×
09.06.2018
218.016.5e6b

Результат интеллектуальной деятельности: Труба с повышенной деформационной способностью и высокой вязкостью сварного соединения и способ ее изготовления

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к производству электросварных прямошовных труб большого диаметра. Для обеспечения повышенной деформационной способности и высокой вязкости сварного соединения труб, предназначенных для транспортирования природного газа, трубу с толщиной стенки 15-40 мм получают из стального листа с пределом текучести свыше 480 МПа, содержащего, мас. %: углерод - 0,04-0,08, кремний - 0,10-0,30, марганец - 1,60-1,85, хром - не более 0,30, никель - 0,20-0,40, молибден -0,10-0,25, медь - не более 0,30, алюминий - не более 0,05, ниобий - 0,03-0,06, титан - 0,010-0,020, ванадий - не более 0,01, сера - не более 0,003, фосфор - не более 0,013, остальное - железо и неизбежные примеси, путем формовки стального листа в трубную заготовку, многодуговой сварки под слоем флюса продольных кромок трубной заготовки с внутренней и наружной поверхностей и экспандирования. Сварку проводят по режимам, обеспечивающим формирование в зоне термического влияния микроструктуры, состоящей по меньшей мере на 60% из мелкодисперсного игольчатого и реечного бейнита. 2 н.п. ф-лы, 3 табл.

Изобретение относится к области металлургии, а именно к производству электросварных прямошовных труб большого диаметра, имеющих повышенную деформационную способность и высокую вязкость сварного соединения, изготовленных из листов с пределом текучести свыше 480 МПа и предназначенных для транспортирования природного газа по магистральным трубопроводам высокого давления, в том числе в условиях районов повышенной подвижности грунтов, сейсмической активности и вечной мерзлоты.

Известна сварная стальная труба группы прочности Х70 и выше, характеризующаяся высокой ударной вязкостью при низких температурах и способ ее производства (патент РФ №2509171, С22С 38/14, В21С 37/08, опубл. 10.03.2014). Основной металл стального листа трубы включает, в мас. %, C - 0,010-0,080; Si - 0,01-0,50; Mn - 0,50-2,00; S - 0,0001-0,0050; Ti - 0,003-0,030; Mo - 0,05-1,00; B - 0,0003-0,0100; O - 0,0001-0,0080; N - 0,006-0,0118; P - максимум 0,050 или меньше; Al - максимум 0,008 или меньше, остальное Fe и неизбежные примеси. Средний размер первичных γ-зерен в зоне термического воздействия в стальном листе составляет 250 мкм или меньше, а первичные γ-зерна включают бейнит и внутризеренный бейнит. Для получения сварной трубы стальной лист толщиной 20-40 мм с заданным химическим составом формуют в трубную заготовку, предпочтительно применяют UOE-процесс, продольные кромки трубной заготовки сваривают дуговой сваркой под флюсом, проводят экспандирование и затем - термообработку сварного соединения при температуре от 300 до 600°C.

Недостатком аналога является то, что трубы не обладают требуемыми свойствами, а именно низкими значениями отношения предела текучести к пределу прочности и отсутствием на диаграмме растяжения площадки текучести, что не позволяет использовать их для строительства современных магистральных трубопроводов высокого давления, прокладываемых в районах повышенной сейсмической активности и вечной мерзлоты. Кроме того, при производстве труб необходимо проведение дополнительной операции термообработки сварного соединения, что снижает производительность и приводит к повышению стоимости продукции. При этом сварное соединение не обладает высоким уровнем механических свойств.

Наиболее близким техническим решением, принятым за прототип для двух объектов, является патент РФ №2331698, C22C 38/04, 38/58, C21D 8/02, 8/10, опубл. 20.08.2008 «Стальные листы для сверхвысокопрочных магистральных труб и сверхвысокопрочные магистральные трубы, обладающие прекрасной низкотемпературной ударной вязкостью, и способы их изготовления».

