×
09.06.2018
218.016.5e37

Результат интеллектуальной деятельности: Магнетронная распылительная головка

Вид РИД

Изобретение

Аннотация: Изобретение относится к магнетронной распылительной головке. Охлаждаемая магнитная система магнетронной распылительной головки состоит из магнитов и магнитопровода и оснащена каналами охлаждения. Магнитная система зафиксирована в корпусе криволинейной формы. Верхняя часть магнитопровода выполнена конической. Устройство фиксации выполнено в виде полой проводящей трубы, соединенной с корпусом, на которой снаружи установлен диэлектрический держатель. Внутри трубы размещены каналы охлаждения магнитной системы и трубопровод подачи электролита и газа. Корпус оснащен сквозным каналом, который, в свою очередь, соединен с трубопроводом подачи электролита и газа. Наружная поверхность корпуса сформирована с мелкоразмерным рельефом поверхности от 0,2 до 10 мм. Отрицательный полюс блока питания соединен с устройством фиксации, образуя катод, а положительный с изделием, образуя анод. Технический результат заключается в повышении качества поверхности, а также расширении технологических возможностей обработки изделия. 2 ил., 1 табл.

Изобретение относится к области электрохимической обработки деталей, может быть использовано в энергомашиностроении для обработки рабочих и направляющих турбинных лопаток.

Известна «Магнетронная распылительная система с протяженным катодом» [RU патент №2575018], содержащая следующие конструктивные элементы: Магнетронная распылительная система содержит вакуумную камеру, анод, протяженные катод, выполненный в виде полого цилиндра с возможностью вращения, и магнитную систему, причем магнитная система состоит из внутренней части магнитной системы, неподвижно расположенной внутри катода вдоль его оси и состоящей из магнитопровода с тремя параллельными рядами постоянных магнитов, периферийные ряды магнитов замкнуты на концах концевыми магнитами и имеют полярность, обратную полярности центрального ряда магнитов, и внешней части магнитной системы, которая неподвижно расположена равноудаленно от внутренней части магнитной системы, охватывая катод со стороны, противоположной зоне распыления, и состоит из магнитопровода с двумя параллельными рядами постоянных магнитов, имеющих полярность, одинаковую с полярностью периферийных рядов магнитов внутренней части магнитной системы.

Устройство работает в низком вакууме. Устройство стационарно закреплено. Устройство распыляет только поверхность катода. При атмосферном давлении и применении в электрохимической обработке устройство имеет повышенное дугообразование. Устройство не обеспечивает возможности обработки сложных криволинейных поверхностей.

Известен «Магнетрон» [RU патент №2218450], выбранный за прототип. Магнетрон содержит мишень-катод, полый цилиндрический анод, установленный на диэлектрическом держателе и имеющий внешнюю проточку на краю, обращенном к катоду, образующую с диэлектрическим держателем кольцевую, вертикальную по отношению к катоду щель. Охлаждаемая магнитная система состоит из магнитов и магнитопровода, Система размещена с нерабочей стороны мишени. Устройство прижимает мишень к магнитной системе. Между мишенью и магнитной системой установлена немагнитная мембрана, выполненная профилированной с углублением, в котором размещена мишень, при этом магнитопровод снабжен каналами для охлаждения и размещен вплотную к мембране. При атмосферном давлении и подачи только инертного газа в устройство оно не выполняет функции распыления катода мишени, имеет хаотичное дугообразование между поверхностью катод - мишени и анодом - изделием. При этом преимущественно разрушается поверхность анода - изделия. Таким образом, качество обработки изделия является достаточно низким. Магнетрон имеет плоскую поверхность катод - мишени и имеет ограниченную область использования для обработки сложных криволинейных поверхностей.

