×
25.06.2018
218.016.678c

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ МОДУЛЯ СКОРОСТИ БАЛЛИСТИЧЕСКОГО ОБЪЕКТА С ИСПОЛЬЗОВАНИЕМ ВЫБОРКИ КВАДРАТОВ ДАЛЬНОСТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к радиолокации и может быть использовано преимущественно в наземных радиолокационных станциях (РЛС) кругового и секторного обзора. Достигаемый технический результат - повышение точности определения модуля скорости баллистического объекта (БО) в РЛС с грубыми измерениями угловых координат при уменьшении объема используемых вычислительных ресурсов. Указанный технический результат достигается тем, что через равные интервалы времени Т в РЛС измеряют дальность и высоту БО, определяют оценку высоты БО в середине интервала наблюдения с помощью α, β фильтра и оценку второго приращения квадрата дальности в конце интервала наблюдения с помощью α, β, γ фильтра, вычисляют геоцентрический угол между РЛС и БО и ускорение силы тяжести в середине интервала наблюдения, после чего определяют значение модуля скорости БО в середине интервала наблюдения на невозмущенном пассивном участке траектории, при этом оценку высоты определяют с помощью α, β фильтра, причем сглаживание измерений высоты производят сначала в прямом по времени направлении до конца интервала наблюдения, а затем в обратном направлении до середины интервала наблюдения, а оценку второго приращения квадрата дальности определяют с помощью α, β, γ фильтра в конце интервала наблюдения путем последовательной фильтрации значений квадратов дальности. Устройство для реализации способа состоит из блоков преобразования входных сигналов, оценивания второго приращения квадрата дальности (α, β, γ фильтра), оценивания высоты (α, β фильтра), а также вычислителей геоцентрического угла, ускорения силы тяжести и модуля скорости, соединенных определенным образом. 2 н.п. ф-лы, 4 табл., 3 ил.

Изобретение относится к радиолокации и может быть использовано преимущественно в наземных радиолокационных станциях (РЛС) кругового и секторного обзора, размеры антенн которых соизмеримы с длиной волны, то есть в РЛС с грубыми измерениями угла места и азимута баллистического объекта (БО). Знание модуля скорости необходимо для расчета баллистической траектории, прогноза точки падения, селекции баллистических ракет от самолетов и решения других задач.

Известны способы, в которых определяют скорости изменения декартовых координат, а модуль скорости вычисляют по формуле:

где , , - скорости изменения декартовых координат x, y, z.

Известны устройства определения скорости изменения декартовых координат с помощью цифрового нерекурсивного фильтра (ЦНРФ) путем оптимального взвешенного суммирования фиксированной выборки из N измеренных значений декартовых координат [1, рис. 4.7, с. 303] и с помощью α, β фильтра [1, рис. 4.11, с. 322] или α, β, γ фильтра [2, рис. 9.14, с. 392] путем последовательного оптимального сглаживания выборки измеренных значений декартовых координат нарастающего объема.

Основным недостатком известных устройств является низкая точность определения модуля скорости БО в РЛС с грубыми измерениями угла места и азимута, в частности в РЛС метрового диапазона волн (РЛС МДВ).

Наиболее близким аналогом (прототипом) заявленному изобретению является способ [4] и устройство для его реализации, описанные в патенте №2540323.

В этом способе существенно снижено влияние ошибок измерения угла места и устранено влияние ошибок измерения азимута за счет использования фиксированной выборки квадратов дальности.

