×
25.06.2018
218.016.65c0

Результат интеллектуальной деятельности: Способ получения диффузионного алюминидного покрытия на низкоуглеродистой стали

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гальванотехники и может быть использовано для получения изделий, предназначенных для эксплуатации при высоких температурах. Способ включает погружение изделия в алундовый контейнер, содержащий электролит в виде фторидного расплава на основе AlF с добавками NaF и/или KF и анод в виде расплава алюминия на дне контейнера, и получение покрытия, содержащего алюминий, на изделии в качестве катода при температуре 700-980°C, при этом покрытие получают электроосаждением в короткозамкнутом гальваническом элементе, образованном алитируемым изделием, фторидным расплавом и анодом, замыканием экранированных алундовыми трубками токоподводов к катоду и аноду металлическим проводником. Технический результат заключается в получении градиентного покрытия на основе алюминидов железа, обладающего повышенной термостойкостью. 1 табл., 6 ил.

Изобретение относится к способу электролитического осаждения алюминия на низкоуглеродистую сталь и может быть использовано для получения диффузионного покрытия градиентного типа на основе алюминидов железа на изделиях, предназначенных для эксплуатации при высоких температурах.

Низкоуглеродистые стали получили большое распространение в качестве конструкционного материала из-за своей низкой стоимости, однако, сфера их применения существенно ограничена низкой жаростойкостью при высоких температурах. Нанесение защитного покрытия, содержащего алюминий (алитирование), позволяет значительно повысить стойкость стали к окислению за счёт образования защитного слоя α-Al2O3 на поверхности покрытия.

Среди известных методов алитирования недорогими и простыми с точки зрения аппаратного оформления являются жидкофазные: метод погружения в расплавленный металл (алюминий или его сплав) и электролитический (электрохимический).

Известен способ электрохимического алитирования низкоуглеродистой стали в расплаве на основе AlF3 с добавками NaF и/или KF при температуре 700-980°C и плотности тока не менее 0,5 А/см2 с использованием расплава алюминия в качестве анода. Электроосаждение алюминия ведут с помощью внешнего источника постоянного тока. Способ позволяет получить сплошное алюминидное покрытие, обладающее хорошей адгезией к стальной подложке и обеспечивающее повышение жаростойкости стальных изделий без использования защитной атмосферы в процессе нанесения покрытия. Алитирование ведут без дополнительных операций по удалению или предотвращению образования на алитируемой поверхности оксидных пленок. Толщина алюминидного покрытия зависит от количества электричества, пропущенного через изделие, и увеличивается от 250 до 550 мкм с ростом продолжительности процесса и плотности тока электролиза. Покрытие представляет собой фазу алюминидов железа с содержанием алюминия от 66 до 72 ат. %.

Используя данный способ, получают стальное изделие с гетерофазной структурой приповерхностного слоя, представляющего собой стальную подложку (фаза 1) и покрытие на основе высших алюминидов железа с содержанием алюминия от 66 до 72 ат. % (фаза 2). Относительно высокое содержание алюминия достигается в известном способе из-за высокой скорости его электроосаждения, существенно превышающей скорость диффузии в приповерхностном слое стальной подложки. Различие коэффициентов линейного термического расширения (КЛТР) для стали и алюминидов железа часто приводит к появлению трещин в приповерхностном слое алитированных стальных изделий и отслоению алюминидного покрытия от подложки с потерей жаростойкости изделия. Поэтому гетерофазные слоистые материалы обладают низкой стойкостью к резким изменениям температуры (термоударам), т.е. низкой термостойкостью.

Для эксплуатации в условиях резкого изменения температуры представляют интерес так называемые градиентные композиционные материалы. Под градиентными понимают такие материалы, физические свойства которых (твёрдость, прочность, пластичность и др.), химический состав постепенно меняются в пределах образца или его частей, не содержащих никаких границ раздела (фазовых границ, слоёв и т.д.).