Магистральная труба получена из стального листа, изготовленного из стали со следующим содержанием компонентов, мас. %: углерод - 0,03-0,07; кремний - не более 0,6; марганец - 1,5-2,5; фосфор - не более 0,015; сера - не более 0,003; никель - 0,1-1,5; молибден - 0,15-0,60; ниобий - 0,01-0,10; титан - 0,005-0,030; алюминий - не более 0,06; один и более элементов из группы: бор, азот, ванадий, медь, хром, кальций, РЗМ и магний в необходимых количествах; железо - остальное и неизбежные примеси. Характеристики листа составляют: предел прочности в поперечном направлении 880÷4080 МПа; ударная вязкость на образцах с V-образным надрезом при температуре испытания минус 20°C не ниже 200 Дж; отношение предела текучести при общей деформации 0,2% к пределу прочности - не более 80% в продольном направлении. Микроструктура стального листа состоит в основном из вырожденного верхнего бейнита. Лист изготовлен из сляба, нагретого до температуры 1000÷1250°C, черновую прокатку проводили в области температуры рекристаллизации, чистовую прокатку - при температуре 900°C или ниже при суммарном обжатии не менее 75% и затем - охлаждение из аустенитной области со скоростью 1÷10°C/с до получения в центре толщины листа температуры 500°C или ниже. Микроструктура листа состоит из вырожденного верхнего бейнита в количестве более 70%.

Способ производства трубы включает формовку стального листа в трубную заготовку с помощью UO-процесса, сварку продольных кромок дуговой сваркой под флюсом и экспандирование. При этом характеристики трубы составляют: предел прочности в тангенциальном направлении 900÷1100 МПа; ударная вязкость на образцах с V-образным надрезом при температуре испытания минус 20°C не ниже 200 Дж.

Недостатками прототипа является то, что труба большого диаметра для магистральных трубопроводов высокого давления, изготовленная из листа, имеет микроструктуру вырожденного верхнего бейнита, что не обеспечивает высокой деформационной способности стали, характеризующейся отсутствием площадки текучести на диаграмме растяжения. Кроме того, отсутствие сведений о свариваемости стали свидетельствует о недостаточном контроле свойств сварного соединения, обеспечивающих равнопрочность сварного соединения и основного металла, либо об отсутствии такого контроля. Таким образом, трубы большого диаметра, изготовленные данным способом, не обладают требуемым уровнем свойств и не могут быть использованы для строительства магистральных газопроводов высокого давления в сложных геолого-климатических условиях.

Техническим результатом изобретения является обеспечение повышенной деформационной способности трубы большого диаметра и высокой вязкости сварного соединения трубы, изготовленной из листа и используемой для эксплуатации в магистральных трубопроводах высокого давления, в том числе в условиях районов повышенной подвижности грунтов, сейсмической активности и вечной мерзлоты.

Поставленная задача решается за счет того, что в трубе с повышенной деформационной способностью и высокой вязкостью сварного соединения для магистральных трубопроводов высокого давления с толщиной стенки 15-40 мм, полученной из стального листа, путем деформирования нагретого сляба, из стали, содержащей углерод, кремний, марганец, фосфор, серу, молибден, ниобий, титан, алюминий, никель, ванадий, медь, хром, согласно изобретению, труба получена из стального листа, изготовленного из стали, содержащей компоненты в следующем соотношении, мас. %:

углерод 0,04-0,08
кремний 0,10-0,30
марганец 1,60-1,85
фосфор не более 0,013
сера не более 0,003
молибден 0,10-0,25
ниобий 0,03-0,06
титан 0,010-0,020
алюминий не более 0,05
никель 0,20-0,40
ванадий не более 0,01
медь не более 0,30
хром не более 0,30
железо и неизбежные примеси остальное