Сущность способа-прототипа заключается в следующем. В РЛС измеряют дальность и угол места БО в цифровом виде. По фиксированной выборке из N измеренных значений высоты определяют оценку высоты БО в середине интервала наблюдения. Далее вычисляют геоцентрический угол между РЛС и БО (смотри фиг. 1) в середине интервала наблюдения по формуле где rср - дальность до БО в середине интервала наблюдения, Rз - радиус Земли, и ускорение силы тяжести в середине интервала наблюдения по формуле , где g0 - ускорение силы тяжести на поверхности Земли. Через равные интервалы времени Т0 перемножают оцифрованные сигналы дальности и получают квадраты дальности. По фиксированной выборке из N квадратов дальности определяют оценку второго приращения квадрата дальности . В итоге вычисляют значение модуля скорости БО в середине интервала наблюдения на невозмущенном пассивном участке траектории по формуле

Схема устройства для реализации способа-прототипа приведена на фиг. 2. Устройство содержит блок 1 преобразования входных сигналов, первый выход которого соединен с входом блока 2 оценивания второго приращения квадрата дальности (ЦНРФ), состоящего из запоминающего устройства 2.1, блока умножителей 2.2, блока весовых коэффициентов оценки второго приращения квадрата дальности 2.3 и сумматора 2.4, выход которого подключен к первому входу вычислителя 3 модуля скорости БО. Второй выход блока 1 соединен с входом блока 4 оценивания высоты БО в середине интервала наблюдения (ЦНРФ), состоящего из запоминающего устройства 4.1, блока умножителей 4.2, блока весовых коэффициентов оценки высоты в середине интервала наблюдения 4.3 и сумматора 4.4, выход которого соединен с 4-м входом вычислителя 3 модуля скорости БО, с 2-м входом вычислителя 5 геоцентрического угла, 1-й вход которого подключен к 3-у выходу блока 1, а также с 1-м входом вычислителя 6 ускорения силы тяжести. Выходы вычислителя 6 ускорения силы тяжести и вычислителя 5 геоцентрического угла соединены с 2-м и 3-м входами вычислителя 3 модуля скорости БО в середине интервала наблюдения, выход которого является выходом заявленного устройства.

ЦНРФ оценивания второго приращения квадрата дальности (блок 2) работает следующим образом. Текущее значение квадрата дальности умножают на весовой коэффициент в блоке 2.2 и подают на вход сумматора 2.4. Значения квадратов дальности, полученные в предыдущих обзорах , ,…, , после задержки на соответствующее число периодов обзора в запоминающем устройстве 2.1 умножают в блоке 2.2 на весовые коэффициенты оценки второго приращения, поступающие с блока 2.3 весовых коэффициентов, и подают на вход сумматора 2.4. Весовые коэффициенты оценки второго приращения вычисляют заранее по формуле: [3, формула (4.37), с. 155]. В итоге на входе сумматора 2.4 формируется фиксированная выборка из N взвешенных квадратов дальности, а на его выходе получают оценку второго приращения квадрата дальности . Эту оценку подают на 1-й вход вычислителя 3 модуля скорости.

Таким же образом во втором ЦНРФ (блок 4) определяют оценку высоты в середине интервала наблюдения. В отличие от блока 2 используют весовые коэффициенты оценки высоты в середине интервала наблюдения, вычисленные по формуле Эту оценку подают на 4-й вход вычислителя 3 модуля скорости.

При высокоточных измерениях дальности ошибки определения модуля скорости БО в РЛС с грубыми измерениями угла места и азимута уменьшаются в несколько раз по сравнению со способом оценивания по выборкам декартовых координат. Однако для решения ряда задач, например определения координат точки падения БО, таких точностей определения модуля скорости может быть недостаточно. Кроме того, в процессе оценивания параметров необходимо хранить большое число предыдущих измерений дальности и высоты (угла места), что при одновременном обслуживании большого числа целей и больших интервалах наблюдения приводит к существенному увеличению емкости запоминающих устройств.

Техническим результатом заявленного изобретения является повышение точности определения модуля скорости БО в наземных РЛС с грубыми измерениями угловых координат при уменьшении объема используемых вычислительных ресурсов.