Для получения градиентного покрытия на стальном изделии, алитированном по способу - прототипу, необходима дополнительная стадия термической обработки. При повышении температуры существенно увеличивается скорость диффузии алюминия в стальной подложке, что позволяет получить градиентное алюминидное покрытие за счёт диффузионного перераспределения атомов железа и алюминия. В процессе термообработки происходит увеличение общей толщины алюмосодержащего слоя за счёт снижения концентрации алюминия в нём. Продолжительность термообработки, необходимую для получения градиентного алюминидного покрытия по способу - прототипу, устанавливают экспериментально по результатам исследования шлифов.

Задача настоящего изобретения заключается в получении алюминидного диффузионного покрытия градиентного типа, обладающего повышенной термостойкостью, на изделиях из низкоуглеродистой стали для повышения их жаростойкости при эксплуатации в условиях резкого изменения температуры.

Для этого предложен способ электрохимического алитирования изделий из низкоуглеродистой стали, который, как и прототип, осуществляют во фторидном расплаве на основе AlF3 с добавками NaF и/или KF при температуре 700-980 °C с использованием расплава алюминия в качестве анода. Новый способ отличается тем, что процесс ведут в короткозамкнутом гальваническом элементе, образованном алитируемым стальным изделием, фторидным расплавом и алюминиевым анодом.

В отличие от прототипа, где процесс ведут с использованием внешнего источника постоянного тока, в заявленном способе процесс ведут в короткозамкнутом гальваническом элементе, образованном стальным изделием (катод), фторидным расплавом (электролит) и расплавом алюминия (анод). Движущей силой процесса электрохимического алитирования в данном случае является разность потенциалов между расплавом алюминия (анодом) и обрабатываемым стальным изделием (катодом) в случае организации короткозамкнутого гальванического элемента. В ходе процесса электроосаждения алюминия на стальную подложку происходит увеличение его концентрации в приповерхностном слое и уменьшение абсолютной величины потенциала изделия, который приближается к потенциалу алюминия (анода). С уменьшением разности потенциалов между анодом и катодом происходит снижение плотности тока электроосаждения алюминия (скорости алитирования).

В гальваническом элементе, описанном выше, чем ниже концентрация алюминия в приповерхностном слое стального изделия, тем выше ЭДС и выше плотность тока электроосаждения алюминия (скорость алитирования). С другой стороны, чем выше концентрация алюминия в приповерхностном слое стального изделия, тем меньше величина ЭДС и ниже скорость алитирования. Предлагаемый способ позволяет вести процесс электроосаждения алюминия со скоростью, обеспечивающей образование диффузионного градиентного покрытия на основе низших алюминидов железа, а в ячейке для алитирования (фиг. 1) реализуется механизм обратной связи, заключающийся в зависимости плотности тока электроосаждения алюминия (скорости алитирования) от ЭДС короткозамкнутого гальванического элемента (и концентрации алюминия в приповерхностном слое стального изделия). Предлагаемый способ позволяет получить диффузионное алюминидное покрытие градиентного типа, которое не содержит межфазной границы «алюминидное покрытие – сталь», а концентрация алюминия и механические свойства алитированного изделия, в т.ч. – КЛТР, изменяются плавно по направлению к центру от поверхности образца, обеспечивая тем самым повышение термостойкости.

Новый технический результат, достигаемый заявленным изобретением, заключается в получении градиентного покрытия на основе алюминидов железа, обладающего повышенной термостойкостью.

Заявленный способ иллюстрируется рисунками, где на фиг. 1 представлена схема установки для нанесения градиентного термостойкого покрытия на основе алюминидов железа; на фиг. 2 дана зависимость потенциала стального изделия и величины тока в цепи короткозамкнутого гальванического элемента при алитировании в расплаве NaF(50)-AlF3(50) мас.% (920°С) в зависимости от времени процесса; на фиг. 3 представлены микрофотографии поперечного сечения образцов стали Ст3сп после алитирования и карты распределения элементов Al и Fe; на фиг. 4 даны результаты измерения концентрации алюминия методом энергодисперсионного анализа в точках на различном расстоянии от поверхности стального образца; на фиг. 5 представлены электронные микрофотографии приповерхностного слоя стальных изделий с алюминидным покрытием, полученным по способу – прототипу, после процедуры термоциклирования; на фиг. 6 – электронные микрофотографии приповерхностного слоя стальных изделий с алюминидным покрытием, полученным в соответствии с предлагаемым способом, после процедуры термоциклирования.