полученного из сляба путем черновой прокатки при температуре 950÷1050°C с суммарным обжатием 40÷50% и охлаждением на воздухе до температуры 720÷800°C, последующей чистовой прокатки при температуре 700÷820°C до требуемой толщины листа с суммарным обжатием 75÷85%, ускоренным охлаждением со скоростью 20÷35°C/с до температуры 300÷500°C, а затем - охлаждением на воздухе до температуры не более 150°C, при этом лист имеет микроструктуру, состоящую из бейнита, полигонального феррита, а также «вторых фаз» в виде мартенсит-аустенитной составляющей и вырожденного перлита, а микроструктура в зоне термического влияния состоит по меньшей мере на 60% из мелкодисперсного игольчатого и реечного бейнита, размер первичного аустенитного зерна вблизи линии сплавления в зоне крупного зерна составляет не более 200 мкм, при этом характеристики трубы в продольном направлении составляют: предел текучести при общей деформации 0,5% - 480÷580 МПа, предел прочности - 560÷700 МПа, отношение предела текучести при общей деформации 0,5% к пределу прочности - не более 88%, относительное удлинение - не менее 20%, характеристики трубы в поперечном направлении составляют: предел текучести при общей деформации 0,5% - 480÷590 МПа, предел прочности - 590÷710 МПа, отношение предела текучести при общей деформации 0,5% к пределу прочности - не более 86%, относительное удлинение - не менее 20%, ударная вязкость на образцах с V-образным надрезом при температуре испытания минус 40°C - не ниже 250 Дж/см2, критическое раскрытие в вершине трещины при температуре испытания минус 20°C - не менее 0,40 мм при отсутствии площадки текучести на диаграмме растяжения в продольном и поперечном направлениях, а характеристики сварного соединения составляют: предел прочности - 590÷710 МПа, ударная вязкость на поперечных образцах с V-образным надрезом по линии сплавления составляет не менее 100 Дж/см2 при температуре испытания минус 40°C, критическое раскрытие в вершине трещины на поперечных образцах с надрезом по линии сплавления составляет не менее 0,20 мм при температуре испытания минус 20°C.

Поставленная задача решается также за счет того, что в способе производства труб с повышенной деформационной способностью и высокой вязкостью сварного соединения для магистральных трубопроводов высокого давления, включающем формовку стального листа в трубную заготовку при совпадении направления прокатки стального листа с продольным направлением трубы, многодуговую сварку под слоем флюса продольных кромок трубной заготовки с внутренней и наружной поверхностей и экспандирование, согласно изобретению, трубу изготавливают из стального листа, полученного из стали, имеющей химический состав по п. 1, при этом лист имеет микроструктуру, состоящую из бейнита, полигонального феррита, а также «вторых фаз» в виде мартенсит-аустенитной составляющей и вырожденного перлита, характеристики листа в продольном направлении составляют: предел текучести при общей деформации 0,5% - 480÷570 МПа, предел прочности - 560÷690 МПа, отношение предела текучести при общей деформации 0,5% к пределу прочности - не более 88%, относительное удлинение - не менее 22%, характеристики листа в поперечном направлении составляют: предел текучести при общей деформации 0,5% - 500÷590 МПа, предел прочности - 590÷700 МПа, отношение предела текучести при общей деформации 0,5% к пределу прочности - не более 85%, относительное удлинение - не менее 22%, ударная вязкость на образцах с V-образным надрезом при температуре испытания минус 40°C - не ниже 250 Дж/см2, критическое раскрытие в вершине трещины при температуре испытания минус 20°C - не ниже 0,40 мм при отсутствии площадки текучести на диаграмме растяжения в продольном и поперечном направлениях, после формовки стального листа осуществляют сварку продольных кромок трубной заготовки по режимам, обеспечивающим формирование в зоне термического влияния микроструктуры, состоящей по меньшей мере на 60% из мелкодисперсного игольчатого и реечного бейнита, при этом размер первичного аустенитного зерна вблизи линии сплавления в зоне крупного зерна составляет не более 200 мкм.

Молибден и марганец в заявленных пределах обеспечивают устойчивость переохлажденного аустенита для образования низкотемпературных продуктов фазового превращения, что позволяет достигнуть заданного диапазона прочностных свойств.

Ниобий в заявленных пределах обеспечивает выделение дисперсных частиц (карбидов, нитридов, карбонитридов) на всех этапах контролируемой прокатки, что позволяет уменьшить размер зерна аустенита и получить требуемый уровень прочностных и пластических свойств.

Хром и медь в заявленных пределах повышают прочность феррита и обеспечивают получение требуемого комплекса прочностных свойств.

Никель в заявленных пределах одновременно увеличивает прочностные и вязкие свойства.

