×
31.07.2019
219.017.ba4c

Результат интеллектуальной деятельности: Способ получения пигментного комплекса из биомассы одноклеточных водорослей рода Chlorella

Вид РИД

Изобретение

Аннотация: Изобретение относится к микробиологической и пищевой промышленности. Концентрируют клеточную суспензию микроводоросли рода Chlorella в щелочной среде 0,1н NaOH при рН 11-12. Фильтруют полученную суспензию, обезвоживают полученную сырую биомассу путем воздушной сушки при температуре 25-35°С. Осуществляют механическую активацию биомассы путем дезинтеграции клеточной оболочки с помощью обработки в СВЧ-поле мощностью 120 Вт при атмосферном давлении в течение 10 мин при температуре 50-60°С. Экстрагируют полученный пигментный комплекс из сухой биомассы путем ступенчатой мацерации с использованием ультразвука мощностью 30-40 кГц при температуре 30-40°С 96%-ным этиловым спиртом. Выпаривают растворитель из полученного жидкого экстракта под вакуумом при 1-5 кПа при температуре 30-40°С. Изобретение обеспечивает создание экологически чистого и эффективного способа извлечения пигментов из биомассы одноклеточной водоросли рода Chlorella. 1 з.п. ф-лы, 1 ил., 2 табл., 3 пр.

Изобретение относится к микробиологической промышленности, в частности к способам извлечения комплекса пигментов (хлорофиллов и каротиноидов) из биомассы одноклеточных водорослей рода Chlorella. Извлекаемый комплекс пигментов может применяться в качестве пищевых добавок для изготовления пищевых продуктов, кормовых добавок, используемых в сельском хозяйстве, а также в составе косметических средств в качестве биологически активной добавки и натурального красителя.

Клеточная оболочка микроводорослей рода Chlorella состоит из целлюлозоподобных углеводов и белков. Устойчивая к химическим воздействиям клеточная оболочка является основным препятствием для извлечения из клетки ценных биологически активных компонентов. Обычно для переработки водоросли рода Chlorella используют комплексные методы, включающие кипячение или замораживание биомассы с целью разрушения клеток и ферментативный гидролиз компонентов биомассы, позволяющий перевести биологически активные вещества в водорастворимое состояние.

Известен способ получения комплекса биологически активных веществ из биомассы Chlorella vulgaris (Патент РФ №2256700, опубл. 20.07.2006 по классам МПК C12N 1/12, А23K 1/00, A23J 3/20, С12Н 1/00, C12N 1/12, C12R 1/89). Способ предусматривает культивирование биомассы водоросли, разрушение клеток биомассы и экстракцию биологически активных веществ. Для разрушения клеточных стенок используется двукратное замораживание биомассы при температуре от -4°С до -15°С в течение 6 часов. В качестве экстрагента используют католит, полученный в диафрагменном электролизере. Из недостатаков заявленного способа можно отметить то, что процесс замораживания биомассы как способ дезинтеграции клеточной оболочки микроводорослей обладает низкой эффективностью.

Известен также способ извлечения липидов из биомассы для получения альтернативного биодизельного топлива на основе липидов, экстрагированных из биомассы микроводоросли Chlorella. На первой стадии суспензия биомассы Chlorella подвергается обработке в аппарате, создающем вихревое электромагнитное поле с хаотически движущимися ферромагнитными частицами. В результате данной обработки клетки биомассы разрушаются, что облегчает последующую экстракцию липидов при помощи органических растворителей и обработки в импульсно-кавитационном аппарате (Патент РФ №2388812, опубл. 10.05.2010 по классам МПК C12N 1/12, С12Р 7/64). В заявленном способе можно отметить следующие недостатки. Разрушение клеток путем взаимодействия с хаотически движущимися ферромагнитными частицами неэффективно в связи с большими затратами электроэнергии на создание вихревого электромагнитного поля. Кроме того, клеточные оболочки разрушенных клеток сохраняют свою исходную морфологию, что снижает выход экстрагируемых веществ. Использование токсичных органических растворителей, таких, как хлороформ и четыреххлористый углерод, обусловливает непригодность предложенного способа для применения полученного экстракта в качестве пищевой и кормовой добавок.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ извлечения биологически активных веществ из биомассы микроводоросли рода Chlorella (Патент РФ №2460771, опубл. 10.09.2012 по классам МПК C12N 1/12, А23K 1/00, А61K 8/00).