Экспериментальную проверку способа осуществляли в лабораторной ячейке, представленной на фиг. 1, следующим образом. Смесь солей AlF3 с добавками NaF и/или KF загружали в алундовый контейнер (1) и плавили в вертикальной печи с нагревательными элементами из карбида кремния на воздухе. После плавления соли на дно контейнера добавляли металлический алюминий (2) чистотой от 99.5 до 99.9 мас.%, который служил анодом. Температуру процесса выбирали выше температуры плавления солевого расплава в интервале от 700 до 980 °С. Затем в расплав алюминия погружали токоподвод из графитового стержня диаметром 5-10 мм (3), который экранировали алундовой трубкой (4) для защиты от электрического контакта с электролитом. В качестве подложки для алитирования брали фрагмент стального круга (длина: 20-50 мм, диаметр: 8 мм), изготовленного из стали Ст3сп следующего химического состава, мас.%: С = 0.20; Si = 0.05; Mn = 0.54; S = 0.016; P = 0.021; Cr = 0.05; Ni = 0.03; Cu = 0.03; остальное – Fe. Поверхность стальных образцов обрабатывали шлифовальной бумагой крупностью 100 мкм. Химическую или электрохимическую обработку (травление) не проводили. В качестве подвеса для алитируемого изделия и токоподвода к нему брали проволоку Ст3сп диаметром 2 мм. Стальной токоподвод (5) прикрепляли к алитируемым образцам (6) с помощью резьбового соединения и экранировали алундовой трубкой (7) для защиты от электрического контакта с электролитом. Стальное изделие с токоподводом погружали в солевой расплав (8), а токоподводы к аноду и катоду замыкали с помощью металлического проводника с высокой электропроводностью. Для измерения электрических характеристик процесса в цепь подключали амперметр и вольтметр как показано на фиг. 1. В описанной экспериментальной ячейке, которая является гальваническим элементом, происходит электроперенос алюминия из жидкометаллического анода на стальное изделие (катод). На аноде идёт электрохимическое растворение алюминия:

Al - ē → Al+(р-р) (1)

Al - 3ē → Al3+(р-р), (2)

где Al – алюминий из жидкометаллического анода; Al+(р-р) – алюминий в виде истинного раствора в солевом расплаве; Al3+(р-р) – алюминий в составе фторидного или оксифторидного комплексного аниона в солевом расплаве.

На стальном катоде идёт процесс электрохимического осаждения алюминия:

Al+ (р-р) + ē → Al’(покрытие) (3)

Al3+(р-р) + 3ē → Al’(покрытие), (4)

где Al’(покрытие) – алюминий в приповерхностном слое стального изделия (катода) в составе интерметаллического соединения Al-Fe.

Плотность тока в начальный момент времени при замыкании гальванического элемента составляла от 0,075 до 0,03 А/см2, а затем – относительно быстро уменьшалась до значений от 0,04 до 0,008 А/см2 в зависимости от температуры и состава солевого расплава (фиг. 2). Продолжительность процесса выбирали в зависимости от необходимой толщины покрытия в интервале 60 до 960 мин. После размыкания электрической цепи гальванического элемента стальной образец извлекали из электролита и остужали до комнатной температуры. Состав и структуру приповерхностного слоя алитированных образцов исследовали с помощью РФА и МРСА.

