×
09.06.2018
218.016.5f85

Результат интеллектуальной деятельности: Способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к деформационно-термической обработке сплавов титан-ниобий-тантал-цирконий с эффектом памяти формы и может быть использовано в металлургии, машиностроении и медицине, в частности при изготовлении медицинских устройств типа «стент», «Кафа-фильтр» и прочих. Способ получения наноструктурной проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы включает гомогенизирующий отжиг, интенсивную пластическую деформацию и рекристаллизационный отжиг. Гомогенизирующий отжиг слитка проводят в вакууме при температуре 600°C в течение 16 ч. Интенсивную пластическую деформацию осуществляют путем многостадийной прокатки при температуре 15-30°C с обеспечением достижения в полученной заготовке накопленной степени деформации в 400%. Рекристаллизационный отжиг осуществляют в вакууме при температуре 550°C, затем заготовку нарезают на прутки электроэрозионным методом, проводят многостадийную ротационную ковку прутков при температуре 250°C и многостадийное волочение при температуре 80-100°C и степени деформации не более 80% с получением проволоки. При этом после каждой стадии ротационной ковки и волочения осуществляют отжиг в вакууме при температуре 550°C. Повышается прочность при сохранении пластичности наноструктурной проволоки титан-ниобий-тантал-цирконий с эффектом памяти формы. 4 ил., 1 табл., 3 пр.

Изобретение относится к деформационно-термической обработке сплавова титан-ниобий-тантал-цирконий с эффектом памяти формы. Может быть использовано в металлургии, машиностроении и медицине. Особенно привлекательно его использование в медицинских устройствах типа «стент», «Кафа-фильтр» и прочих.

Известен способ получения ультрамелкозернистых титановых сплавав с эффектом памяти формы, включающий термомеханическую обработку, сочетающую деформацию и рекристаллизационный отжиг. Перед термомеханической обработкой осуществляют предварительную закалку сплава, а деформацию осуществляют в два этапа, причем на первом этапе проводят интенсивную пластическую деформацию с накопленной истинной степенью деформации ε более 400% в интервале температур 300-550°C, а на втором этапе проводят деформацию прокаткой или экструзией, или волочением со степенью деформации не менее 20% при температурах 20-500°C, а отжиг проводят при температурах 350-550°C в течение 0,5-2,0 часов (Патент РФ №2266973, МПК C22F 1/18, опубл. 27.12.2005 г.).

Недостатком известного способа является высокая степень анизотропии структуры и свойств материала из-за неоднородной морфологии зерен в продольном и поперечном сечении заготовки, большая доля малоугловых границ. Такой материал обладает повышенной прочностью, но ограниченной пластичностью, не обеспечивающий высокой стойкости к усталостному разрушению.

Известен способ получения сверхупругого титан-никелевого сплава (JP 58161753, МПК C22F 1/10, опубл. 26.09.83 г.), включающий предварительную закалку крупнозернистого сплава, последующую холодную деформацию прокаткой со степенью деформации более 20% и отжиг при температуре 250-550°C.

Недостатками способа являются относительно низкие степени деформации (ε менее 100%) и ограничения по степени измельчения микроструктуры, не позволяющие достигать наиболее высоких механических и функциональных свойств.

Наиболее близким к предложенному является способ получения сплавов TiNb (Ta и/или Zr) и его их обработки (Патент РФ №2485197, МПК C22F 1/18, опубл. 20.06.2013 г.). Способ обработки сплава включает горячую обработку давлением слитка сплава на основе титана при начальной температуре 900-950°C и конечной температуре 700-750°C, термомеханическую обработку путем многопроходной холодной деформации с суммарной степенью обжатия от 31 до 99%, последеформационного отжига при температуре 500-600°C и завершающего закалочного охлаждения в воде. После механическое псевдоупругое циклирование полученной заготовки в условиях одноосного растяжения до достижения 2% деформации в течение 50-100 циклов и снятия нагрузки.

К недостаткам этого способа относится обработка на первых этапах давлением, без вакуума. При нагреве сплава более 400 градусов не в вакууме или инертной среде замечено поглощение кислорода титаном и танталом, что негативно сказывается на усталостных свойствах конечного продукта - проволоки.

