×
20.04.2023
223.018.4b25

Результат интеллектуальной деятельности: Способ спекания смеси порошков AlO и AlN

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения поликристаллической керамики на основе оксинитрида алюминия с достаточной степенью прозрачности в оптическом диапазоне, которая может быть использована в производстве защитных устройств, электронике и других областях техники. Техническим результатом заявленного изобретения является упрощение получения поликристаллической керамики и изделий на нее с относительной плотностью выше 98%, прочностью порядка 170-220 МПа и твердостью в диапазоне 1700-1800 HV. Данный способ спекания осуществляется за один этап термической обработки, включающий в себя нагрев и выдержку при заданной температуре. Смесь исходных порошков AlO, AlN в соотношении, близком к области эвтектоидного превращения, и спекающей добавки YO в количестве 0,5 мас.% прессуют в одноосном прессе с усилием 30-80 МПа. На следующем этапе происходит спекание по реакционному механизму при температуре 1670-1800°С в атмосфере газообразного азота с выдержкой от 5 до 8 часов. 1 пр.

Данный способ относится к технологии получения поликристаллической керамики, в том числе керамики с достаточной степенью прозрачности в оптическом диапазоне, и изделий из нее.

Потребность в керамических материалах все чаще возникает в различных областях техники, таких как автомобилестроение, авиастроение, производство защитных устройств, сооружений, электроники и других областях техники.

Также существует потребность и в прозрачных защитных материалах. В настоящее время основным материалом для данных назначений является триплекс - многослойное стекло, состоящее из слоев органических или силикатных стекол, склеенных между собой. Также применяются закаленные стекла и монокристаллы. В качестве альтернативы рассматривается прозрачная керамика на основе оксинитрида алюминия (Al23O27N5), которая является прозрачной для электромагнитного излучения, света в диапазоне волн от 0,2 до 6 микрометров. Данный материал обладает такими свойствами как сравнительно высокая прочность, порядка 340 МПа, и низкая плотность -3,69 г/см3.

Известен способ получения прозрачной, в оптическом диапазоне, поликристаллической керамики на основе фторида кальция, заключающийся в нагревании порошкообразного сырья выше температуры горячего прессования с последующим снижением его температуры до температуры горячего прессования и горячем прессовании. Нагревание порошкообразного фторида кальция проводят в пресс-форме, полученную пористую предзаготовку охлаждают до Ткомн и помещают в пресс-форму, в которой проводят ее горячее прессование, после чего пресс-форму охлаждают до Ткомн и полученные заготовки оптической керамики отжигают при температуре 700-1200°С в среде контролируемого состава до снятия термоупругих напряжений в полученной оптической керамике (RU 2559974, МПК С04В 35/553, 2014.06.18). Недостатком этого способа является потребность в горячем прессовании и изготовлении специальных пресс-форм, а также низких прочностных свойствах керамики из фторида кальция, что существенно ограничивает применение данной керамики.

Известен способ получения плотного поликристаллического материала на основе оксинитрида алюминия, заключающийся в применении метода горячего изостатического прессования (US 7,163,656 B1, В2.8 В 3/00, 2002.05.17). Этот способ состоит в том, что применяется метод горячего изостатического прессования (ГИП), при постоянной температуре порядка 1600°С и постоянном давлении для устранения пористости. В данном методе используют концентрации согласно диаграмме состояния и уравнению Al(64+x)/3O(32-x)Nx. Способ получения поликристаллического оксинитрида алюминия, включает стадии: смешивание порошков оксида алюминия и нитрида алюминия; формирование компакта из смеси, горячего прессования компакта; горячего реакционного прессования тела; и охлаждение тела, причем стадию реакционного спекания проводят при температуре от 1700°С до 2000°С, давление от 3 до 30000 фунтов на квадратный дюйм и время от 1 до 12 часов. Al2O3 имеет диапазон мольных % от 60 до 74% в порошковой смеси, a AlN имеет диапазон мольных % от примерно 26 до 40% в порошковой смеси. Полученный однофазный поликристаллический оксинитрид алюминия, имеет следующую химическую формулу: Al(64+х)/3О32-xNx, где х находится в интервале 2-7. Мелкозернистые порошки прекурсоры - оксид алюминия (Al2O3) от 26 мол. % до 40 мол. % и нитрид алюминия (AlN) - остальное, которые смешивают и прессуют в компакт. Компакт одноосно сжимается при постоянной температуре. Условия одноосного прессования включают в себя давление примерно от 3000 до 10000 фунтов на квадратный дюйм и температуру от 1350°С до 1600°С в течение периода времени от 1 часа до 4 часов. Эта температура ниже температуры реакции. В результате получается промежуточная заготовка. Заготовку подвергают горячему прессованию, спекание происходит в условиях реакции в атмосфере, свободной от кислорода. Условия реакции включают температуру спекания от 1700°С до 2000°С и реакционное давление от 3 фунтов на квадратный дюйм до 30000 фунтов на квадратный дюйм, а также период времени реакции от 1 часа до 12 часов. Спеченную заготовку затем охлаждают с контролируемой скоростью для предотвращения растрескивания для получения плотной керамики. Недостаток данного способа состоит в том, что технология предусматривает сложное оборудование типа горячего изостатического пресса и, следовательно, изготовление необходимых пресс-форм, что понижает технологичность данного метода.