Технической проблемой является повышение качества обработки поверхности за счет снижения дугообразования, а также расширение технологических возможностей головки за счет обработки различных поверхностей. Для решения технической проблемы предложена магнетронная распылительная головка. Магнетронная распылительная головка содержит магнитную систему, которая состоит из магнитов и магнитопровода. Система оснащена каналами охлаждения. При этом магнитная система выполнена с габаритами ∅3-110 мм. Верхняя часть магнитопровода имеет коническую поверхность. Магнитная система зафиксирована в корпусе криволинейной формы. Габариты криволинейного корпуса составляют ∅5-120 мм. Корпус соединен с устройством фиксации, которое выполнено в виде проводящей полой трубы. Снаружи полой трубы зафиксирован диэлектрический держатель для удержания в схвате манипулятора, узла перемещения станка с ЧПУ, промышленного робота. Внутри трубы размещены каналы охлаждения магнитной системы и трубопровод подачи электролита и газа. Корпус головки оснащен сквозным каналом, соединенным с трубопроводом. Наружная поверхность корпуса сформирована с мелкоразмерным рельефом поверхности. Высота рельефа поверхности составляет от 0,2 до 10 мм. Устройство фиксации соединено с отрицательным полюсом блока питания и вместе с корпусом образует катод. Поверхность корпуса головки является катод - мишенью. Анодом для магнетронной распылительной головки является обрабатываемое изделие, соединенное с положительным полюсом источника питания.

Магнитопровод в верхней части выполнен коническим и конструктивно необходим для формирования магнитного поля не только на нижней поверхности катода - мишени, но и на боковых поверхностях корпуса криволинейной формы, что позволяет формировать зону плазменного разряда практически в любой точке криволинейного корпуса, что позволяет обрабатывать изделия сложной криволинейной формы. Это существенно расширяет технологические возможности головки.

Наличие конструктивных элементов в виде сквозного канала и трубопровода соединенных между собой позволяет подводить в межэлектродный промежуток смесь электролита и газа. Под межэлектродным промежутком понимается пространство между поверхностью головки - катода и поверхностью анода - изделия. Подвод в зону межэлектродного промежутка электролита формирует электролитическую ячейку, в которой возможно возникновение парогазовой оболочки, многоканального разряда и объемного плазменного разряда при атмосферном давлении. Подвод в зону разряда дополнительно инертного газа стабилизирует процесс формирования многоканального разряда и объемного плазменного разряда. Благодаря этому в случае бомбардировки обрабатываемой поверхности анода - изделия ионами инертного газа преобладает процесс распыления атомов поверхностного слоя анода - изделия и ионов адсорбированных на поверхности анода-изделия над процессом адсорбции поверхностью ионов электролитной плазмы, ее перезарядке и дальнейшему формированию запирающего слоя с высоким сопротивлением.

Наличие мелкоразмерного рельефа на поверхности головки снижает неравномерность напряженности электрического поля в области между поверхностью головки - катода и поверхностью анода - изделия и приводит к уменьшению вероятности непредсказуемого стекания дугового разряда с гладкой, плоской поверхности катод - мишени на поверхность изделия, что приводит к повышению качества обработки изделия.

Криволинейная форма корпуса магнетронной распылительной головки позволяет обрабатывать не только плоские поверхности, но и изменяющиеся в трех координатах, в том числе поверхности, имеющие вертикальную стенку, и обратный уклон.

Совокупность отличительных признаков является существенной т.к. позволяет повысить качество обрабатываемой поверхности и расширить технологические возможности головки за счет обработки большего числа поверхностей.

Наружная поверхность криволинейного корпуса выполнена с мелкоразмерным рельефом поверхности от 0,2 до 10 мм для снижения дугообразования между катодом - головкой и анодом - изделием и повышения качества обрабатываемой поверхности. Размеры мелкоразмерного рельефа поверхности конструктивно пропорциональны размеру магнетронной распылительной головки для удовлетворения условия, при котором площадь катода должна быть от двух и более раз больше площади зоны обработки анода. Минимальный мелкоразмерный профиль составляет 0,2 мм. При величине профиля, меньшей 0,2 мм, имеет место повышенное дугообразование между катодом и анодом. Поверхностный размер рельефа, больший 10 мм, является недостаточно жестким, не гарантирует равномерное положение частей профиля при наклоне и приводит к изменению соотношения площадей электродов, ведет к повышенному дугообразованию и ухудшает качество поверхности.