Способ предусматривает несколько стадий обработки высушенной биомассы одноклеточной водоросли рода Chlorella, которую механически активируют в активаторах планетарного, вибрационного или виброцентробежного типов, обеспечивающих ускорение мелющих тел 60-400 м/с2 при времени пребывания в зоне обработки 0,5-10 минут. После активации биомассу одноклеточной водоросли суспендируют в органическом растворителе, в качестве которых используют бензин или этиловый спирт, которые вносят при экстракции из расчета 5-7 литров органического растворителя на 1 кг сухой биомассы с последующей экстракцией при комнатной температуре в течение 3-5 часов. Полученный экстракт фильтрованием разделяют на растворимую и нерастворимую части и сушат с получением сухого липидно-пигментного комплекса. Нерастворимую часть подвергают дальнейшей обработке ферментными препаратами.

Недостатком прототипа является нагревание клеточной суспензии во время процесса механической активации и ее непосредственный контакт с кислородом воздуха, что приводит к деградации пигментов микроводоросли и потере их нативных свойств. Дальнейшее высушивание липидно-пигментного комплекса также увеличивает потери пигментов, образующих в этих условиях темно окрашенные соединения. Другим недостатком данного способа является использование в качестве экстрагента бензина, что приводит к непригодности полученных экстрактов в пищевой промышленности.

Техническая проблема, решаемая заявляемым изобретением, заключается в создании экологически чистого и эффективного способа извлечения пигментов из биомассы одноклеточной водоросли рода Chlorella.

Задача решается за счет предлагаемого способа, который включает концентрирование клеточной суспензии микроводоросли в щелочной среде 0,1н NaOH при рН 11-12, фильтрацию полученной суспензии, обезвоживание полученной сырой биомассы путем воздушной сушки при температуре 25-35°С, механическую активацию биомассы путем дезинтеграции клеточной оболочки с помощью обработки в СВЧ-поле мощностью 120 Вт при атмосферном давлении в течение 10 минут при температуре 50-60°С, последующую экстракцию пигментного комплекса из сухой биомассы путем ступенчатой мацерации с использованием ультразвука мощностью 30-40 кГц при температуре 30-40°С 96%-ным этиловым спиртом, выпаривание растворителя из полученного жидкого экстракта проводят под вакуумом 1-5 кПа при температуре 30-40°С.

Обезвоживание полученной сырой биомассы может быть осуществлено путем лиофильной сушки до получения сухой биомассы с влажностью не более 3,0%.

При концентрировании клеточной суспензии микроводоросли рода Chlorella путем образования флоков в щелочной среде и дальнейшей седиментации биомассы в указанных условиях способствует эффективному проведению процесса концентрирования и максимальному сохранению пигментов (хлорофиллов и каротиноидов). В области рН 11 наблюдается порог перехода от скрытой к явной флокуляции, который соответствует концентрации электролитов, снижающих -потенциал поверхности клеток в суспензии до критической величины. Применение щелочных сред с рН ниже 11 не обеспечивает необходимой эффективности флокуляции, что снижает выход концентрированной суспензии. Дальнейшее увеличение концентрации электролита выше порога коагуляции приводит к резкому повышению скорости флокуляции клеток. Наибольшая эффективность процесса концентрирования клеточной суспензии микроводоросли достигается при рН 11-12, обеспечивающей флокуляцию 85,0-92,3%.

Эффективность флокуляции ЭФ, % рассчитывали по формуле (1):

где

OD750(τ0) - оптическая плотность суспензии в момент времени τ0,

OD750(τ) - оптическая плотность осветленного слоя суспензии в момент времени τ (τ>τ0).

Повышение рН выше 12 приводит к снижению содержания пигментов в экстракте.

На чертеже представлена зависимость динамики автофлокуляции при различных значениях рН, где кривые 1, 2, 3, 4, 5, 6 соответствуют значениям рН 7, 8, 9, 10, 11, 12.

Осветленный слой питательной среды в полученном концентрате клеточной суспензии сливают и затем отделяют биомассу фильтрацией с помощью мембранного фильтра под давлением.

Применение лиофильной или воздушной сушки в качестве обезвоживания биомассы микроводоросли при температуре минус 55°С и давлении 1 мБар и при температуре 25-35°С соответственно способствует сохранению суммы пигментов, а также их количественного соотношения и его нативных свойств в процессе удаления влаги (табл. 1).