Титан в заявленных пределах позволяет связать азот и кислород, способствует сдерживанию роста аустенитного зерна.

Кремний и алюминий являются неизбежными технологическими примесями и вводятся в трубную сталь для ее раскисления.

Химические элементы в заявленных пределах обеспечивают заданные прочностные свойства и удовлетворительную свариваемость стали. При воздействии на сталь термического цикла сварки они сдерживают рост аустенитного зерна и способствуют формированию мелкозернистой микроструктуры в зоне термического влияния, состоящей из игольчатого и реечного бейнита. Данный тип микроструктуры обеспечивает высокие вязкие свойства сварного соединения.

Трубы для магистральных трубопроводов высокого давления изготавливают стального листа толщиной 15-40 мм. Приведенный режим изготовления стального листа позволяет получить лист с двухфазной микроструктурой, состоящей в основном из бейнита и полигонального феррита, а также «вторых фаз» в виде мартенсит-аустенитной составляющей и вырожденного перлита, что обеспечивает получение требуемого уровня прочностных и пластических характеристик и повышенную деформационную способность. Для этого нагрев сляба под прокатку осуществляют до температуры 1100÷1200°C, при которой обеспечивается растворение максимально возможного количества карбидов ниобия, ванадия и титана. При этом наиболее эффективно сдерживается рост зерна аустенита и происходит формирование дефектов кристаллического строения за счет выделения дисперсных частиц при проведении прокатки.

Прокатку сляба выполняют в контролируемом режиме в две стадии -черновую и чистовую при суммарном обжатии не менее 75%. При контролируемой прокатке происходит уменьшение размера зерна аустенита и формирование дефектов кристаллического строения (точечных, линейных и поверхностных), что приводит к измельчению размера субзерна конечной микроструктуры и, как следствие, к улучшению свойств готового проката.

Черновую стадию прокатки проводят выше температуры рекристаллизации аустенита, при температуре 950÷1050°C с суммарном обжатием сляба 40÷50%. При этом рост зерна аустенита, обусловленный эффектом возврата и рекристаллизацией, сдерживается выделением дисперсных частиц по его границам, и происходит его измельчение. При температуре черновой стадии прокатки ниже 950°C не происходит рекристаллизации аустенита (измельчения зерна аустенита), а нагрев до температуры выше 1050°C обеспечивает рост зерен аустенита.

Чистовую стадию прокатки выполняют до требуемой толщины листа с суммарным обжатием 75÷85% при температуре 700÷820°C. При этом перед проведением чистовой прокатки раскат охлаждают на воздухе до температуры 720÷800°C. При чистовой прокатке происходит дальнейшее измельчение зерна аустенита путем «раскатывания» и формирования внутри него дефектов кристаллического строения, что позволяет увеличить суммарную площадь границ зерна на единицу объема. В процессе чистовой прокатки зерна аустенита приобретают «блинообразную» форму. При температуре чистовой стадии прокатки ниже 700°C листовой прокат будет иметь низкие вязкие свойства, а при температуре выше 820°C снизится эффективность ускоренного охлаждения и не будет достигнут требуемый комплекс механических свойств.

Заключительной технологической операцией изготовления листа является ускоренное охлаждение со скоростью 20÷35°C/с для смещения превращения аустенита в сторону низких температур с образованием в структуре продуктов промежуточного и мартенситного превращений. Интервал температур начала и конца ускоренного охлаждения 300÷500°C оказывает определяющее влияние на свойства и параметры микроструктуры листа, характеризующейся образованием достаточного объема бейнита, необходимого для обеспечения заданного уровня механических свойств. При несоблюдении указанного режима ускоренного охлаждения не будет достигнут требуемый комплекс свойств. Последующее медленное охлаждение листа на воздухе до температуры не более 150°C позволяет избежать образования флокенов.

Производство трубы включает формовку стального листа в трубную заготовку при совпадении направления прокатки стального листа с продольным направлением трубы, многодуговую сварку под слоем флюса продольных кромок трубной заготовки с внутренней и наружной поверхностей и экспандирование.