Задачей изобретения является получение проволоки из сплавов титан-ниобий-тантал-цирконий, а именно Ti-30Nb-13Ta-5Zr, Ti-30Nb-10Ta-5Zr, Ti-20Nb-10Ta-5Zr с эффектом памяти формы с одновременным улучшением функциональных свойств за счет создания нанокристаллической структуры и минимизацией поглощения кислорода и азота в процессе производства проволоки.

Техническим результатом является повышение прочности и сохранение пластичности наноструктурной проволоки титан-ниобий-тантал-цирконий с эффектом памяти формы. Структура, образующаяся после механического воздействия на сплав, из нанокристаллических аустенитных зерен, в которой объемная доля зерен с размером не более 100 нм и с коэффициентом формы зерен не более 2 во взаимно перпендикулярных плоскостях составляет не менее 85%, причем более чем 50% зерен имеют большеугловые границы, разориентированные относительно соседних зерен на углы от 10° до 90°.

Технический результат достигается тем, что в способе получения наноструктурной проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы, включающем гомогенизирующий отжиг, интенсивную пластическую деформацию и рекристаллизационный отжиг, минимизируется образование оксидов титана и тантала, а также образованием наноразмерных зерен. Согласно изобретению гомогенизирующий отжиг слитка проводят в вакууме при температуре 600°C в течение 16 ч, интенсивную пластическую деформацию осуществляют путем многостадийной прокатки при температуре 15-30°C с обеспечением достижения в полученной заготовке накопленной степени деформации в 400%, а рекристаллизационный отжиг осуществляют в вакууме при температуре 550°C, затем заготовку нарезают на прутки электроэрозионным методом, проводят многостадийную ротационную ковку прутков при температуре 250°C и многостадийное волочение при температуре 80-100°C и степенью деформации не более 80% с получением проволоки, при этом после каждой стадии ротационной ковки и волочения осуществляют отжиг в вакууме при температуре 550°C.

Повышение прочности материала обусловлено очень малым размером зерна (не более 100 нм) в структуре, что обеспечивает увеличение напряжения течения при пластической деформации согласно известному соотношению Холло-Петча (Большие пластические деформации и разрушение металлов. Рыбин В.В. М.: Металлургия, 1986, 224 с.). Значительное повышение прочности достигается также большим количеством зерен с большеугловыми границами (не менее 50%), которые в сравнении с малоугловыми и специальными границами обеспечивают наибольший вклад в упрочнение (Р.З. Валиев, И.В. Александров. Объемные наноструктурные металлические материалы. - М.: ИКЦ «Академкнига», 2007. - 398 с.). При этом формирование зерен с коэффициентом формы не более 2 (соотношение ширины и длины зерна 1:2) снижает неоднородность пластического течения металла, уровень микронапряжений, тем самым предотвращает раннюю локализацию деформации, приводящую к разрушению материала.

На сегодняшний день наибольшей популярностью пользуется сплав NiTi для изготовления медицинских изделий типа Стент. Однако входящий в состав никель токсичен. Существуют исследования сплавов с эффектом памяти формы, которые не содержат никеля. Перспективными видятся сплавы TiNbTa и TiNbZr. Сплав с Zr обладает большим модулем Юнга, чем необходимо в стентах и Кафа-фильтрах, но при добавлении Та модуль Юнга сплава входит в нужные границы.

Сплав является довольно технологичным и позволяет проводить механическую обработку при комнатной температуре, при снятии наклепа при помощи отжига.

Пример конкретной реализации изобретения

Пример 1

В качестве заготовки использовали слиток (100*20*40) мм сплава Ti-30Nb-13Ta-5Zr. На первом этапе обработки проводили гомогенизирующий отжиг при температуре 600°C в вакуумной среде в течение 16 часов.

На втором этапе обработки проводили прокатку заготовки при температуре 20°C, количество проходов n=15. В общей сложности накопленная степень деформации составила ε=400%. В результате была получена цельная заготовка длиной 500 мм, шириной 64 мм и высотой 2,5 мм.

Далее проведен рекристализационный отжиг при температуре, равной 550°C в вакуумной среде.

После отжига заготовку разрезали на прутки электроэрозионной резкой.