Количественное содержание пигментов, полученных в результате экстракции, определяли спектрофотометрическим методом (Sumanta Nayek Research Journal of Chemical Sciences. - 2014. - Vol. 4(9) - P. 63-69.)

Для количественного анализа хлорофилла и каротиноидов использовали полосы поглощения пигментов в области 440, 649 и 664 нм. Концентрацию хлорофилла a (Cha), хлорофилла b (Chb) и каротиноидов (Сх+с) в экстрактах рассчитывали по формулам 2-4:

где

Cha: концентрация хлорофилла а (мкг/мл)

Chb: концентрация хлорофилла b (мкг/мл)

Сх+с: концентрация каротиноидов (мкг/мл)

А440, А649, А664 - оптическая плотность экстрактов при длинах волн 470 нм, 649 нм и 664 нм соответственно.

Концентрацию пигментов А (мг/г в пересчете на массу навески) определяли по формуле (5):

где

С - концентрация пигментов, мг/л,

V - объем вытяжки, мл,

m - навеска, г.

Проведение обезвоживания биомассы путем воздушной сушки при температуре ниже 25°С не позволяет получить сухой продукт с содержанием остаточной влаги до 3,0%. Увеличение температуры воздушной сушки выше 35°С приводит к окислительной деградации пигментов, что подтверждается изменением окраски сухой биомассы до более темной.

Для осуществления процесса активации биомассы использовали воздействие СВЧ-поля мощностью 120 Вт при температуре 50-60°С для разрушения клеточной оболочки микроводоросли. Короткое время проведение процесса активации (10 минут) при температуре 50-60°С способствует сохранению нативных свойств пигментов. Проведение дезинтеграции клеточной оболочки при температуре ниже 50°С не позволяет достичь нужного процента выхода пигментов в экстракты. Применение СВЧ-обработки при температуре выше 60°С приводит к окислительной деградации пигментов (табл. 2).

Проведение процесса ступенчатой мацерации полученного суспендированного после дезинтеграции полупродукта с использованием ультразвука (УЗ) частотой 30-40 кГц при температуре 30-40°С 96%-ным этиловым спиртом позволяет провести процесс выделения пигментов до полного истощения сырья, что обусловливает экономическую эффективность процесса экстракции. Использование УЗ с частотой ниже 30 кГц приводит к снижению содержания пигментов в экстрактах, что связано неполным разрушением хлоропластов, в то время как повышение частоты УЗ выше 40 кГц не оказывает заметного влияния на увеличение выхода пигментов в экстракт.

Удаление растворителя из полученного жидкого экстракта для получения пигментного комплекса проводят под вакуумом (1-5 кПа), создаваемом обычными устройствами, прилагаемыми в комплекте к лабораторным роторным испарителям, при температуре не более 30-40°С. Удаление растворителя при температуре ниже 30°С увеличивает время проведения процесса и снижает его эффективность. Увеличение температуры испарения выше 40°С приводит к окислению пигментов и изменению окраски продукта. Выход пигментного комплекса составляет от 2,8 до 3,3 мас. % от исходной биомассы водоросли Chlorella.

Изобретение поясняется следующими примерами.

Пример 1. Клеточную суспензию одноклеточной водоросли рода Chlorella sorokiniana, штамм 211-8k из коллекции водорослей университета Гёттингена (Culture Collection of Algae at University, international acronym SAG), полученной путем культивирования на питательной среде, подвергают концентрированию путем доведения рН среды до 11 добавлением 0,1 н NaOH, после образования флоков сливают осветленный слой питательной среды и подвергают фильтрации на мембранном фильтре под вакуумом. Полученный полупродукт подвергают воздушной сушке при температуре 25°С до остаточного содержания влаги 2,8%, после чего полученную сухую биомассу помещают в стеклянную емкость, смешивают с 96%-ным этиловым спиртом в соотношении 4 объемных частей растворителя на 1 часть сухой биомассы (по массе), герметично закрывают и проводят обработку СВЧ-полем мощностью 120 Вт при атмосферном давлении в течение 10 минут при температуре 50°С. После активации полученную смесь доливают экстрагентом из расчета 6 объемных частей 96%-ного этилового спирта на 1 часть сухой биомассы. Емкость с экстрактом помещают на водяную баню УЗУ-25 и ведут экстракцию при температуре 35°С и озвучивании в режиме 40 кГц в течение 30 минут, после чего экстракт центрифугируют при 3,5 тыс. об/мин в течение 3 минут и заливают биомассу новой порцией экстрагента. Количество циклов экстракции составляет 3. Полученные экстракты объединяют и сгущают в роторном испарителе в вакууме (1 кПа) при температуре 30°С. Полученный продукт содержит пигментный комплекс (хлорофиллы и каротиноиды) в количестве 3,0% от взятой сухой биомассы.