В качестве наиболее близкого аналога, с точки зрения исполнения технологии, является способ получения прозрачного плотного керамического материала оксинитрида алюминия при помощи жидкофазного спекания (US 7,045,091 В, С04В 3.5/10, 2002.08.05). Этим способом получают прозрачную керамику из оксинитрида алюминия. Известный способ состоит из двух этапов спекания. На первой стадии спекания, смесь порошков Al2O3 и AlN спекается в температурном интервале между твердой и жидкой фазой, и на второй стадии спекания термообработка осуществляется при температуре, по меньшей мере, на 50°С ниже, чем температура первой термообработки. Вводится небольшая фракция жидкой фазы, согласно фазовой диаграмме, которая способствует устранению пор и уплотнению изделия. На первом этапе материал смещается из области жидкость / твердый раствор в область твердого раствора оксинитрида алюминия, где жидкость полностью прореагирует с твердой фазой оксинитрида алюминия в процессе спекания. Процедура предназначена для устранения пустот и других дефектов, которые часто приводят к уменьшению оптической четкости. В этом патенте подбираются такие параметры спекания, при которых во время первого спекания образуется жидкая фаза, которая расходуется для уплотнения керамики на второй фазе спекания. При формировании структуры оксинитрида, температура порядка 2000°С, для «залечивания» пор и улучшения оптических и механических свойств - первый этап. Второй этап - понижение температуры на, примерно, 50°С, для перехода в область гомогенности твердой фазы оксинитрида алюминия, что подтверждает диаграмма состояния Al2O3 - AlN. В этом патенте спекание осуществляется в вакуумной печи с температурами нагрева порядка 2100°С в контролируемой атмосфере азота. Недостатком известного метода является двухстадийное спекание при температурах выше 2000°С, а также потребность в тщательном контроле температуры, что увеличивает стоимость производства оптической керамики.

Задачей заявленного изобретения является разработка способа спекания прочного и прозрачного керамического материала с низким удельным весом на основе оксида алюминия (Al2O3) и (AlN) с добавлением спекающей добавки оксида иттрия (Y2O3). Процесс спекания происходит в один этап при температуре не более 1800°С.

Техническим результатом заявленного изобретения является одностадийный способ спекания оптически прозрачной высокопрочной керамики при температуре не выше 1800°С. Свойства полученной керамики не ниже чем в образцах, полученных известному способу.

Указанный технический результат достигается тем, что состав исходной смеси порошков дополнительно содержит спекающую добавку Y2O3 в размере 0,5 мас. %, смесь нагревают до температуры от 1670 до 1800°С и выдерживают при данных температурах от 5 до 8 часов.. Процесс спекание происходит по реакционному механизму, из исходных составляющих, в процессе термической обработки образуется новая фаза - оксинитрид алюминия. Такой подход позволяет упростить технологию спекания, в которой оксинитрид алюминия синтезируется до этапа спекания плотного изделия.

Сущность изобретения. Указанный технический результат достигается тем, что соотношение Al2O3 и AlN определяется из соответствующей фазовой диаграммы, максимально близко к области эвтектоидного превращения. Размер частиц исходных порошков в диапазоне от 0,5 до 1,2 микрометров.