В результате обработки получили пруток квадратного сечения 2,5 мм длиной 500 мм.

Прутки были подвергнуты многостадийной ротационной ковке при температуре 250°C. После каждого прохода был проведен рекристализационный отжиг при температуре 550°C. Количество проводимых стадий зависит от необходимого диаметра на выходе, а также от количества используемых бойков разного диаметра. В предложенном примере использовалось три стадии до достижения диаметра в 1,5 мм.

На последнем этапе осуществляют пластическую деформацию заготовки многостадийным волочением. Обработку проводят при температуре 20°C. Степень деформации не более 80% не приводит к существенному изменению структуры. После каждого прохода был проведен рекристализационный отжиг при температуре 550°C. Количество проводимых стадий зависит от необходимого диаметра на выходе и размера используемых фильер. В предложенном примере выходной размер 280 мкм.

Механические характеристики проволоки, полученной в данном примере, представлены на рис. 1.

Пример 2

В качестве заготовки использовали слиток (100*20*40) мм сплава Ti-30Nb-13Ta-5Zr. На первом этапе обработки проводили гомогенизирующий отжиг при температуре 800°C в вакуумной среде в течение 16 часов. Был отмечен при исследованиях излишний рост зерен.

На втором этапе обработки проводили прокатку заготовки при температуре 20°C, количество проходов n=15. В общей сложности накопленная степень деформации составила ε=400%. В результате была получена цельная заготовка длиной 500 мм, шириной 64 мм и высотой 2,5 мм.

Далее проведен рекристализационный отжиг при температуре, равной 550°C в вакуумной среде.

После отжига заготовку разрезали на прутки электроэрозионной резкой.

В результате обработки получили пруток квадратного сечения 2,5 мм длиной 500 мм.

Прутки были подвергнуты многостадийной ротационной ковке при температуре 250°C. После каждого прохода был проведен рекристализационный отжиг при температуре 550°C. Количество проводимых стадий зависит от необходимого диаметра на выходе, а также от количества используемых бойков разного диаметра. В предложенном примере использовалось три стадии до достижения диаметра в 1,5 мм.

На последнем этапе осуществляют пластическую деформацию заготовки многостадийным волочением. Обработку проводят при температуре 20°C. Степень деформации не более 80% не приводит к существенному изменению структуры. После каждого прохода был проведен рекристализационный отжиг при температуре 550°C. Количество проводимых стадий зависит от необходимого диаметра на выходе и размера используемых фильер. В предложенном примере выходной размер 280 мкм.

Механические характеристики проволоки, полученной в данном примере, представлены на рис. 2.

Отмечено снижение прочности и пластичности проволоки по отношению к образцу, выполненному по примеру 1.

Пример 3

В качестве заготовки использовали слиток (100*20*40) мм сплава Ti-30Nb-13Ta-5Zr. На первом этапе обработки проводили гомогенизирующий отжиг при температуре 600°C в вакуумной среде в течение 16 часов.

На втором этапе обработки проводили прокатку заготовки при температуре 20°C, количество проходов n=15. В общей сложности накопленная степень деформации составила ε=400%. В результате была получена цельная заготовка длиной 500 мм, шириной 64 мм и высотой 2,5 мм.

Далее проведен рекристализационный отжиг при температуре, равной 650°C в вакуумной среде.

После отжига заготовку разрезали на прутки электроэрозионной резкой.

В результате обработки получили пруток квадратного сечения 2,5 мм длиной 500 мм.

Прутки были подвергнуты многостадийной ротационной ковке при температуре 250°C. После каждого прохода был проведен рекристализационный отжиг при температуре 650°C. Количество проводимых стадий зависит от необходимого диаметра на выходе, а также от количества используемых бойков разного диаметра. В предложенном примере использовалось три стадии до достижения диаметра в 1,5 мм.

На последнем этапе осуществляют пластическую деформацию заготовки многостадийным волочением. Обработку проводят при температуре 20°C. Степень деформации не более 80% не приводит к существенному изменению структуры. После каждого прохода был проведен рекристаллизационный отжиг при температуре 650°C. Количество проводимых стадий зависит от необходимого диаметра на выходе и размера используемых фильер. В предложенном примере выходной размер 280 мкм.