Пример 2. Концентрирование биомассы водорослей рода Chlorella осуществляется в условиях примера 1. Полученный полупродукт подвергают воздушной сушке при температуре 35°С. Обработку СВЧ-полем мощностью 120 Вт при атмосферном давлении в течение 10 минут при температуре 60°С. После активации полученную смесь доливают экстрагентом из расчета 6 объемных частей 96%-ного этилового спирта на 1 часть сухой биомассы. Емкость с экстрактом помещают на водяную баню УЗУ-25 и ведут экстракцию при температуре 30°С и озвучивании в режиме 30 кГц в течение 30 мин, после чего экстракт отделяют фильтрованием на мембранном фильтре под давлением и заливают биомассу новой порцией экстрагента. Количество циклов экстракции составляет 2. Полученные экстракты объединяют и сгущают в роторном испарителе в вакууме (5 кПа) при температуре 35°С. Полученный продукт содержит пигментный комплекс (хлорофиллы и каротиноиды) в количестве 2,9% от взятой сухой биомассы.

Пример 3. Клеточную суспензию одноклеточной водоросли рода Chlorella, полученной путем культивирования на питательной среде, подвергают концентированию путем доведения рН среды до 12 добавлением 0,1 н NaOH, после образования флоков сливают осветленный слой питательной среды и подвергают фильтрации на мембранном фильтре под давлением. Полученный полупродукт подвергают лиофильной сушке в установке модели «АК» (производство «Профлаб») при температуре минус 55°С и давлении 1 мБар до остаточного содержания влаги не более 3,0%. После чего полученную сухую биомассу помещают в стеклянную емкость, смешивают с 96%-ным этиловым спиртом в соотношении 4 объемных частей растворителя на 1 часть сухой биомассы, герметично закрывают и проводят обработку СВЧ-полем мощностью 120 Вт при атмосферном давлении в течение 10 минут при температуре 55°С. После активации в полученную смесь добавляют экстрагент из расчета 6 объемных частей 96%-ного этилового спирта на 1 часть сухой биомассы. Емкость с экстрактом помещают на водяную баню УЗУ-25 и ведут экстракцию при температуре 40°С и озвучивании в режиме 35 кГц в течение 10 мин, после чего экстракт центрифугируют при 3,5 тыс. об/мин в течение 3 минут и заливают биомассу новой порцией экстрагента. Количество циклов экстракции составляет 5. Полученные экстракты объединяют и сгущают в роторном испарителе в вакууме (3 кПа) при температуре 40°С. Полученный продукт содержит пигментный комплекс (хлорофиллы и каротиноиды) в количестве 3,3% от взятой сухой биомассы.

Предлагаемый способ получения пигментного комплекса из биомассы одноклеточной водоросли Chlorella позволяет получить концентрированный комплекс натуральных пигментов, которые могут быть использованы в качестве натурального красителя и биологически активной добавки в пищевой, косметической и фармацевтической отраслях промышленности.


Способ получения пигментного комплекса из биомассы одноклеточных водорослей рода Chlorella
Способ получения пигментного комплекса из биомассы одноклеточных водорослей рода Chlorella
Источник поступления информации: Роспатент

Показаны записи 1-10 из 123.
10.08.2015
№216.013.69b2

Способ обработки бинарных сигналов данных, принимаемых на фоне шумов

Изобретение относится к технике электрической связи и может быть использовано в любых информационных системах. Технический результат состоит в повышении помехоустойчивости, пропускной способности и качества информационной продукции. Для этого способ обработки бинарных сигналов данных,...
Тип: Изобретение
Номер охранного документа: 0002558611
Дата охранного документа: 10.08.2015
10.09.2015
№216.013.78c4

