ167-100 (Standa) с точностью позиционирования не хуже 0,5 мкм. Для фокусировки лазерного излучения на заднюю поверхность образца использовали 10х объектив LMH-10X-532 (Thorlabs) с NA=0,25. Контроль фокусировки лазерного излучения на границу прозрачного материала и прекурсора благородного металла осуществлялся посредством USB 2.0 камеры EXCCD (ToupTek). Измеренный диаметр лазерного пучка в области фокусировки составил 4,5±0,4 мкм. Контроль полученных на поверхности образца микроструктур проводился с помощью оптического 3D- микроскопа HRM-300 (Huvitz, Korea). Плотность энергии лазерного излучения изменяли в диапазоне 5-500 Дж/см2.

На фиг. 1 показано 3D изображение кратера, полученного на поверхности силикатного стекла при воздействии лазерными импульсами в течение 25 с при плотности энергии 300 Дж/см2.

Как видно из фиг. 1, поверхность кратера, полученного на поверхности силикатного стекла, достаточно гладкая, а его глубина составляет ~130 мкм, что значительно превышает максимальные глубины, получаемые с использованием аналога. Проведенные авторами эксперименты показали, что предложенным способом легко получать различные по глубине структуры, изменяя скорость перемещения образца из прозрачного материала вдоль его поверхности.

Таким образом, предложенный способ позволяет получить заявляемый технический результат, состоящий в увеличении глубины лазерного травления поверхности прозрачного материала.


Способ микроструктурирования поверхности прозрачных материалов
Способ микроструктурирования поверхности прозрачных материалов
Источник поступления информации: Роспатент

Показаны записи 1-10 из 45.
27.08.2013
№216.012.63f6

Способ получения флуоресцентных меток на основе биодеградируемых наночастиц кремния для in vivo применения

Изобретение относится к области наноматериалов. Предложен способ получения флуоресцентных меток на основе биосовместимых и биодеградируемых наночастиц кремния для in vivo применения реакцией диспропорционирования монооксида кремния при температуре 950°C в атмосфере воздуха с последующим...
Тип: Изобретение
Номер охранного документа: 0002491227
Дата охранного документа: 27.08.2013
10.07.2014
№216.012.dc47

Способ оценки потока газа

Изобретение относится к области гидроакустики и может быть использовано для оценки потока газа, например, для оценки потока метана газовых «факелов». Сущность: излучают в направлении дна акустический сигнал. Принимают сигналы обратного излучения звука от каждого из пузырьков, пересекающих за...
Тип: Изобретение
Номер охранного документа: 0002522169
Дата охранного документа: 10.07.2014
27.06.2015
№216.013.58d1

Способ оценки концентрации метана в водной толще в областях его пузырьковой разгрузки

Изобретение относится к области гидроакустики и может быть использовано для оценки концентрации растворенного метана в областях его пузырьковой разгрузки. Сущность: излучают в направлении морского дна акустический сигнал. Принимают сигнал обратного рассеяния звука от водной толщи. По...
Тип: Изобретение
Номер охранного документа: 0002554278
Дата охранного документа: 27.06.2015
27.08.2016
№216.015.5150

Полимерная нанокомпозиция для эффективной защиты от уф-излучения

Изобретение относится к полимерным нанокомпозициям, предназначенным для получения пленочных материалов, защищающих от УФ-излучения и фотохимического старения. Композиция содержит полиолефин или сополимер олефина и УФ-абсорбер. УФ-абсорбер представляет собой наноразмерный карбид кремния, который...
Тип: Изобретение
Номер охранного документа: 0002596041
Дата охранного документа: 27.08.2016
25.08.2017
№217.015.a2f2

Способ получения трёхмерных матриц

Изобретение может быть использовано для создания матриц для индивидуальных биоактивных имплантатов и искусственных органов. Для получения трехмерных матриц используют установку, состоящую из системы управления, трехкоординатной системы перемещения шприцевого диспенсера и рабочего резервуара. В...
Тип: Изобретение
Номер охранного документа: 0002607226
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a924

Способ активации процесса фотополимеризации ближним инфракрасным излучением

Изобретение относится к аддитивным технологиям, биотехнологии и медицине, а именно к cпособу получения трехмерных конструкций в объеме полимеризуемого материала. Способ характеризуется тем, что осуществляют облучение фотоктиватора глубоко проникающим в полимеризуемую композицию непрерывным...
Тип: Изобретение
Номер охранного документа: 0002611395
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.b0d1

Устройство для оценки потока газа, переносимого всплывающими пузырьками, выходящими из дна водоемов

Изобретение относится к устройствам для дистанционной оценки потока газа, переносимого всплывающими пузырьками, выходящими из дна водоемов, и может быть использовано, например, для измерения потоков метана на шельфе, переносимого всплывающими пузырьками, выходящими из верхнего осадочного слоя...
Тип: Изобретение
Номер охранного документа: 0002613335
Дата охранного документа: 16.03.2017
26.08.2017
№217.015.e479

Способ определения условий кристаллизации белков

Изобретение относится к химической промышленности. Способ кристаллизации белков предусматривает подготовку исходных растворов белка в буфере, фильтрование полученного раствора, центрифугирование и заполнение раствором капилляров. Первую часть полученных после центрифугирования белковых...
Тип: Изобретение
Номер охранного документа: 0002626576
Дата охранного документа: 28.07.2017
29.12.2017
№217.015.f956

Конгруэнтно плавящийся фтор-проводящий твердый электролит mrf с флюоритовой структурой для высокотемпературных термодинамических исследований