Механические характеристики проволоки, полученной в данном примере, представлены на рис. 3. Отмечено существенное снижение пластичности при сходных характеристиках прочности по отношению к Примеру 1.

Снижение температур гомогенизирующего отжига и рекристаллизационного отжига недостаточно для выравнивания структуры и снятия внутренних напряжений. Изменение температурных режимов при механической обработке затрудняет проведение деформации либо вовсе приводит к утрате целостности образца.

Сочетание пластической деформации и промежуточного отжига способствует дальнейшей эволюции полученной после проката структуры: формированию новых субзеренных границ, их трансформации в зеренные, тем самым увеличению доли большеугловых границ, формированию новых нанокристаллических зерен, снижению плотности решеточных дислокаций за счет одновременно протекающих процессов возврата и динамической рекристаллизации.

Из полученной проволоки были изготовлены образцы для исследования микроструктуры. Для приготовления тонких фольг было проведено механическое утонение до толщины 150 мкм и последующее электролитическое полирование на установке Tenupol-5 (Struers) при комнатной температуре в электролите, состоящем из хлорной кислоты (HClO4) и бутанола (C4H9OH).

Исследования микроструктуры показывают, что в результате обработки по предложенному способу в сплаве титан-ниобий-тантал-цирконий происходит существенное измельчение структуры и формируется нанокристаллическая структура, в которой до 90% составляют зерна со средним размером 80-100 нм по светлому и темному полю и с коэффициентом формы зерен не более 2 во взаимно-перпендикулярных плоскостях (рис. 4). Погрешность измерений составила не более 5%.

Исследования показали, что предложенный способ деформационно-термической обработки сплава титан-ниобий-тантал-цирконий, сочетающий отжиги, прокатку, и последующую ротационную ковку, и волочение позволил получить максимальную обратимую деформацию - 3% (табл. 1). Достигнутые показатели по совокупности механических и функциональных свойств находятся выше уровня прототипа, так как минимизировано образование оксидов, делающих проволоку более хрупкой.

Таким образом, предложенное изобретение позволяет сформировать в сплаве титан-ниобий-тантал-цирконий с эффектом памяти формы нанокристаллическую структуру, а также минимальное количество оксидов титана и тантала, что обеспечивает материалу повышенную прочность, пластичность и улучшенные эксплуатационные характеристики.

Способ получения наноструктурной проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы, включающий гомогенизирующий отжиг, интенсивную пластическую деформацию и рекристаллизационный отжиг, отличающийся тем, что гомогенизирующий отжиг слитка проводят в вакууме при температуре 600°C в течение 16 ч, интенсивную пластическую деформацию осуществляют путем многостадийной прокатки при температуре 15-30°C с обеспечением достижения в полученной заготовке накопленной степени деформации в 400%, а рекристаллизационный отжиг осуществляют в вакууме при температуре 550°C, затем заготовку нарезают на прутки электроэрозионным методом, проводят многостадийную ротационную ковку прутков при температуре 250°C и многостадийное волочение при температуре 80-100°C и степени деформации не более 80% с получением проволоки, при этом после каждой стадии ротационной ковки и волочения осуществляют отжиг в вакууме при температуре 550°C.
Способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы
Способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы
Источник поступления информации: Роспатент

Показаны записи 31-40 из 108.
10.06.2016
№216.015.4478

Высокопрочная коррозионно-стойкая свариваемая сталь

Изобретение относится к области металлургии, а именно к составам высокопрочных коррозионно-стойких сталей, используемых для изготовления высоконагруженных деталей и конструкций в машиностроении, судостроении, авиации и железнодорожном транспорте. Сталь содержит, мас.%: углерод 0,01-0,04,...
Тип: Изобретение
Номер охранного документа: 0002586193
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.476e

Композиционный материал на основе фторгидроксиапатита и частично стабилизированного диоксида циркония для замещения костных дефектов

Изобретение относится к медицине, в частности биокерамическим материалам, предназначенным для изготовления костных имплантатов и/или замещения дефектов при различных костных патологиях. Техническим результатом изобретения является увеличение прочности материалов в системе 40-60 масс. %...
Тип: Изобретение
Номер охранного документа: 0002585954
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.7879