Указанный технический результат достигается тем, что в способе определения модуля скорости БО с использованием выборки квадратов дальности так же, как в прототипе, измеряют дальность и угол места БО в цифровом виде и определяют высоту zi=risinεi. По выборке из N измеренных значений высоты определяют оценку высоты БО и среднюю дальность rср до БО в середине интервала наблюдения. Далее вычисляют геоцентрический угол между РЛС и БО в середине интервала наблюдения по формуле где rср - дальность до БО в середине интервала наблюдения, Rз - радиус Земли, и ускорение силы тяжести в середине интервала наблюдения по формуле , где g0 - ускорение силы тяжести на поверхности Земли. Через равные интервалы времени Т0 перемножают оцифрованные сигналы дальности и получают квадраты дальности. По выборке из N квадратов дальности определяют оценку второго приращения квадрата дальности . В итоге вычисляют значение модуля скорости БО в середине интервала наблюдения на невозмущенном пассивном участке траектории по формуле

В отличие от прототипа, согласно изобретению, оценку высоты в середине интервала наблюдения определяют с помощью α, β фильтра. При этом сглаживание измерений высоты производят сначала в прямом по времени направлении до конца интервала наблюдения, а затем в обратном направлении до середины интервала наблюдения. Оценку второго приращения квадрата дальности определяют в конце интервала наблюдения с помощью α, β, γ фильтра путем сглаживания значений квадратов дальности.

Схема устройства определения модуля скорости баллистического объекта заявленным способом приведена на фиг. 3.

Это устройство так же, как прототип, содержит блок 1 преобразования входных сигналов, первый выход которого соединен с входом блока оценивания второго приращения квадрата дальности (блок 2), выход которого подключен к первому входу вычислителя 3 модуля скорости БО. Второй выход блока 1 соединен с входом блока оценивания высоты БО в середине интервала наблюдения (блок 4), выход которого соединен с 4-м входом вычислителя 3 модуля скорости БО, с 2-м входом вычислителя 5 геоцентрического угла, 1-й вход которого подключен к 3-у выходу блока 1, а также с 1-м входом вычислителя 6 ускорения силы тяжести. Выходы вычислителя 6 ускорения силы тяжести и вычислителя 5 геоцентрического угла соединены с 2-м и 3-м входами вычислителя 3 модуля скорости БО в середине интервала наблюдения, выход которого является выходом заявленного устройства.

В отличие от прототипа, согласно изобретению, блок 2 оценивания второго приращения квадрата дальности является α, β, γ фильтром, а блок 4 оценивания высоты БО в середине интервала наблюдения является α, β фильтром. Оба блока построены по известным схемам.

Для доказательства возможности реализации заявленного технического результата вычислим значение модуля скорости на 280-й секунде полета китайской баллистической ракеты средней дальности (БРСД) «Дунфэн-21», траекторные параметры которой приведены в таблице 1.

Оценку второго приращения квадрата дальности вычислим по следующему алгоритму. Данные вычислений приведены в табл. 2. По трем значениям квадратов дальности (, и ), полученным в первых трех обзорах, определяются начальные значения квадрата дальности (), первого приращения квадрата дальности () и второго приращения квадрата дальности (). Начальные значения коэффициентов усиления фильтра принимаются равными единице (α0=1, β0=1, γ0=1). Далее во всех последующих обзорах (n=4, 5,.. N) коэффициенты усиления вычисляются по формулам , и где n - номер обзора (столбцы 3-5). Экстраполированное значение квадрата дальности для n-го обзора вычисляется путем суммирования предыдущих (n-1)-х оценок квадрата дальности , первого и второго приращений квадрата дальности. Экстраполированное значение первого приращения квадрата дальности для n-го обзора вычисляется путем суммирования предыдущей (n-1)-й оценки первого приращения квадрата дальности и удвоенного значения (n-1)-й оценки второго приращения квадрата дальности . Затем определяют сигнал ошибки между текущим значением квадрата дальности и его экстраполированным значением. Текущая оценка квадрата дальности вычисляется путем суммирования экстраполированного значения квадрата дальности и взвешенного коэффициентом усиления α сигнала ошибки. Текущую оценку первого приращения квадрата дальности определяют путем суммирования экстраполированного значения первого приращения квадрата дальности и взвешенного коэффициентом усиления β сигнала ошибки. Текущую оценку второго приращения квадрата дальности определяют путем суммирования предыдущей (n-1)-й оценки второго приращения квадрата дальности и взвешенного коэффициентом усиления γ сигнала ошибки. В итоге в N-м обзоре получаем оценку второго приращения квадрата дальности в конце интервала наблюдения .