Параметры процесса алитирования и полученные результаты представлены в таблице и на электронных микрофотографиях с картами распределения железа и алюминия (фиг. 3). На фиг. 3 видно, что в приповерхностном слое стальных образцов получено градиентное диффузионное покрытие на основе интерметаллидов Fe-Al. Толщина покрытия составила 20-30 мкм с максимальным содержанием алюминия 23,8 ат.% (фиг. 3, (1)) при алитировании в расплаве NaF(37,9)-AlF3(62,1) мас.% (750 °С, 270 мин). При повышении температуры до 820 °С и длительности процесса – до 586 мин происходило увеличение толщины покрытия до 100 мкм, а содержание алюминия – до 35,6 ат. % (фиг. 3, (2); NaF(44,4)-AlF3(55,6) мас.%). Максимальное содержание алюминия, равное 37 ат.% при общей толщине покрытия 300 мкм, получено в расплаве NaF(50)-AlF3(50) мас.% при температуре 920°С (900 мин). Из электронных (SEM) микрофотографий видно, что в структуре приповерхностного слоя алитированных изделий отсутствует межфазная граница «алюминидное покрытие – сталь», а содержание алюминия плавно уменьшается в направлении от поверхности образца к его центру (фиг. 3, карты распределения Al). Характер распределения алюминия в приповерхностном слое стальных образцов подтверждается также результатами энергодисперсионного анализа в точках на различном расстоянии от поверхности (фиг. 4; NaF(50)-AlF3(50) мас.%, 920°С, 900 мин).

Термостойкость алюминидных покрытий, полученных по предлагаемому способу и способу – прототипу, оценивали по результатам исследования структуры приповерхностного слоя алитированных образцов после термоциклирования (нагревание в печи до Тмакс= 870 °С и охлаждение на воздухе до Тмин= 300-350°С; количество циклов: 5). Из фиг. 5 видно, что на образце с алюминидным покрытием, полученным по способу – прототипу (толщина: 300-400 мкм; однородное по составу покрытие с содержанием алюминия 70-72 ат.%), произошло отслоение алюмосодержащего слоя от стальной подложки из-за образования продольной трещины. На микрофотографии (фиг. 7) образца с алюминидным покрытием, полученным в соответствии с предлагаемым способом (толщина: 200 мкм; градиентное диффузионное покрытие с максимальным содержанием алюминия 31,4 ат.%), видно, что следов разрушения покрытия – трещин, отслоений от подложки, после термоциклирования не наблюдается.

Таким образом, при алитировании изделий из низкоуглеродистой стали в расплаве на основе AlF3 с добавками NaF и/или KF при температуре 700-980 °C с использованием расплава алюминия в качестве анода при электроосаждении в короткозамкнутом гальваническом элементе, образованном стальным изделием (катод), фторидным расплавом (электролит) и сплавом на основе алюминия (анод), получено градиентное покрытие на основе алюминидов железа, обладающее повышенной термостойкостью.

Способ электрохимического алитирования изделия из низкоуглеродистой стали, включающий погружение изделия в алундовый контейнер, содержащий электролит в виде фторидного расплава на основе AlF с добавками NaF и/или KF и анод в виде расплава алюминия на дне контейнера, и получение покрытия, содержащего алюминий, на изделии в качестве катода при температуре 700-980°C, отличающийся тем, что покрытие получают электроосаждением в короткозамкнутом гальваническом элементе, образованном алитируемым изделием, фторидным расплавом и анодом, замыканием экранированных алундовыми трубками токоподводов к катоду и аноду металлическим проводником.
Способ получения диффузионного алюминидного покрытия на низкоуглеродистой стали
Способ получения диффузионного алюминидного покрытия на низкоуглеродистой стали
Способ получения диффузионного алюминидного покрытия на низкоуглеродистой стали
Способ получения диффузионного алюминидного покрытия на низкоуглеродистой стали
Способ получения диффузионного алюминидного покрытия на низкоуглеродистой стали
Способ получения диффузионного алюминидного покрытия на низкоуглеродистой стали
Способ получения диффузионного алюминидного покрытия на низкоуглеродистой стали
Источник поступления информации: Роспатент