Способ получения пористой керамики из фосфатов кальция для лечения дефектов костной ткани

Изобретение относится к области керамических материалов для медицины, которые могут быть использованы для заполнения костных дефектов в травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии. Для получения пористой керамики яичные белки с сахарозой в соотношении 1:1...
Тип: Изобретение
Номер охранного документа: 0002599524
Дата охранного документа: 10.10.2016
25.08.2017
№217.015.9caf

Литейный сплав на основе интерметаллида ni3al и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида NiAl, предназначенным для изготовления методом направленной кристаллизации и монокристаллического литья деталей газотурбинных двигателей авиационной промышленности, например сопловых и рабочих...
Тип: Изобретение
Номер охранного документа: 0002610577
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.9cd4

Способ получения пористой алюмооксидной керамики

Изобретение относится к технологии пористых керамических материалов и может быть использовано для изготовления изделий, эксплуатируемых в качестве высокотемпературной теплоизоляции (или теплозащиты), термостойкого огнеприпаса, носителей катализаторов, фильтров для очистки жидких и газовых сред....
Тип: Изобретение
Номер охранного документа: 0002610482
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.a236

Способ получения структуры высокотемпературный сверхпроводник - диэлектрик - высокотемпературный сверхпроводник

Использование: для создания структур высокотемпературный сверхпроводник – диэлектрик – высокотемпературный сверхпроводник. Сущность изобретения заключается в том, что на слой высокотемпературного сверхпроводника 123-типа направляют поток атомных частиц, в качестве высокотемпературного...
Тип: Изобретение
Номер охранного документа: 0002606940
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a359

Способ получения порошкового магнитотвёрдого сплава 30х20к2м2в системы железо-хром-кобальт

Изобретение относится к получению порошковых магнитотвердых сплавов. Способ получения порошкового магнитотвердого сплава 30Х20К2М2В системы железо-хром-кобальт включает приготовление шихты из порошков железа, хрома, кобальта, молибдена и вольфрама, формование полученной шихты, спекание,...
Тип: Изобретение
Номер охранного документа: 0002607074
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a4f2

Способ получения катионзамещенного трикальцийфосфата

Изобретение относится к химической и медицинской отраслям промышленности и может быть использовано в производстве исходного биосовместимого материала, пригодного для изготовления плотной и пористой керамики, применяющейся в качестве скэффолдов в инженерии костной ткани, мишеней для создания...
Тип: Изобретение
Номер охранного документа: 0002607743
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a8e2

Резорбируемый пористый кальцийфосфатный цемент

Изобретение относится к фармацевтической промышленности, а именно к резорбируемому пористому кальцийфосфатному цементу для заполнения костных челюстно-лицевых и стоматологических дефектов. Кальцийфосфатный цемент состоит из смеси порошков фосфатов кальция, а именно из железо- или...
Тип: Изобретение
Номер охранного документа: 0002611345
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.b20d

Брушитовый гидравлический цемент, упрочненный пористым каркасом из полилактида

Изобретение относится к медицине. Описан брушитовый гидравлический цемент, упрочненный пористым каркасом из полилактида для восстановления костных тканей, имеющий прочность не менее 40 МПа, содержащий порошок α-трикальцийфосфата, гранулы карбонатгидроксиапатита и затворяющую жидкость,...
Тип: Изобретение
Номер охранного документа: 0002613182
Дата охранного документа: 15.03.2017
Показаны записи 31-40 из 43.
29.11.2019
№219.017.e7f2

Способ формирования упрочненного поверхностного слоя в зоне лазерной резки деталей из легированных конструкционных сталей

Изобретение относится к способу формирования упрочненного приповерхностного слоя в процессе лазерной резки деталей из листовых легированных сталей. Осуществляют газодинамическое воздействие на зону реза потоком лазерного излучения в инфракрасной области спектра. Перед началом резки формируют...
Тип: Изобретение
Номер охранного документа: 0002707374
Дата охранного документа: 26.11.2019
08.02.2020
№220.018.00bf