Результаты оценивания высоты в середине интервала наблюдения приведены в табл. 3.

Сначала по первым двум значениям высоты, полученным в первых двух обзорах (z1 и z2), определяются начальные значения высоты () и первого приращения высоты (). Затем задаются начальные значения коэффициентов усиления (α0=1, β0=1). Далее во всех последующих обзорах (n=3, ) значения этих коэффициентов вычисляются по формулам и . На интервале наблюдения от третьего обзора (n=3) до последнего обзора (n=N) экстраполированное значение высоты для n-го обзора определяют путем суммирования предыдущей (n-1)-й оценки высоты и (n-1)-й оценки первого приращения высоты. Сигнал ошибки определяют как разность между текущим значением высоты и его экстраполированным значением.

От N-го обзора до ()-го обзора, произведенного в середине интервала наблюдения, экстраполированное значение высоты для n-го обзора определяется путем суммирования предыдущей (n-1)-й оценки высоты и инвертированного значения (n-1)-й оценки первого приращения высоты. Сигнал ошибки определяют как разность между текущей оценкой высоты и ее экстраполированным значением. Текущую оценку высоты определяют путем суммирования экстраполированного значения высоты и взвешенного коэффициентом усиления α сигнала ошибки. Текущую оценку первого приращения высоты определяют путем суммирования (n-1)-й оценки первого приращения высоты и взвешенного коэффициентом усиления β сигнала ошибки.

Как видно из таблицы 3, при оценивании высоты в прямом (от 220-й до 360-й с) и в обратном (от 360-й до 280-й с) направлениях практически устраняется смещение оценки высоты Истинное (табличное) значение равно 277,74 км.

Подставив полученные значения в формулу 2, убедимся, что смещение оценки модуля скорости (методическая ошибка) практически отсутствует:

Если не учитывать поправку на сферичность Земли (RЗsin2ϕcp=249,77 км), то модуль скорости будет определяться с большим отрицательным смещением (-415 м/с). Поэтому смещение оценки до 3 м/с можно считать пренебрежимо малым смещением.

Результаты сравнения случайных среднеквадратических ошибок (СКО) определения модуля скорости в заявленном изобретении, в прототипе и в аналоге приведены в таблице 4. Вычислялись СКО оценивания модуля скорости американской оперативно-тактической ракеты (ОТБР) «Атакмс» на 75-й секунде полета (rср=205 км, εср=15,3°, gср=9,65 м/с2, Vcp=1120 м/с) по данным измерений РЛС МДВ «Небо СВУ» (σr=100 м, σε=1,5°, Т0=5 с) [5, с. 334-336].

СКО оценивания модуля скорости БО вычислялись по следующим формулам:

а) для изобретения и прототипа:

где σr - СКО измерения дальности;

σε - СКО измерения угла места;

б) для изобретения:

- относительная СКО оценивания координаты в α, β, фильтре [6, таблица 7.3, с. 362];

- относительная СКО оценивания второго приращения в α, β, γ фильтре [2, формула 9.6.38, с. 396];

в) для прототипа:

- относительная СКО оценивания высоты БО в середине интервала наблюдения в ЦНРФ 4;

- относительная СКО оценивания второго приращения в ЦНРФ 2 [3, формула 4.39, с. 156];

г) для аналога:

где θср - угол наклона вектора скорости БО к местному горизонту.