Высокая вязкость сварного соединения обеспечивается высокой вязкостью зоны термического влияния (ЗТВ). Вязкость ЗТВ определяется параметрами ее микроструктуры, которые, в свою очередь, определяются химическим составом основного металла, максимальной температурой его нагрева и скоростью охлаждения. ЗТВ характеризуется наличием сразу нескольких типов микроструктур, что обуславливает неоднородность ее свойств. Для получения высокой вязкости сварного соединения сварку продольных кромок трубной заготовки проводят по режимам, обеспечивающим формирование в ЗТВ микроструктуры, состоящей по меньшей мере на 60% из мелкодисперсного игольчатого и реечного бейнита, при этом размер первичного аустенитного зерна вблизи линии сплавления в зоне крупного зерна составляет не более 200 мкм. При формировании в ЗТВ другого типа микроструктуры не удается обеспечить высокой вязкости сварного соединения.

Механические свойства участков ЗТВ, образованных в результате термического цикла сварки, существенно ниже, чем у основного металла труб. Структура сварного шва более однородная и при верном выборе сварочных материалов обладает удовлетворительными механическими свойствами, поэтому ЗТВ является наиболее ослабленным участком сварного соединения.

Полученная труба имеет следующие характеристики: в продольном направлении: предел текучести при общей деформации 0,5% составляет 480÷580 МПа, предел прочности - 560÷700 МПа, отношение предела текучести при общей деформации 0,5% к пределу прочности - не более 88%), относительное удлинение - не менее 20%;

в поперечном направлении: предел текучести при общей деформации 0,5% составляет 480÷590 МПа, предел прочности - 590÷710 МПа, отношение предела текучести при общей деформации 0,5% к пределу прочности - не более 86%, относительное удлинение - не менее 20%, ударная вязкость на образцах с V-образным надрезом при температуре испытания минус 40°C - не ниже 250 Дж/см2, критическое раскрытие в вершине трещины при температуре испытания минус 20°C - не менее 0,40 мм при отсутствии площадки текучести на диаграмме растяжения в продольном и поперечном направлениях;

характеристики сварного соединения: предел прочности составляет 590÷710 МПа, ударная вязкость на поперечных образцах с V-образным надрезом по линии сплавления - не менее 100 Дж/см2 при температуре испытания минус 40°C, критическое раскрытие в вершине трещины на поперечных образцах с надрезом по линии сплавления - не менее 0,20 мм при температуре испытания минус 20°C.

Приведенные характеристики трубы соответствуют классу прочности К60 по системе классификации трубных сталей, принятой в РФ. При этом пониженное соотношение предела текучести при общей деформации 0,5% к пределу прочности, а также отсутствие на диаграмме растяжения площадки текучести повышают сопротивление основного металла трубы локализации пластических деформаций («Strain Capacity of High-Strength Line Pipes» Suzuki Nobuhisa, Kondo Joe, Shimamura Junji // JFE Technical Report No. 12, Oct. 2008), т.е. к образованию гофра, что увеличивает сопротивление трубы изгибу и позволяет использовать эти трубы для магистральных трубопроводов высокого давления для транспортирования газа в районах повышенной сейсмичности и подвижности грунтов.

Изготовление труб большого диаметра с повышенной деформационной способностью и высокой вязкостью сварных соединений по предлагаемому способу обеспечивает получение сварных соединений со свойствами выше, чем стандартный уровень требований к сварным соединениям труб К60 (ISO 3183:2012, API Specification 5L, СТО Газпром 2-4.1-713-2013), что позволяет обеспечить равнопрочность сварного соединения и основного металла труб.

Способ производства труб был опробован в трубосварочном цехе №3 АО «Волжский трубный завод» (далее - АО «ВТЗ»).

В условиях ОАО «ММК» было выплавлено пять опытных плавок, одна из которых имела химический состав, соответствующий заявляемому (сталь «А»), а другие - типичный химический состав для стали К60 (стали «Б», «В», «Г» и «Д»). Химический состав выплавленных сталей и стали по прототипу приведен в таблице 1. Опытные плавки были разлиты на слябы, которые прокатали на стане «5000» ОАО «ММК» по предлагаемому режиму для стали «А» и по применяемым режимам на производстве для сталей «Б», «В», «Г» и «Д» в стальные листы размером 32×4500×12000 мм (толщина×ширина×длина). Режимы прокатки слябов, механические свойства и параметры микроструктуры полученных стальных листов приведены в таблице 2.