Минимальный размер корпуса соответствует конструктивным размерам внутренних радиусов турбинных лопаток (хвостовики, радиусные переходы), максимальные размеры магнитной системы пропорциональны габаритным размерам больших направляющих и рабочих лопаток. Это позволяет в широком диапазоне обрабатывать различные криволинейные поверхности турбинных лопаток. Уменьшение габаритов криволинейного корпуса менее 5 мм вызывает трудности с изготовлением и компоновкой устройства, возрастание размеров более 120 мм ведет к увеличению веса магнетронной распылительной головки, требует применения станков и систем перемещения повышенной жесткости и несоизмеримо для обработки поверхности большей номенклатуры турбинных лопаток. Размеры магнитной системы изменяются в широких пределах ∅3-110 мм, и пропорциональны размерам криволинейного корпуса. Уменьшение магнитной системы менее ∅3 ведет к трудности изготовления миниатюрных магнитопроводов. Увеличение магнитной системы более ∅110 мм ведет к выбору нестандартных магнитов имеющих значительно более высокую стоимость.

Магнетронная распылительная головка содержит магнитную систему 1, состоящую из магнитов 2 и магнитопровода 3, оснащенную каналами охлаждения 4, диэлектрический держатель 5, корпус 6 с устройством фиксации 7 и блок питания 8, трубопровод подачи электролита и газа 9, сквозной канал 10, наружная поверхность корпуса 6 сформирована с мелкоразмерным рельефом поверхности 11 (Фиг. 1).

Магнетронная распылительная головка работает следующим образом. Магнетронная распылительная головка при помощи диэлектрического держателя закрепляется в схвате механизма перемещения. Перемещение головки производится в соответствии с заданной программой. Для предотвращения перегрева охлаждаемую магнитную систему 1 через каналы охлаждения 4 подключают к магистрали проточной воды постоянного давления. Проточная вода охлаждает магниты 2 и магнитопровод 3, чем компенсирует тепловой поток, формирующийся на корпусе криволинейной формы 6 вследствие разряда. Через сквозной канал 10 соединенный с трубопроводом подачи электролита и газа 9 подают раздельно или вместе солевой раствор (до 15% соли) и инертный газ (Ar и др.).

При подключении к отрицательному полюсу блока питания 8 устройства фиксации 7 связанного с корпусом криволинейной формы 6 и изделия подключенного к положительному полюсу между корпусом 6 и поверхностью изделия-анода формируется замкнутый проводящий межэлектродный промежуток. В момент подачи напряжения в межэлектродном промежутке возникает движение заряженных частиц и формируется, последовательно с увеличением напряжения от 0-500 В парогазовая оболочка, многоканальный поверхностный и затем объемный разряд, на которые дополнительно накладываются магнитные поля магнитной системы. Магнитная система 1 формирует вокруг корпуса криволинейной формы 6 арочные магнитные поля. Арочное магнитное поле создает магнитную ловушку для электронов электролитно-газовой плазмы. С увеличением напряжения в межэлектродном промежутке происходит локализация плазменного разряда и повышение степени ионизации частиц электролитно-газовой плазмы. Атомы инертного газа, участвуя в процессе формирования разряда, повышают степень ионизации плазмы и повышают скорость распыления анода - изделия. Это приводит к удалению запирающего слоя, и снижает вероятность осаждения и закрепления адсорбированных газов и ионов. Мелкоразмерный рельеф поверхности 11 корпуса криволинейной формы 6 приводит к снижению общей напряженности и повышению равномерности электрического поля между катодом-головкой и анодом-изделием. Заряд малой мощности равномерно стекает с каждого отдельного рельефного выступа, не давая накапливаться заряду большого потенциала и стекания в виде дугового разряда на поверхность. При этом почти на всем диапазоне вольт - амперной характеристики наблюдается устойчивый процесс обработки поверхности анода - изделия. Это ведет к повышению качества поверхности анода - изделия, чему соответствуют параметры шероховатости поверхностного слоя после обработки магнетронной распылительной головкой (Табл. 1).