Как видно из таблицы 4, при реализации заявленного изобретения в РЛС МДВ «Небо СВУ» обеспечивается повышение точности определения модуля скорости БО по сравнению с прототипом на 40-80 процентов, а по сравнению с аналогами - до пяти раз. Кроме того, существенно уменьшились вычислительные затраты. Так, для оценивания второго приращения квадрата дальности используются только результаты последнего измерения дальности и оценки, полученные в предыдущем обзоре, а не вся фиксированная выборка измерений, как в аналоге и в прототипе.

Примечание: в скобках - при ошибках измерения дальности σr=25 м.

Увеличение точности определения модуля скорости заявленным способом, как и способом-прототипом, происходит только при выборе точки оценивания в середине интервала наблюдения, то есть скорость оценивается с запаздыванием по времени на половину длительности интервала наблюдения. При оценивании скорости в реальном режиме времени, то есть в момент получения последнего измерения, преимущества заявленного способа в значительной степени утрачиваются из-за необходимости учета вертикальной скорости БО. Кроме того, заявленный способ нельзя использовать на активном участке траектории, то есть при работающем ракетном двигателе, и при совершении БО маневра на пассивном участке траектории.

Таким образом, доказана реализуемость технического результата заявленного изобретения: повышение точности определения модуля скорости баллистических объектов при грубых измерениях угловых координат и уменьшение объема используемых вычислительных ресурсов.

Список использованных источников

1. Кузьмин С.З. Цифровая обработка радиолокационной информации. М.: «Советское радио», 1967, 400 с.

2. Кузьмин С.З. Основы теории цифровой обработки радиолокационной информации. М.: «Советское радио», 1974, 432 с.

3. Кузьмин С.З. Основы проектирования систем цифровой обработки радиолокационной информации. М.: «Советское радио», 1986, 352 с.

4. Патент №2540323. Способ определения модуля скорости баллистической цели в наземной радиолокационной станции.

5. Вооружение ПВО и РЭС России. Альманах. М.: Издательство НО «Лига содействия оборонным предприятиям», 2011, 504 с.

6. Справочник по радиолокации / Под ред. М.И. Сколника. Книга 1. М.: «Техносфера», 2015, 672 с.


СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ МОДУЛЯ СКОРОСТИ БАЛЛИСТИЧЕСКОГО ОБЪЕКТА С ИСПОЛЬЗОВАНИЕМ ВЫБОРКИ КВАДРАТОВ ДАЛЬНОСТИ
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ МОДУЛЯ СКОРОСТИ БАЛЛИСТИЧЕСКОГО ОБЪЕКТА С ИСПОЛЬЗОВАНИЕМ ВЫБОРКИ КВАДРАТОВ ДАЛЬНОСТИ
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ МОДУЛЯ СКОРОСТИ БАЛЛИСТИЧЕСКОГО ОБЪЕКТА С ИСПОЛЬЗОВАНИЕМ ВЫБОРКИ КВАДРАТОВ ДАЛЬНОСТИ
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ МОДУЛЯ СКОРОСТИ БАЛЛИСТИЧЕСКОГО ОБЪЕКТА С ИСПОЛЬЗОВАНИЕМ ВЫБОРКИ КВАДРАТОВ ДАЛЬНОСТИ
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ МОДУЛЯ СКОРОСТИ БАЛЛИСТИЧЕСКОГО ОБЪЕКТА С ИСПОЛЬЗОВАНИЕМ ВЫБОРКИ КВАДРАТОВ ДАЛЬНОСТИ
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ МОДУЛЯ СКОРОСТИ БАЛЛИСТИЧЕСКОГО ОБЪЕКТА С ИСПОЛЬЗОВАНИЕМ ВЫБОРКИ КВАДРАТОВ ДАЛЬНОСТИ
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ МОДУЛЯ СКОРОСТИ БАЛЛИСТИЧЕСКОГО ОБЪЕКТА С ИСПОЛЬЗОВАНИЕМ ВЫБОРКИ КВАДРАТОВ ДАЛЬНОСТИ
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ МОДУЛЯ СКОРОСТИ БАЛЛИСТИЧЕСКОГО ОБЪЕКТА С ИСПОЛЬЗОВАНИЕМ ВЫБОРКИ КВАДРАТОВ ДАЛЬНОСТИ
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ МОДУЛЯ СКОРОСТИ БАЛЛИСТИЧЕСКОГО ОБЪЕКТА С ИСПОЛЬЗОВАНИЕМ ВЫБОРКИ КВАДРАТОВ ДАЛЬНОСТИ
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ МОДУЛЯ СКОРОСТИ БАЛЛИСТИЧЕСКОГО ОБЪЕКТА С ИСПОЛЬЗОВАНИЕМ ВЫБОРКИ КВАДРАТОВ ДАЛЬНОСТИ
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ МОДУЛЯ СКОРОСТИ БАЛЛИСТИЧЕСКОГО ОБЪЕКТА С ИСПОЛЬЗОВАНИЕМ ВЫБОРКИ КВАДРАТОВ ДАЛЬНОСТИ
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ МОДУЛЯ СКОРОСТИ БАЛЛИСТИЧЕСКОГО ОБЪЕКТА С ИСПОЛЬЗОВАНИЕМ ВЫБОРКИ КВАДРАТОВ ДАЛЬНОСТИ
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ МОДУЛЯ СКОРОСТИ БАЛЛИСТИЧЕСКОГО ОБЪЕКТА С ИСПОЛЬЗОВАНИЕМ ВЫБОРКИ КВАДРАТОВ ДАЛЬНОСТИ
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ МОДУЛЯ СКОРОСТИ БАЛЛИСТИЧЕСКОГО ОБЪЕКТА С ИСПОЛЬЗОВАНИЕМ ВЫБОРКИ КВАДРАТОВ ДАЛЬНОСТИ
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ МОДУЛЯ СКОРОСТИ БАЛЛИСТИЧЕСКОГО ОБЪЕКТА С ИСПОЛЬЗОВАНИЕМ ВЫБОРКИ КВАДРАТОВ ДАЛЬНОСТИ
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ МОДУЛЯ СКОРОСТИ БАЛЛИСТИЧЕСКОГО ОБЪЕКТА С ИСПОЛЬЗОВАНИЕМ ВЫБОРКИ КВАДРАТОВ ДАЛЬНОСТИ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 43.
20.01.2018
№218.016.1038

Антенное переключающее устройство (апу)

Антенное переключающее устройство (АПУ) относится к антенной технике и может быть использовано в приемопередающих модулях (ППМ) активных фазированных антенных решеток. Устройство содержит передающий, приемный и приемопередающий участки линии передачи, Т-образное разветвление с четвертьволновым...
Тип: Изобретение
Номер охранного документа: 0002633654
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.16c2

Способ формирования и обработки радиолокационных модифицированных фазоманипулированных сигналов

Изобретение относится к области радиолокации и предназначено для формирования и обработки радиолокационных модифицированных фазоманипулированных (ФМ) сигналов в радиолокационных станциях. Техническим результатом является формирование модифицированного ФМ-сигнала, имеющего минимальные...
Тип: Изобретение
Номер охранного документа: 0002635875
Дата охранного документа: 16.11.2017
17.02.2018
№218.016.2bbb

Способ улучшения характеристик нелинейного радиолокатора

Настоящее изобретение относится к области нелинейной радиолокации и может быть использовано при разработке нелинейных радиолокаторов (НРЛ), осуществляющих поиск объектов, имеющих в своем составе нелинейные элементы (НЭ). Техническим результатом предлагаемого изобретения является улучшение...
Тип: Изобретение
Номер охранного документа: 0002643199
Дата охранного документа: 31.01.2018
04.04.2018
№218.016.31ac

Способ сетевой обработки информации в автоматизированной системе обработки и обмена радиолокационной информацией

Изобретение относится к радиолокации и может быть использовано в автоматизированных системах управления, построенных на принципах сетевой информационной структуры, в части, касающейся передачи и обмена радиолокационной информацией (РЛИ), в автоматизированной системе обработки и обмена...
Тип: Изобретение
Номер охранного документа: 0002645154
Дата охранного документа: 16.02.2018
18.05.2018
№218.016.50d1