Кроме того, упомянутый технический результат достигается за счет добавления в малом объеме (доли массового процента) спекающих добавок, позволяющих снизить температуру спекания и, следовательно, удешевить производство. В качестве спекающих добавок используется оксид иттрия Y2O3, массовый процент спекающей добавки составлял 0,5 мас. % во всех случаях.

Оптимальный состав исходных компонентов, в совокупности со спекающими добавками позволяет понизить температуру спекания. Оксиды редкоземельных металлов служат для интенсификации спекания и уплотнения, в частности на границе спекаемых частиц порошка образуется жидкая фаза, что способствует высокому уплотнению при спекании, свыше 99% от теоретической плотности.

Для интенсификации реакционного механизма, образования фазы оксинитрида алюминия, перед процессом спекания предварительную порошковую смесь прессуют в гидравлическом одноосном прессе с усилием от 30 до 80 МПа. Нагрузка выбирается исходя из условия сохранения оптимального объема пор. Требуется получить оптимальную пористость для проникновения газовой фазы во время спекания равномерно во всем объеме керамического изделия.

Процесс спекания происходит в печах с возможностью контроля атмосферы, с рабочей температурой в диапазоне от 1700 до 2000°С. Спекание происходит в атмосфере азота.

Данный способ позволяет спекать керамические образцы в диапазоне температур 1670-1800°С за время в диапазоне от 5 до 8 часов. Точный выбор температуры и времени выдержки зависит от задаваемого состава исходных компонентов Al2O3 и AlN и объема спекающих добавок.

Пример. Образец изготавливался из исходных порошков Al2O3 и AlN в соотношение 64 к 33, с добавлением 0,5 мас. % Y2O3. Смешивание исходных порошков производилось в планетарной мельнице на протяжение 30 минут с добавлением изопропилового спирта. Образцы смешивались в сосудах из оксида циркония, мелющие тела также были выполнены из оксида циркония. Прессование происходило при помощи ручного гидравлического пресса с усилием 50 МПа. Спекание происходило в вакуумно-компрессионной печи carobus24. Время нагрева 3 часа время, время выдержки 7 часов.

Исследования фазового состава показали, что в полученной керамике 99,6% фазового состава - целевая фаза оксинитрида алюминия. Плотность керамики составила порядка 100% от теоретической плотности (3,69 г/см3). Среднее значение твердости составило 1570 HV, предел прочности составил 200 МПа. Коэффициент светопропускания в диапазоне волн от 0,2 до 6 микрометров составлял от 0.53 до 0,67.

Данный способ позволяет получать изделия необходимой формы, которые могут применятся для защиты инфракрасной техники, работающей в тяжелых условиях (авиатехника, морская техника и прочее), а также служить для защиты людей в качестве высокопрочного и легкого прозрачного конструкционного материала в автомобилях.

Способ получения оптически прозрачной керамики оксинитрида алюминия, включающий предварительное прессование порошковых заготовок из смеси порошков AlO и AlN и спекающей добавки YO в количестве 0,5 мас.% и спекание в печах с контролируемой атмосферой в газообразном азоте по реакционному механизму, отличающийся тем, что соотношение AlO и AlN определяется из соответствующей фазовой диаграммы, максимально близко к области эвтектоидного превращения, а размер частиц исходных порошков находится в диапазоне от 0,5 до 1,2 мкм, при этом для спекания смесь нагревают до температуры от 1670 до 1800°С и выдерживают при данных температурах от 5 до 8 часов.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 108.
20.06.2013
№216.012.4b44

Композиционный материал на основе кальцийфосфатного цемента для заполнения костных дефектов

Изобретение относится к области медицины и касается цементных материалов для пластической реконструкции поврежденных костных тканей. Композиционный материал выполнен на основе реакционно-твердеющей смеси порошков: трикальцийфосфата, содержащих частицы гидроксиапатита размером от 38 до 220 мкм....
Тип: Изобретение
Номер охранного документа: 0002484850
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4fa1