Изобретение относится к области фтор-проводящих твердых электролитов (ФТЭЛ). Предложены фтор-проводящие твердые электролиты MRV с флюоритовой структурой в монокристаллической форме для высокотемпературных термодинамических исследований химических веществ, содержащие фториды щелочноземельного...
Тип: Изобретение
Номер охранного документа: 0002639882
Дата охранного документа: 25.12.2017
20.01.2018
№218.016.11e0

Способ определения кинетики биодеградации полимерных скаффолдов in vivo

Изобретение относится к медицине, биологии и ветеринарии и может быть использовано для определения кинетики биодеградации полимерных скаффолдов in vivo, используемых в тканевой инженерии и регенеративной медицине при пластике или замещении дефектов тканей организма. Для этого создают модель...
Тип: Изобретение
Номер охранного документа: 0002634032
Дата охранного документа: 23.10.2017
Показаны записи 1-10 из 22.
27.08.2013
№216.012.63f6

Способ получения флуоресцентных меток на основе биодеградируемых наночастиц кремния для in vivo применения

Изобретение относится к области наноматериалов. Предложен способ получения флуоресцентных меток на основе биосовместимых и биодеградируемых наночастиц кремния для in vivo применения реакцией диспропорционирования монооксида кремния при температуре 950°C в атмосфере воздуха с последующим...
Тип: Изобретение
Номер охранного документа: 0002491227
Дата охранного документа: 27.08.2013
10.07.2014
№216.012.dc47

Способ оценки потока газа

Изобретение относится к области гидроакустики и может быть использовано для оценки потока газа, например, для оценки потока метана газовых «факелов». Сущность: излучают в направлении дна акустический сигнал. Принимают сигналы обратного излучения звука от каждого из пузырьков, пересекающих за...
Тип: Изобретение
Номер охранного документа: 0002522169
Дата охранного документа: 10.07.2014
27.06.2015
№216.013.58d1

Способ оценки концентрации метана в водной толще в областях его пузырьковой разгрузки

Изобретение относится к области гидроакустики и может быть использовано для оценки концентрации растворенного метана в областях его пузырьковой разгрузки. Сущность: излучают в направлении морского дна акустический сигнал. Принимают сигнал обратного рассеяния звука от водной толщи. По...
Тип: Изобретение
Номер охранного документа: 0002554278
Дата охранного документа: 27.06.2015
27.08.2016
№216.015.5150

Полимерная нанокомпозиция для эффективной защиты от уф-излучения

Изобретение относится к полимерным нанокомпозициям, предназначенным для получения пленочных материалов, защищающих от УФ-излучения и фотохимического старения. Композиция содержит полиолефин или сополимер олефина и УФ-абсорбер. УФ-абсорбер представляет собой наноразмерный карбид кремния, который...
Тип: Изобретение
Номер охранного документа: 0002596041
Дата охранного документа: 27.08.2016
25.08.2017
№217.015.a2f2

Способ получения трёхмерных матриц

Изобретение может быть использовано для создания матриц для индивидуальных биоактивных имплантатов и искусственных органов. Для получения трехмерных матриц используют установку, состоящую из системы управления, трехкоординатной системы перемещения шприцевого диспенсера и рабочего резервуара. В...
Тип: Изобретение
Номер охранного документа: 0002607226
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a924

Способ активации процесса фотополимеризации ближним инфракрасным излучением

Изобретение относится к аддитивным технологиям, биотехнологии и медицине, а именно к cпособу получения трехмерных конструкций в объеме полимеризуемого материала. Способ характеризуется тем, что осуществляют облучение фотоктиватора глубоко проникающим в полимеризуемую композицию непрерывным...
Тип: Изобретение
Номер охранного документа: 0002611395
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.b0d1

Устройство для оценки потока газа, переносимого всплывающими пузырьками, выходящими из дна водоемов

Изобретение относится к устройствам для дистанционной оценки потока газа, переносимого всплывающими пузырьками, выходящими из дна водоемов, и может быть использовано, например, для измерения потоков метана на шельфе, переносимого всплывающими пузырьками, выходящими из верхнего осадочного слоя...
Тип: Изобретение
Номер охранного документа: 0002613335
Дата охранного документа: 16.03.2017
26.08.2017
№217.015.e479

Способ определения условий кристаллизации белков

Изобретение относится к химической промышленности. Способ кристаллизации белков предусматривает подготовку исходных растворов белка в буфере, фильтрование полученного раствора, центрифугирование и заполнение раствором капилляров. Первую часть полученных после центрифугирования белковых...
Тип: Изобретение
Номер охранного документа: 0002626576
Дата охранного документа: 28.07.2017
29.12.2017
№217.015.f956

Конгруэнтно плавящийся фтор-проводящий твердый электролит mrf с флюоритовой структурой для высокотемпературных термодинамических исследований

Изобретение относится к области фтор-проводящих твердых электролитов (ФТЭЛ). Предложены фтор-проводящие твердые электролиты MRV с флюоритовой структурой в монокристаллической форме для высокотемпературных термодинамических исследований химических веществ, содержащие фториды щелочноземельного...
Тип: Изобретение
Номер охранного документа: 0002639882
Дата охранного документа: 25.12.2017
20.01.2018
№218.016.11e0

Способ определения кинетики биодеградации полимерных скаффолдов in vivo

Изобретение относится к медицине, биологии и ветеринарии и может быть использовано для определения кинетики биодеградации полимерных скаффолдов in vivo, используемых в тканевой инженерии и регенеративной медицине при пластике или замещении дефектов тканей организма. Для этого создают модель...
Тип: Изобретение
Номер охранного документа: 0002634032
Дата охранного документа: 23.10.2017
+ добавить свой РИД