Способ повышения эффективности сгорания углеводородного топлива

Изобретение относится к способам и устройствам для обработки различных видов жидкого углеводородного топлива перед его сжиганием и может найти применение в системах питания турбореактивных, газотурбинных двигателей, двигателей внутреннего сгорания, в двигателях Стирлинга, а также в иных...
Тип: Изобретение
Номер охранного документа: 0002562505
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.78f3

Способ получения электрода для производства порошковых жаропрочных сплавов на основе алюминида титана

Изобретение относится к порошковой металлургии и может быть использовано при послойном нанесении материала по аддитивной технологии. Проводят предварительное механическое легирование исходной порошковой смеси из порошков титана и элементов, способных образовывать с ним твердые растворы...
Тип: Изобретение
Номер охранного документа: 0002562552
Дата охранного документа: 10.09.2015
27.10.2015
№216.013.8a8c

Способ комбинированной раскатки осесимметричных деталей

Изобретение относится к области обработки материалов давлением и может быть использовано при изготовлении осесимметричных деталей из малопластичных материалов, преимущественно спеченных. Заготовку устанавливают в матрицу с выставлением части для локального деформирования и фиксируют в осевом...
Тип: Изобретение
Номер охранного документа: 0002567071
Дата охранного документа: 27.10.2015
27.12.2015
№216.013.9da8

Способ повышения эффективности сгорания топлива в двигателе самолета

Изобретение относится к авиастроению, в частности к способам и устройствам для обработки различных видов жидкого углеводородного топлива. Для повышения эффективности сгорания углеводородного топлива в двигателе самолета топливо из заправочной емкости перекачивают в переменном однородном...
Тип: Изобретение
Номер охранного документа: 0002571990
Дата охранного документа: 27.12.2015
10.06.2016
№216.015.4508

Способ фильтрации тока намагничивания и воспроизведения вторичного тока силовых и измерительных трансформаторов напряжения

Изобретение относится к электротехнике и может быть использовано в различных средствах релейной защиты, противоаварийного управления энергосистем, измерения, регистрации аварийных событий и диагностики состояния оборудования. Технический результат состоит в снижении погрешности фильтрации тока...
Тип: Изобретение
Номер охранного документа: 0002586115
Дата охранного документа: 10.06.2016
27.08.2016
№216.015.5182

Способ получения магнитотвердого материала smmn

Изобретение относится к области получения магнитотвердых материалов, которые могут быть использованы в электротехнике и машиностроении. Предложенный способ получения магнитотвердого соединения SmMN позволяет увеличить коэрцитивную силу (H) и температуру Кюри (Т) конечного продукта, что является...
Тип: Изобретение
Номер охранного документа: 0002596166
Дата охранного документа: 27.08.2016
25.08.2017
№217.015.bac6

Способ получения катодного материала на основе системы lifesio

Изобретение относится к электротехнической области и может быть использовано в аккумуляторных батареях транспортных и космических систем с улучшенными удельными характеристиками. В качестве начального компонента выбирают наноразмерный порошок аэросила (SiO) с удельной поверхностью 350-380 м/г,...
Тип: Изобретение
Номер охранного документа: 0002615697
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.bad7

Топливная форсунка газотурбинного двигателя

Изобретение относится к авиастроению. Топливная форсунка газотурбинного двигателя, в которой одним из электродов, соединенным с потенциальным выходом источника электрического напряжения, является металлический внутренний воздушный завихритель и соединенная проводящей перемычкой металлическая...
Тип: Изобретение
Номер охранного документа: 0002615618
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.c5b0

Бесфлаттерная многодисковая фрикционная муфта для соединения валов привода с возможностью разнонаправленного их вращения

Изобретение относится к области машиностроения, а более конкретно к муфтам для соединения приводных валов, например, для трансмиссий. Бесфлаттерная многодисковая фрикционная муфта (5) для соединения валов (1, 3) привода с возможностью разнонаправленного их вращения содержит корпус (6)...
Тип: Изобретение
Номер охранного документа: 0002618661
Дата охранного документа: 05.05.2017
Показаны записи 1-10 из 16.
10.08.2013
№216.012.5bf0

Способ немедикаментозного лечения больных с хроническими заболеваниями желудочно-кишечного тракта