Пористый кальций-фосфатный цемент

Изобретение относится к медицине. Описан пористый кальций-фосфатный гидравлический цемент для восстановления костных тканей, содержащий порошок β-трикальцийфосфата, монокальцийфосфата моногидрата, затворяющую жидкость, представляющую собой 7-9%-ный водный раствор лимонной кислоты, а также...
Тип: Изобретение
Номер охранного документа: 0002485978
Дата охранного документа: 27.06.2013
10.10.2013
№216.012.732b

Способ термической обработки деформируемых магнитотвердых сплавов на основе системы железо-хром-кобальт

Изобретение относится к области металлургии, в частности к обработке магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности и т.д. Для повышения коэрцитивной силы изделий из...
Тип: Изобретение
Номер охранного документа: 0002495140
Дата охранного документа: 10.10.2013
27.12.2013
№216.012.8fe0

Брушитовый гидравлический цемент (варианты)

Изобретение относится к медицине. Описан брушитовый гидравлический цемент для восстановления костных тканей, содержащий порошок α-трикальцийфосфата и затворяющую жидкость, представляющую собой раствор фосфата магния в фосфорной кислоте, где цементный порошок содержит гранулы карбоната кальция...
Тип: Изобретение
Номер охранного документа: 0002502525
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.8fe1

Покрытие на имплант из титана и его сплавов и способ его приготовления

Изобретение относится к области медицины. Описано покрытие на имплант из титана и его сплавов, состоящее из двух слоев. Первый слой состоит из оксидов титана, в основном TiO, второй слой состоит из оксида алюминия гамма-модификации, общая толщина двухслойного покрытия составляет от 40 до 180...
Тип: Изобретение
Номер охранного документа: 0002502526
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9004

Способ приготовления катализатора для очистки отработавших газов двигателей внутреннего сгорания и катализатор, полученный этим способом

Изобретение относится к способам получения блочных катализаторов, катализаторам очистки отработавших газов (ОГ) двигателей внутреннего сгорания (ДВС). Описан способ приготовления катализатора для очистки ОГ ДВС, в котором для нанесения промежуточного покрытия и активной фазы используют водную...
Тип: Изобретение
Номер охранного документа: 0002502561
Дата охранного документа: 27.12.2013
10.02.2014
№216.012.9e48

Способ получения мезопористого наноразмерного порошка диоксида церия (варианты)

Изобретение относится к химической промышленности, к производству наноразмерных порошков оксидов металлов для мелкозернистой керамики широкого спектра. Способ получения порошка диоксида церия включает стадии: получение водного 0,05М раствора нитрата церия или ацетата церия, используя Се(NО)·6НO...
Тип: Изобретение
Номер охранного документа: 0002506228
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.b16d

Способ термической обработки магнитотвердых сплавов системы железо-хром-кобальт

Изобретение относится к области металлургии, в частности к производству магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности. Для повышения остаточной индукции сплав...
Тип: Изобретение
Номер охранного документа: 0002511136
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.b9ef

Способ переработки лопаритового концентрата

Изобретение относится к переработке лопаритового концентрата. Заявляемый способ пирометаллургической переработки лопаритового концентрата включает три этапа: восстановительный, плавильный и окислительный. Восстановительный этап включает углетермическое восстановление концентрата при...
Тип: Изобретение
Номер охранного документа: 0002513327
Дата охранного документа: 20.04.2014
20.05.2014
№216.012.c4fc

Высокоазотистая мартенситная никелевая сталь

Изобретение относится к области металлургии, а именно к высокопрочной мартенситной стали, используемой для изготовления высоконагруженных изделий криогенной техники. Сталь содержит следующие компоненты, в мас.%: углерод 0,02-0,06, хром 1,5-2,0, никель 8,5-10,5, азот 0,08-0,22, марганец 0,3-0,6,...
Тип: Изобретение
Номер охранного документа: 0002516187
Дата охранного документа: 20.05.2014
Показаны записи 1-10 из 21.
20.08.2014
№216.012.ec84

Матричный сплав на основе сурьмы для пропитки углеграфита

Изобретение относится к металлургии, а именно к получению армированных композиционных материалов методом пропитки, и может быть использовано для изготовления вкладышей подшипников скольжения, торцевых уплотнений. Матричный сплав для получения композиционного материала на основе сурьмы для...
Тип: Изобретение
Номер охранного документа: 0002526356
Дата охранного документа: 20.08.2014
20.01.2015
№216.013.1f97