Как видно из таблиц 1 и 2, различный химический состав стали и режимы изготовления листа обеспечивают получение разного типа микроструктуры и, как следствие, разных механических свойств. При этом только стальной лист, полученный из стали с химическим составом «А» (таблица 2), обладает комплексом механических свойств, обеспечивающим повышенную деформационную способность стали, а именно имеет низкое отношением предела текучести при общей деформации 0,5% к пределу прочности, отсутствие на диаграмме растяжения площадки текучести, а также имеет двухфазную микроструктуру, состоящую из бейнита и полигонального феррита.

Из стальных листов «А» и «Б» были изготовлены трубы большого диаметра размером 1420×32 мм в условиях трубосварочного цеха №3 АО «ВТЗ», для этого осуществляли формовку листа в трубную заготовку, многодуговую сварку под слоем флюса продольных кромок трубной заготовки и затем экспандирование трубы. Для обеспечения высоких вязких свойств сварного соединения и зоны термического влияния сварку внутреннего и наружного швов проводили по режимам с низкими значениями погонной энергии, обеспечивающим формирование в зоне термического влияния микроструктуры, состоящей по меньшей мере на 60% из мелкодисперсного игольчатого и реечного бейнита, при этом размер первичного аустенитного зерна вблизи линии сплавления в зоне крупного зерна составляет не более 200 мкм. В таблице 3 приведены механические свойства и параметры микроструктуры основного металла и сварного соединения изготовленных труб из стали с химическим составом «А» и «Б» и труб, изготовленных по прототипу.

Для проверки эксплуатационной надежности были проведены полномасштабные испытания изготовленных труб диаметром 1420 мм с толщиной стенки 32,0 мм давлением жидкости до разрушения. Испытания проводили с нанесением искусственного дефекта по сварному соединению. Испытания показали высокую эксплуатационную надежность и вязкость сварного соединения изготовленных труб. Разрушение происходило при давлении, намного превышающем давление эксплуатации, а трещина не вышла за пределы нанесенного искусственного дефекта, т.е. разрушение носило локальный характер.

Из таблиц 2 и 3 видно, что труба, изготовленная из стального листа из стали с химическим составом «А» по предлагаемому способу, обладает комплексом механических свойств, обеспечивающим повышенную деформационную способность и высокие вязкие свойства сварного соединения труб, что позволяет эксплуатировать их в магистральных трубопроводах высокого давления, в том числе в условиях низких температур и повышенной сейсмической активности.

Трубы, изготовленные по прототипу и из стали «Б» (таблица 3), не обладают комплексом механических свойств, обеспечивающим повышенную деформационную способность стали и высокую вязкость сварного соединения трубы.

Полученная труба с повышенной деформационной способностью и высокой вязкостью сварного соединения, изготовленная из стального листа с предлагаемым химическим составом стали, обладает комплексом механических свойств, обеспечивающим равнопрочность сварного соединения и основного металла, и может быть использована для транспортирования природного газа по магистральным трубопроводам высокого давления в районах со сложными геолого-климатическими условиями. Применение предлагаемых труб позволит уменьшить металлоемкость газопровода и сократить затраты на строительство.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 42.
10.02.2013
№216.012.2317

Способ комбинированной высадки концов труб

Изобретение относится к обработке металлов давлением, а именно к трубному производству, и может быть использовано при производстве нефте- и газопромысловых труб с высаженными концами из различных металлов и сплавов. Комбинированную высадку концов труб с получением преимущественно удлиненной...
Тип: Изобретение
Номер охранного документа: 0002474485
Дата охранного документа: 10.02.2013
10.07.2013
№216.012.537d

Оправочный узел непрерывного трубопрокатного стана

Изобретение предназначено для повышения эксплуатационного ресурса оправочного узла непрерывного трубопрокатного стана. Оправочный узел включает оправку, имеющую цилиндрическую и коническую части с выполненным на одном из торцев цилиндрической части глухим резьбовым отверстием для сочленения...
Тип: Изобретение
Номер охранного документа: 0002486976
Дата охранного документа: 10.07.2013
10.08.2013
№216.012.5c2f