Магнетронная распылительная головка предложенной конструкции позволяет работать не только при низком вакууме, но и при атмосферном давлении, а также обрабатывать не только плоские поверхности, но и поверхности, изменяющиеся в трех координатах, в том числе имеющие вертикальную стенку и обратный уклон, что расширяет технологические возможности магнетронной распылительной головки (Фиг. 2).

Магнетронная распылительная головка для обработки детали, содержащая охлаждаемую магнитную систему, состоящую из магнитов и магнитопровода, оснащенную каналами охлаждения, диэлектрический держатель, катод, устройство фиксации и блок питания, отличающаяся тем, что она снабжена корпусом криволинейной формы, в котором зафиксирована магнитная система, при этом верхняя часть магнитопровода выполнена конической, а устройство фиксации выполнено в виде полой трубы, соединенной с упомянутым корпусом, на которой снаружи установлен диэлектрический держатель, а внутри трубы размещены каналы охлаждения магнитной системы и трубопровод подачи электролита и газа, причем упомянутый корпус оснащен сквозным каналом, который соединен с трубопроводом подачи электролита и газа, а наружная поверхность корпуса выполнена с мелкоразмерным рельефом поверхности от 0,2 до 10 мм, при этом устройство фиксации соединено с отрицательным полюсом блока питания с образованием катода.
Магнетронная распылительная головка
Магнетронная распылительная головка
Магнетронная распылительная головка
Источник поступления информации: Роспатент

Показаны записи 61-70 из 123.
15.06.2019
№219.017.8347

24-режимная однопоточная вальная коробка передач "конфигурация-24"

Изобретение относится к коробкам передач с промежуточными параллельными валами и зубчатыми колесами. 24-режимная коробка передач (КП) содержит ведущий 0, промежуточные А, B, C и выходной X валы, расположенные параллельно друг другу. Валы А и B являются смежными с валом 0. На валах установлены...
Тип: Изобретение
Номер охранного документа: 0002691506
Дата охранного документа: 14.06.2019
20.06.2019
№219.017.8cc4

20-режимная однопоточная вальная коробка передач "конфигурация-20"

Изобретение относится к коробкам передач с промежуточными параллельными валами и зубчатыми колесами. 20-режимная коробка передач (КП) содержит ведущий 0, промежуточные А, B, C и выходной X валы, расположенные параллельно друг другу в картере на подшипниках. Валы А и B являются супротивно...
Тип: Изобретение
Номер охранного документа: 0002691678
Дата охранного документа: 17.06.2019
03.07.2019
№219.017.a474

Способ микропрофилирования поверхности многокомпонентных стёкол

Изобретение относится к способам получения наноструктурированных материалов, в частности к способу нанесения на поверхность стекол заданного рельефа с характерным латеральным разрешением порядка сотен нанометров. Способ микропрофилирования поверхности многокомпонентных стёкол включает...
Тип: Изобретение
Номер охранного документа: 0002693097
Дата охранного документа: 01.07.2019
11.07.2019
№219.017.b266

Генетическая конструкция на основе двух индуцибельных экспрессионных векторов для экспрессии тиазол/оксазол модифицированного пептида в клетках бактерий e. coli; способ получения рекомбинантного штамма бактерий e. coli и способ получения модифицированного пептида на его основе

Изобретение относится к области биотехнологии и молекулярной генетики. Представлена генетическая конструкция для гетерологической экспрессии тиазол-оксазол модифицированного пептида клебсазолицина в клетках бактерий Е. coli на основе двух индуцибельных экспрессионных векторных плазмид - pBAD...
Тип: Изобретение
Номер охранного документа: 0002694044
Дата охранного документа: 08.07.2019
14.07.2019
№219.017.b410

Способ извлечения липидов из микроводоросли chlorella sorokiniana

Изобретение относится к биотехнологии. Предложен способ извлечения липидов из биомассы микроводоросли Chlorella sorokiniana. Способ включает дезинтеграцию клеток биомассы в смеси гексан:этиловый спирт в соотношении 1-9:9-1 при соотношении сухой биомассы к растворителю 1:20 в СВЧ-поле мощностью...
Тип: Изобретение
Номер охранного документа: 0002694405
Дата охранного документа: 12.07.2019
17.07.2019
№219.017.b4f9