Устройство первичной обработки радиолокационной информации

Изобретение относится к вычислительной технике и предназначено для цифровой обработки радиолокационных сигналов и управления аппаратурой в составе радиолокационного комплекса. Достигаемый технический результат - улучшение технических характеристик, а именно повышение производительности...
Тип: Изобретение
Номер охранного документа: 0002653293
Дата охранного документа: 07.05.2018
09.06.2018
№218.016.5b5d

Способ закалки тонкостенных длинномерных деталей из стали 12х2нвфа в управляемом потоке воздуха

Изобретение относится к области металлургии и может быть использовано в машиностроительной и радиотехнической промышленности. Техническим результатом изобретения является упрощение и сокращение процесса закалки и улучшение экологии. Для достижения технического результата длинномерные...
Тип: Изобретение
Номер охранного документа: 0002655875
Дата охранного документа: 29.05.2018
20.06.2018
№218.016.648f

Способ построения компактных делителей мощности свч сигналов

Изобретение относится к области сверхвысокочастотной радиотехники, в частности к делителям мощности. Способ построения компактных делителей мощности сверхвысокочастотных сигналов основан на объединении транснаправленных ответвителей в делитель, собираемый по квазицепочечной схеме с учетом...
Тип: Изобретение
Номер охранного документа: 0002658093
Дата охранного документа: 19.06.2018
25.06.2018
№218.016.6640

Мобильный радиолокационный комплекс для обнаружения средств поражения и противодействия этим средствам

Изобретение относится к радиолокации и может быть использовано для обнаружения средств поражения и противодействия им. Достигаемым техническим результатом является расширение функциональных возможностей мобильной трехкоординатной радиолокационной станции (РЛС) обнаружения. Указанный результат...
Тип: Изобретение
Номер охранного документа: 0002658640
Дата охранного документа: 22.06.2018
21.07.2018
№218.016.7380

Способ радиолокационного сопровождения объектов и рлс для его реализации

Изобретение относится к радиолокации и может быть использовано в импульсных радиолокационных станциях (РЛС) сопровождения, работающих по целеуказанию. Достигаемый технический результат - увеличение производительности РЛС сопровождения за счет снижения временных потерь, вызванных задержкой в...
Тип: Изобретение
Номер охранного документа: 0002661889
Дата охранного документа: 20.07.2018
22.08.2018
№218.016.7e48

Полосно-заграждающий фильтр на несимметричной полосковой линии с использованием элементов фильтра нижних частот

Изобретение относится к СВЧ-технике и может быть использовано в технике связи и в радиолокации. Полосно-заграждающий фильтр содержит полосковую линию передачи, два параллельных контура с сосредоточенными LC параметрами, соединенных последовательно, две включенные параллельно входу устройства...
Тип: Изобретение
Номер охранного документа: 0002664469
Дата охранного документа: 20.08.2018
Показаны записи 21-30 из 53.
25.08.2017
№217.015.bb1d

Способ и устройство радиолокационного обнаружения маневра баллистического объекта по выборкам квадратов дальности

Изобретение относится к радиолокации и может быть использовано в радиолокационных станциях (РЛС) для обнаружения маневра баллистических объектов (БО). Достигаемый технический результат - повышение вероятности обнаружения маневра БО как на активном, так и на пассивном участках траектории их...
Тип: Изобретение
Номер охранного документа: 0002615784
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.bb4b

Обнаружитель маневра баллистической ракеты по фиксированной выборке квадратов дальности

Изобретение относится к области радиолокации. Достигаемый технический результат изобретения - повышение вероятности обнаружения маневра баллистической ракеты. Указанный результат достигается за счет того, что решение об обнаружении маневра принимают, если отношение разности между оценками...
Тип: Изобретение
Номер охранного документа: 0002615783
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.c7d0