Способ винтовой прошивки литой заготовки

Изобретение предназначено для повышения стойкости инструмента и качества внутренней поверхности прокатываемых труб из литой и непрерывно-литой заготовки в косовалковом прошивном стане. Способ включает подачу нагретой заготовки в рабочие валки, имеющие входной конус, пережим и выходной конус,...
Тип: Изобретение
Номер охранного документа: 0002489220
Дата охранного документа: 10.08.2013
10.08.2013
№216.012.5c30

Способ производства горячекатаных труб

Изобретение предназначено для повышения производительности трубопрокатных агрегатов, качества поверхности и точности бесшовных горячекатаных труб из непрерывно-литой, а также катаной заготовок, преимущественно на трубопрокатных агрегатах с автоматическими раскатными станами. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002489221
Дата охранного документа: 10.08.2013
27.10.2013
№216.012.78d0

Технологический инструмент косовалкового прошивного стана

Изобретение предназначено для улучшения качества поверхности гильз, получаемых на косовалковом прошивном стане для производства горячекатаных труб. Технологический инструмент косовалкового прошивного стана содержит валки, включающие конус прошивки и конус раскатки, разделенные пережимом,...
Тип: Изобретение
Номер охранного документа: 0002496590
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7cc4

Оправочный узел стана винтовой прокатки

Изобретение предназначено для увеличения стойкости оправок, применяемых при прошивке заготовок на станах винтовой прокатки с охлаждаемыми оправками. Оправочный узел стана винтовой прокатки содержит охлаждаемую оправку с несквозной внутренней поверхностью. Исключение повреждения внутренней...
Тип: Изобретение
Номер охранного документа: 0002497613
Дата охранного документа: 10.11.2013
27.01.2014
№216.012.9aeb

Способ изготовления горячекатаных бесшовных труб

Изобретение относится к трубопрокатному производству, а именно к способу изготовления горячекатаных бесшовных труб с использованием материалов, предназначенных для обработки внутренней поверхности гильз. Способ включает обработку внутренней поверхности гильзы путем вдувания смазочного материала...
Тип: Изобретение
Номер охранного документа: 0002505365
Дата охранного документа: 27.01.2014
20.06.2014
№216.012.d4e8

Трубное резьбовое соединение и способ его выполнения

Изобретение относится к трубному резьбовому соединению с покрытием и может быть использовано для защиты резьб резьбовых элементов, применяемых для соединения труб при добыче и транспортировании углеводородов. Трубное резьбовое соединение состоит из элементов с наружной и внутренней резьбой,...
Тип: Изобретение
Номер охранного документа: 0002520275
Дата охранного документа: 20.06.2014
10.10.2014
№216.012.fce9

Калибр трубопрокатного стана

Изобретение относится к трубопрокатному производству, преимущественно к калибровке валков непрерывных трубопрокатных станов и может быть использовано при прокатке труб в двух- и многовалковых калибрах. Калибр трубопрокатного стана образован ручьями валков, профиль поперечного сечения валка...
Тип: Изобретение
Номер охранного документа: 0002530591
Дата охранного документа: 10.10.2014
20.11.2014
№216.013.089a

Способ изготовления баллона

Изобретение относится к комбинированным баллонам высокого давления из композитных материалов и может быть использовано при изготовлении облегченных баллонов, применяемых на транспорте и для перевозки газов. Способ изготовления баллона включает изготовление лейнера из закаленного стекла, намотку...
Тип: Изобретение
Номер охранного документа: 0002533603
Дата охранного документа: 20.11.2014
Показаны записи 1-10 из 58.
27.05.2013
№216.012.4485

Способ металлизации сидеритового сырья с получением гранулированного чугуна и железистомагнезиального шлака

Изобретение относится к области металлургии и может быть использовано при производстве гранулированного чугуна и комплексного флюса для сталеплавильного производства. Изобретение решает задачу повышения эффективности производства гранулированного чугуна из сидеритового сырья за счет оптимизации...
Тип: Изобретение
Номер охранного документа: 0002483118
Дата охранного документа: 27.05.2013
10.07.2013
№216.012.537d