Способ диагностики рака легкого на основе интеллектуального анализа формы, внутренней и внешней структур новообразований

Изобретение относится к медицине и предназначено для интеллектуальной диагностики рака легкого. Предложен способ обнаружения и диагностики рака легкого на основе интеллектуального анализа формы, структур злокачественных новообразований в легких, включающий обработку изображений легких пациента,...
Тип: Изобретение
Номер охранного документа: 0002694476
Дата охранного документа: 15.07.2019
23.07.2019
№219.017.b774

Способ получения пектиновых веществ из ряски lemna minor

Изобретение относится к способу получения пектиновых веществ из высшего водного растения ряски Lemna minor. Предложенный способ получения пектинов из ряски Lemna minor включает выдержку исходного сырья в подкисленной воде при рН 1-2 на водяной бане при температуре 80-100°С в течение 1-3 часов,...
Тип: Изобретение
Номер охранного документа: 0002694969
Дата охранного документа: 18.07.2019
26.07.2019
№219.017.b931

Способ фотограмметрии ледового поля в ледовом бассейне

Изобретение относится к области к цифровой прикладной фотограмметрии близких объектов и может быть использовано, в частности, для автоматизированного картирования поверхности ледового поля при проведении испытаний морских судов и сооружений в ледовых бассейнах. Способ фотограмметрии ледового...
Тип: Изобретение
Номер охранного документа: 0002695596
Дата охранного документа: 24.07.2019
31.07.2019
№219.017.ba4c

Способ получения пигментного комплекса из биомассы одноклеточных водорослей рода chlorella

Изобретение относится к микробиологической и пищевой промышленности. Концентрируют клеточную суспензию микроводоросли рода Chlorella в щелочной среде 0,1н NaOH при рН 11-12. Фильтруют полученную суспензию, обезвоживают полученную сырую биомассу путем воздушной сушки при температуре 25-35°С....
Тип: Изобретение
Номер охранного документа: 0002695879
Дата охранного документа: 29.07.2019
31.07.2019
№219.017.baa8

Способ изготовления сенсорного модуля, основанного на эффекте гигантского комбинационного рассеяния, для микрофлюидных устройств (варианты)

Изобретение относится к способам изготовления сенсорного модуля для получения спектров гигантского комбинационного рассеяния (ГКР). Способ включает четырехстадийную обработку поверхности плоского стеклянного основания. На первой стадии производят обогащение приповерхностного слоя стеклянного...
Тип: Изобретение
Номер охранного документа: 0002695916
Дата охранного документа: 29.07.2019
Показаны записи 1-3 из 3.
26.08.2017
№217.015.d97c

Установка для электролитно-плазменной обработки турбинных лопаток

Изобретение относится к области электрохимической обработки рабочих и направляющих турбинных лопаток. Установка содержит рабочую ванну и ванну коррекции электролита с нагревательным элементом, которые соединены между собой трубопроводом стока электролита с насосом для перекачки электролита,...
Тип: Изобретение
Номер охранного документа: 0002623555
Дата охранного документа: 27.06.2017
08.03.2019
№219.016.d352

Устройство для электролитно - плазменной обработки металлических изделий

Изобретение относится к области гальванотехники и может быть использовано в энергомашиностроении для обработки турбинных лопаток и в машиностроении для обработки электрод-инструментов. Устройство содержит источник питания, систему подачи электролита, цилиндрическую трубку для формирования...
Тип: Изобретение
Номер охранного документа: 0002681239
Дата охранного документа: 05.03.2019
02.08.2019
№219.017.bba9

Способ получения биметаллических изделий штамповкой жидкого металла

Изобретение относится к литейному производству и может быть использовано для изготовления биметаллических заготовок методом штамповки жидкого металла. Жидкий металл основы заливают в матрицу установки штамповки жидкого металла. Затем в жидкий металл, находящийся в матрице, погружают рабочий...
Тип: Изобретение
Номер охранного документа: 0002696164
Дата охранного документа: 31.07.2019
+ добавить свой РИД