Способ лечения рака полости рта

Изобретение относится к медицине, а именно к онкологии и челюстно-лицевой хирургии, и может быть использовано для лечения начальных стадий рака полости рта и губы при глубине инвазии не более 7 мм. Для этого за сутки до проведения операции выполняют перитуморальное введение радиофармпрепарата...
Тип: Изобретение
Номер охранного документа: 0002713530
Дата охранного документа: 05.02.2020
18.06.2020
№220.018.2779

Способ получения биомедицинского материала "никелид титана-полилактид" с возможностью контролируемой доставки лекарственных средств

Изобретение относится к технологии получения композиционного биомедицинского материала никелид титана-полилактид с возможностью контролируемой доставки лекарственных средств. Предложенный способ получения биомедицинского материала никелид титана-полилактид включает получение раствора...
Тип: Изобретение
Номер охранного документа: 0002723588
Дата охранного документа: 16.06.2020
25.06.2020
№220.018.2a83

Способ комбинированной лучевой и фотодинамической терапии

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для фотодинамической терапии. Производят однократное внутривенное введение фотосенсибилизатора Хлорин Е6 в дозе 10 мг/кг массы тела. Проводят спектрометрию через 3 ч после окончания введения препарата. Проводят...
Тип: Изобретение
Номер охранного документа: 0002724480
Дата охранного документа: 23.06.2020
27.06.2020
№220.018.2bca

Высокопрочная коррозионно-стойкая сталь

Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям, выплавляемым в вакуумно-индукционной печи с последующим электрошлаковым переплавом для введения азота под давлением, используемым для изготовления подшипников качения. Сталь содержит компоненты в...
Тип: Изобретение
Номер охранного документа: 0002724766
Дата охранного документа: 25.06.2020
04.07.2020
№220.018.2e84

Способ получения углеграфитового композиционного материала

Изобретение относится к области металлургии, а именно к способу получения углеграфитового композиционного материала, имеющего высокую электропроводность, антифрикционные свойства, стойкость в агрессивных средах. Способ получения углеграфитового композиционного материала включает вакуумную...
Тип: Изобретение
Номер охранного документа: 0002725522
Дата охранного документа: 02.07.2020
21.07.2020
№220.018.3528

Способ изготовления сосудистого импланта из сплавов с эффектом памяти формы, сплетенного единой нитью

Изобретение относится к области медицины, а именно к рентгеноэндоваскулярной дилатации. Способ изготовления сосудистого импланта из сплавов с эффектом памяти формы, сплетенного единой нитью, включает автоматизированное плетение импланта на оправку модифицированным намоточным станком по...
Тип: Изобретение
Номер охранного документа: 0002727031
Дата охранного документа: 17.07.2020
20.04.2023
№223.018.4b25

Способ спекания смеси порошков alo и aln

Изобретение относится к технологии получения поликристаллической керамики на основе оксинитрида алюминия с достаточной степенью прозрачности в оптическом диапазоне, которая может быть использована в производстве защитных устройств, электронике и других областях техники. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002775445
Дата охранного документа: 30.06.2022
14.05.2023
№223.018.54b7

Способ интраоперационной фотодинамической терапии в комбинированном лечении местно-распространенных сарком мягких тканей

Изобретение относиться к медицине, а именно к способу интраоперационной фотодинамической терапии в комбинированном лечении местно-распространенных сарком мягких тканей. Способ включает введение пациенту за 2-3 часа до операции фотосенcибилизатора хлорин Е6 в водорастворимой лекарственной форме...
Тип: Изобретение
Номер охранного документа: 0002737704
Дата охранного документа: 02.12.2020
14.05.2023
№223.018.5551

Способ низкоинтенсивного лазерного излучения при проведении фотодинамической терапии с фотосенсибилизатором фоторан е6 перевивной соединительнотканной опухоли саркома м-1 крыс, положительной по мутантному гену р53

Изобретение относится к экспериментальной медицине, а именно к способу низкоинтенсивного лазерного излучения при проведении фотодинамической терапии с фотосенсибилизатором фоторан Е перевивной соединительнотканной опухоли саркома М-1 крыс, положительной по мутантному гену . Способ включает...
Тип: Изобретение
Номер охранного документа: 0002736261
Дата охранного документа: 12.11.2020
+ добавить свой РИД