Рекомбинантная плазмидная днк per-aphc3, кодирующая гибридный белок, способный к автокаталитическому расщеплению с образованием aphc3, штамм escherichia coli c3030/per-aphc3 продуцент указанных белков и способ получения рекомбинантного apch3

Настоящее изобретение относится к биохимии, в частности к рекомбинантной плазмидной ДНК pER-АРНС3, обеспечивающей синтез гибридного полипептида, содержащего АРНС3 и мини-интеин Ssp DnaB, в клетках Escherichia coli. Указанная плазмидная ДНК содержит BsaBI/Eco0109I-фрагмент ДНК плазмиды pTWIN-1,...
Тип: Изобретение
Номер охранного документа: 0002619170
Дата охранного документа: 12.05.2017
25.08.2017
№217.015.ce77

Гидрофобная эмульсия для обработки карбонатного пласта

Изобретение относится к нефтегазодобывающей промышленности. Технический результат - повышение эффективности обработки призабойной зоны высокообводненных скважин с карбонатным коллектором. Гидрофобная эмульсия для обработки карбонатного пласта включает, мас.%: углеводородный растворитель PR-10...
Тип: Изобретение
Номер охранного документа: 0002620685
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.d1b3

Способ и устройство определения курса неманеврирующей аэродинамической цели с использованием выборки квадратов дальности

Изобретение относится к области радиолокации. Техническим результатом изобретения является повышение точности определения курса неманеврирующей аэродинамической цели. Указанный результат достигается за счет использования фиксированной выборки квадратов дальности и уменьшения влияния ошибок...
Тип: Изобретение
Номер охранного документа: 0002621692
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.e357

Устройство распознавания неманеврирующей баллистической цели по фиксированной выборке квадратов дальности

Изобретение относится к области радиолокации. Достигаемым техническим результатом является устранение неоднозначности распознавания неманеврирующей баллистической цели (БЦ). Указанный результат достигается за счет совместного использования обнаружителя маневра на пассивном участке...
Тип: Изобретение
Номер охранного документа: 0002626015
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e55f

Многоканальный цифровой приемный модуль с оптическими каналами обмена информацией, управления и хронизации

Изобретение относится к радиолокации и может использоваться в приемных устройствах. Технический результат состоит в повышении помехозащищенности РЛС путем использования высокоскоростных оптических линий связи для передачи с модуля информации и подачи на модуль комплексного сигнала хронизации...
Тип: Изобретение
Номер охранного документа: 0002626623
Дата охранного документа: 31.07.2017
19.01.2018
№218.016.0bed

Способ обнаружения маневра баллистического объекта по выборкам произведений дальности на радиальную скорость и устройство для его реализации

Изобретение относится к области радиолокации. Достигаемым техническим результатом изобретения является упрощение способа и устройства обнаружения маневра баллистического объекта (БО) при сохранении высокой вероятности обнаружения маневра. Указанный результат достигается за счет того, что...
Тип: Изобретение
Номер охранного документа: 0002632476
Дата охранного документа: 05.10.2017
20.01.2018
№218.016.144b

Автономный пост технического наблюдения для контроля обстановки на охраняемой территории

Предлагаемое изобретение относится к техническим средствам охраны и может использоваться в составе комплексов технических средств охраны протяженных рубежей, в том числе государственной границы, и территориально распределенных объектов для автоматизированного контроля обстановки на открытых...
Тип: Изобретение
Номер охранного документа: 0002634761
Дата охранного документа: 03.11.2017
13.02.2018
№218.016.1ec2

Состав для кислотной обработки призабойной зоны пласта

Изобретение относится к области нефтедобывающей промышленности. Технический результат - низкая коррозионная активность состава для кислотной обработки, замедленная скорость реагирования состава для кислотной обработки с карбонатной породой, отсутствие образования асфальтосмолопарофиновых...
Тип: Изобретение
Номер охранного документа: 0002641044
Дата охранного документа: 15.01.2018
+ добавить свой РИД