Показаны записи 41-50 из 94.
10.05.2016
№216.015.3b48

Материал для кислородного электрода электрохимических устройств

Изобретение относится к электрохимическим устройствам с твердым оксидным электролитом и может быть использовано в качестве кислородного электрода в электрохимических датчиках кислорода, работающих в окислительных средах в интервале температур 700-1000°C. Согласно изобретению, материал содержит...
Тип: Изобретение
Номер охранного документа: 0002583838
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3c7e

Способ измерения влажности воздуха

Изобретение относится к аналитической технике и может быть использовано для измерения влажности воздуха. Способ измерения влажности воздуха заключается в том, что помещают в поток анализируемого воздуха электрохимическую ячейку с полостью, образованной диском из протонпроводящего электролита и...
Тип: Изобретение
Номер охранного документа: 0002583164
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.46b6

Химический способ получения искусственных алмазов

Изобретение относится к неорганическому синтезу искусственных алмазов размером до 150 мкм, которые могут найти промышленное применение в производстве абразивов и алмазных смазок, буровой технике. Синтез алмазов осуществляют в расплавленной металлической матрице при непосредственном...
Тип: Изобретение
Номер охранного документа: 0002586140
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.79b0

Электролитический способ непрерывного получения алюминиевого сплава со скандием

Изобретение относится к области металлургии цветных металлов, в частности к получению сплава алюминия с редкоземельными металлами, и может быть использовано для получения алюминиевого сплава с 0,2-0,4 мас. % скандия в условиях промышленного производства алюминия. Способ электролитического...
Тип: Изобретение
Номер охранного документа: 0002599312
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a9b

Способ электрохимического получения порошка иридия с удельной поверхностью более 5 м/г

Изобретение относится к электрохимическому получению порошкового иридия с высокой удельной поверхностью, который может быть использован в устройствах катализа горения многокомпонентных топлив при температурах до 2100°С без изменения химического состава и потери формы. Электролиз ведут в...
Тип: Изобретение
Номер охранного документа: 0002600305
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.86ff

Способ электролитического алитирования изделий из низкоуглеродистой стали

Изобретение относится к области гальванотехники и может быть использовано для нанесения защитного покрытия на изделия из низкоуглеродистой стали, которые могут эксплуатироваться при высоких температурах. Способ включает электролиз галогенидного алюминийсодержащего расплава при использовании...
Тип: Изобретение
Номер охранного документа: 0002603744
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.90cc

Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах

Изобретение относится к способам переработки нитридного отработавшего ядерного топлива (ОЯТ). Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах включает катодное восстановление ионов урана, подготовку электролита в аппарате для переработки нитридного...
Тип: Изобретение
Номер охранного документа: 0002603844
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9b31

Способ получения лигатурного сплава алюминий-бор

Изобретение относится к получению лигатурного сплава на основе алюминия, который может быть использован для очистки алюминия, получаемого электролизом, от переходных элементов. Способ получения лигатурного сплава алюминий-бор включает алюмотермическое восстановление борсодержащего компонента в...
Тип: Изобретение
Номер охранного документа: 0002610182
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.a7dd

Способ обработки проволоки для катализатора, выполненной из металла платиновой группы

Изобретение относится к области электрохимической обработки металлов и может быть использовано при изготовлении катализаторов химических реакций. Способ обработки проволоки для катализатора, выполненной из металла платиновой группы, осуществляют переменным током в водном растворе минеральной...
Тип: Изобретение
Номер охранного документа: 0002611463
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.aa94

Амперометрический способ измерения концентрации диоксида углерода в азоте

Изобретение относится к области газового анализа. Способ измерения содержания углекислого газа в азоте согласно изобретению заключается в том, что в поток анализируемого газа помещают электрохимическую ячейку с полостью, образованной двумя дисками из протонопроводящего твердого электролита...
Тип: Изобретение
Номер охранного документа: 0002611578
Дата охранного документа: 28.02.2017
Показаны записи 41-50 из 162.
10.06.2016
№216.015.4648