Способ изготовления композиционных материалов

Изобретение относится к области металлургии, а именно к созданию композиционных материалов пропиткой пористого каркаса. Пористую заготовку погружают в расплав матричного сплава, вакуумной дегазацией, нагревом и воздействием избыточным давлением на заготовку за счет термического расширения...
Тип: Изобретение
Номер охранного документа: 0002539528
Дата охранного документа: 20.01.2015
27.06.2015
№216.013.58c2

Матричный сплав на основе свинца для получения композиционных материалов пропиткой

Изобретение относится к области металлургии, а именно к получению армированных композиционных материалов, и может быть использовано для получения пропиткой композиционных материалов с углеграфитовым каркасом, работающих в агрессивных средах в качестве торцовых уплотнителей, подшипников...
Тип: Изобретение
Номер охранного документа: 0002554263
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5e84

Литейный сплав на основе алюминия для получения пропиткой композиционных материалов с углеграфитовым каркасом

Изобретение относится к области металлургии, в частности для получения пропиткой композиционных материалов, имеющих пористый углеграфитовый каркас, и может быть использовано для получения вкладышей радиальных и упорных подшипников, направляющих втулок, пластин, поршневых колец, щеток, вставок...
Тип: Изобретение
Номер охранного документа: 0002555737
Дата охранного документа: 10.07.2015
20.12.2015
№216.013.9ac7

Матричный сплав на основе меди для получения композиционных материалов пропиткой углеграфитового каркаса

Изобретение относится к области получения литых композиционных материалов и может быть использовано для получения пропиткой композиционных материалов с углеграфитовым каркасом, которые работают в условиях трения в качестве электротехнических изделий, таких как токосъемники, вставки пантографов,...
Тип: Изобретение
Номер охранного документа: 0002571248
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9af6

Способ изготовления композиционных материалов

Изобретение относится к области металлургии, а именно к способу изготовления композиционных материалов пропиткой пористого каркаса, имеющих высокую электропроводность, антифрикционные свойства, стойкость в агрессивных средах. В расплав матричного сплава погружают пористую заготовку....
Тип: Изобретение
Номер охранного документа: 0002571295
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9af7

Композиционный материал, содержащий углеграфитовый каркас, пропитанный матричным сплавом на основе меди

Изобретение относится к области металлургии, в частности к получению армированных композиционных материалов, и может быть использовано для получения композиционных материалов, работающих в условиях трения в качестве электротехнических изделий, таких как токосъемники, вставки пантографов,...
Тип: Изобретение
Номер охранного документа: 0002571296
Дата охранного документа: 20.12.2015
27.05.2016
№216.015.42be

Способ получения биодеградируемого полимерного покрытия с контролируемым выходом лекарственного средства для малоинвазивной хирургии

Изобретение относится к медицине, а именно малоинвазивной медицине. Способ получения биодеградируемого полимерного покрытия для контролируемого выхода лекарственного средства включает растворение хитозана в кислотах, добавление лекарственного средства, окунание проволоки из никелида титана в...
Тип: Изобретение
Номер охранного документа: 0002585576
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.4370

Композиционный материал на основе сплавов системы sn-sb-cu и способ его получения

Изобретение относится к области металлургии, а именно к композиционным материалам (КМ) на основе сплавов оловянных баббитов и способам их получения, и может быть использовано для изготовления подшипников скольжения узлов трения в транспорте, турбиностроении, судостроении. Композиционный...
Тип: Изобретение
Номер охранного документа: 0002585588
Дата охранного документа: 27.05.2016
25.08.2017
№217.015.d2ba

Способ получения наноструктурной проволоки из сплава титан-никель-тантал с эффектом памяти формы

Изобретение относится к деформационнотермической обработке сплава TiNiTa с эффектом памяти формы и может быть использовано в медицине при изготовлении стентов. Способ получения наноструктурной проволоки из сплава титан-никель-тантал с эффектом памяти формы включает термомеханическую обработку...
Тип: Изобретение
Номер охранного документа: 0002621535
Дата охранного документа: 06.06.2017
+ добавить свой РИД