Оправочный узел непрерывного трубопрокатного стана

Изобретение предназначено для повышения эксплуатационного ресурса оправочного узла непрерывного трубопрокатного стана. Оправочный узел включает оправку, имеющую цилиндрическую и коническую части с выполненным на одном из торцев цилиндрической части глухим резьбовым отверстием для сочленения...
Тип: Изобретение
Номер охранного документа: 0002486976
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.5479

Секция теплоизолированной колонны

Изобретение относится к добыче нефти и газа и может быть использовано при строительстве колонн для нагнетания теплоносителя в пласт при добыче тяжелой нефти. Секция содержит внутреннюю трубу, выполненную с усилениями на концах, расположенные на ней центраторы, изоляцию и газопоглотители. Также...
Тип: Изобретение
Номер охранного документа: 0002487228
Дата охранного документа: 10.07.2013
10.08.2013
№216.012.5c2f

Способ винтовой прошивки литой заготовки

Изобретение предназначено для повышения стойкости инструмента и качества внутренней поверхности прокатываемых труб из литой и непрерывно-литой заготовки в косовалковом прошивном стане. Способ включает подачу нагретой заготовки в рабочие валки, имеющие входной конус, пережим и выходной конус,...
Тип: Изобретение
Номер охранного документа: 0002489220
Дата охранного документа: 10.08.2013
10.08.2013
№216.012.5c30

Способ производства горячекатаных труб

Изобретение предназначено для повышения производительности трубопрокатных агрегатов, качества поверхности и точности бесшовных горячекатаных труб из непрерывно-литой, а также катаной заготовок, преимущественно на трубопрокатных агрегатах с автоматическими раскатными станами. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002489221
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.607c

Способ металлизации железорудного сырья с получением гранулированного чугуна

Изобретение относится к металлургии и может быть использовано для повышения эффективности производства гранулированного чугуна. Способ включает дозирование железорудного сырья, твердого топлива, связующего и флюсующих добавок, смешивание и окомкование исходной шихты, сушку и термическую...
Тип: Изобретение
Номер охранного документа: 0002490332
Дата охранного документа: 20.08.2013
10.09.2013
№216.012.66fa

Способ подготовки высокопрочных труб нефтяного сортамента с температурой 500-720°c после термообработки под нарезку резьбы

Изобретение относится к трубопрокатному производству и может быть использовано при производстве высокопрочных труб нефтяного сортамента в линиях термических отделений трубопрокатных цехов способом подготовки обсадных и насосно-компрессорных труб под нарезку резьбы с температурой 500-720°С после...
Тип: Изобретение
Номер охранного документа: 0002492009
Дата охранного документа: 10.09.2013
27.10.2013
№216.012.78d0

Технологический инструмент косовалкового прошивного стана

Изобретение предназначено для улучшения качества поверхности гильз, получаемых на косовалковом прошивном стане для производства горячекатаных труб. Технологический инструмент косовалкового прошивного стана содержит валки, включающие конус прошивки и конус раскатки, разделенные пережимом,...
Тип: Изобретение
Номер охранного документа: 0002496590
Дата охранного документа: 27.10.2013
10.12.2013
№216.012.8978

Способ изготовления секции теплоизолированной колонны

Изобретение относится к добыче нефти и может быть использовано при изготовлении колонн для нагнетания теплоносителя в нефтяной пласт. Способ включает коаксиальное размещение внутренней трубы с изоляцией, газопоглотителями и центраторами в наружной трубе. Наружная труба снабжена герметичным...
Тип: Изобретение
Номер охранного документа: 0002500874
Дата охранного документа: 10.12.2013
27.01.2014
№216.012.9aeb

Способ изготовления горячекатаных бесшовных труб

Изобретение относится к трубопрокатному производству, а именно к способу изготовления горячекатаных бесшовных труб с использованием материалов, предназначенных для обработки внутренней поверхности гильз. Способ включает обработку внутренней поверхности гильзы путем вдувания смазочного материала...
Тип: Изобретение
Номер охранного документа: 0002505365
Дата охранного документа: 27.01.2014
+ добавить свой РИД