Способ производства анодной массы

Изобретение относится к способу изготовления анодной массы для анодов алюминиевых электролизеров. Способ включает приготовление анодной массы смешением зерновых фракций углеродного наполнителя в виде кокса с предварительно подготовленной связующей матрицей (СМ) на основе пылевой фракции кокса...
Тип: Изобретение
Номер охранного документа: 0002586195
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.46a1

Способ получения связующего пека

Изобретение относится к коксохимической промышленности, в частности к способу получения связующего пека, который может быть использован в качестве замены каменноугольного пека для производства анодной массы, угольной и графитированной продукции, конструкционных углеграфитовых материалов. Способ...
Тип: Изобретение
Номер охранного документа: 0002586135
Дата охранного документа: 10.06.2016
10.08.2016
№216.015.55fb

Способ футеровки катодного устройства электролизера для получения алюминия

Изобретение относится к способу футеровки катодного устройства электролизера для получения алюминия неформованными материалами. В способе, включающем кладку кирпичной бровки по периметру внутренней боковой поверхности металлического кожуха, засыпку и горизонтальное выравнивание...
Тип: Изобретение
Номер охранного документа: 0002593247
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5626

Способ получения лигатуры алюминий-скандий

Изобретение относится к области металлургии цветных металлов и может быть использовано для получения лигатуры алюминий-скандий. Способ включает приготовление и расплавление смеси, содержащей фториды алюминия, фториды натрия и алюминий, подачу оксида скандия, алюмотермическое восстановление...
Тип: Изобретение
Номер охранного документа: 0002593246
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.79b0

Электролитический способ непрерывного получения алюминиевого сплава со скандием

Изобретение относится к области металлургии цветных металлов, в частности к получению сплава алюминия с редкоземельными металлами, и может быть использовано для получения алюминиевого сплава с 0,2-0,4 мас. % скандия в условиях промышленного производства алюминия. Способ электролитического...
Тип: Изобретение
Номер охранного документа: 0002599312
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a9b

Способ электрохимического получения порошка иридия с удельной поверхностью более 5 м/г

Изобретение относится к электрохимическому получению порошкового иридия с высокой удельной поверхностью, который может быть использован в устройствах катализа горения многокомпонентных топлив при температурах до 2100°С без изменения химического состава и потери формы. Электролиз ведут в...
Тип: Изобретение
Номер охранного документа: 0002600305
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8226

Способ получения компаундного электродного пека для изготовления углеродных материалов и изделий из них

Изобретение относится к способу получения компаундного электродного пека для изготовления углеродных материалов и изделий из них, в частности к способу получения и подготовки электродного пека, предназначенного для производства анодной массы, угольной и графитированной продукции,...
Тип: Изобретение
Номер охранного документа: 0002601766
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.86ff

Способ электролитического алитирования изделий из низкоуглеродистой стали

Изобретение относится к области гальванотехники и может быть использовано для нанесения защитного покрытия на изделия из низкоуглеродистой стали, которые могут эксплуатироваться при высоких температурах. Способ включает электролиз галогенидного алюминийсодержащего расплава при использовании...
Тип: Изобретение
Номер охранного документа: 0002603744
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.90cc

Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах

Изобретение относится к способам переработки нитридного отработавшего ядерного топлива (ОЯТ). Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах включает катодное восстановление ионов урана, подготовку электролита в аппарате для переработки нитридного...
Тип: Изобретение
Номер охранного документа: 0002603844
Дата охранного документа: 10.12.2016
24.08.2017
№217.015.95cf

Катодная футеровка электролизера производства первичного алюминия

Изобретение относится к футеровке катодного устройства электролизера для производства алюминия. Футеровка катодного устройства содержит подовые и бортовые блоки, соединенные между собой холоднонабивной подовой массой, огнеупорный и теплоизоляционный слои из неформованных материалов. Огнеупорный...
Тип: Изобретение
Номер охранного документа: 0002608942
Дата охранного документа: 26.01.2017
+ добавить свой РИД