Изобретение относится к медицине и предназначено для лечения хронических заболеваний желудочно-кишечного тракта. Используют синбиотический напиток, содержащий бифидобактерии и иммуноактивные полисахариды из бурой водоросли F.evanescens. Доза 200 мл в день в 2 приема за 30 мин до еды, курс 6...
Тип: Изобретение
Номер охранного документа: 0002489157
Дата охранного документа: 10.08.2013
10.04.2015
№216.013.3845

Способ приготовления геля для лечения ран и ожогов

Изобретение относится к фармацевтической промышленности, а именно к способу получения геля для лечения ран и ожогов. Способ приготовления геля для лечения ран и ожогов, включающий растворение хитозана в органической кислоте, соединение его с биологически активным веществом и водой, при этом...
Тип: Изобретение
Номер охранного документа: 0002545893
Дата охранного документа: 10.04.2015
27.09.2015
№216.013.7e9e

Индуктор гамма интерферона

Изобретение относится к медицине, а именно для использования в области иммунологии, и касается индуктора гамма интерферона. Для этого применяют экзополисахарид бактерий P.nigrifaciens штамма КММ 156 в качестве индуктора IFN-γ. Использование данного полисахарида обеспечивает образование IFN-γ...
Тип: Изобретение
Номер охранного документа: 0002564011
Дата охранного документа: 27.09.2015
25.08.2017
№217.015.a5d6

Способ производства формованного рыбного продукта

Способ включает приготовление рыбного фарша, подготовку вспомогательных материалов и специй, составление и куттерование смеси, шприцевание готового фарша в оболочку, осадку с последующей варкой, копчением и охлаждением. Приготовление фарша включает сепарирование хребтовой части лосося. В...
Тип: Изобретение
Номер охранного документа: 0002607783
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.cf26

Способ профилактики дислипидемии

Изобретение относится к медицине, а именно к терапии, и касается профилактики дислипидемии. Для этого ежедневно перорально вводят пищевые добавки «Маристим» и «Фуколам-С». «Фуколам -С» вводят по 1 капсуле один раз в день во время еды, а «Маристим» по 3 капсулы 3 раза в день после еды в...
Тип: Изобретение
Номер охранного документа: 0002621152
Дата охранного документа: 31.05.2017
28.09.2018
№218.016.8caf

Способ культивирования микроводоросли chlorella

Изобретение относится к области культивирования микроводорослей. Предложен способ культивирования микроводоросли . Способ включает культивирование суспензии микроводоросли в фотобиореакторе, в котором суспензию микроводоросли перемешивают в течение 13-17 минут с частотой вращения 500 об/мин...
Тип: Изобретение
Номер охранного документа: 0002668162
Дата охранного документа: 26.09.2018
05.12.2018
№218.016.a3c8

Способ конвоирования правонарушителя

Изобретение относится к области конвоирования правонарушителей в наручниках, закрепляемых на конечностях правонарушителя (или подозреваемого в правонарушении). Способ конвоирования правонарушителя, включающий закрепление на конечностях правонарушителя наручников, имеющих два браслета, корпус...
Тип: Изобретение
Номер охранного документа: 0002674001
Дата охранного документа: 03.12.2018
29.12.2018
№218.016.acbe

Адъювант для противовирусных вакцин

Изобретение предназначено для использования в медицине, в частности в иммунологии, и может быть использовано для получения адъюванта противовирусных вакцин против вирусов гепатита В или гриппа. Для этого в качестве адъюванта применяют фукоидан, полученный из бурой водоросли Fucus evanescens с...
Тип: Изобретение
Номер охранного документа: 0002676266
Дата охранного документа: 27.12.2018
20.03.2019
№219.016.e735

Пористый сорбент с гепатопротекторными свойствами

Изобретение относится к области пористых материалов, адсорбентов медицинского назначения, носителей ферментов, клеток, лекарственных препаратов, биологически активных веществ Берут углеродминеральный сорбент, которому придают наряду с его детоксицирующими свойствами специфические...
Тип: Изобретение
Номер охранного документа: 0002329864
Дата охранного документа: 27.07.2008
19.04.2019
№219.017.2ea2

Биологически активный продукт из бурой водоросли, биологически активная добавка к пище, безалкогольный напиток, парфюмерно-косметическое средство

Группа изобретений относится к пищевой и косметологической промышленности и касается биологически активных продуктов из бурых водорослей. Биологически активный продукт представляет собой полисахаридную композицию, полученную из водоросли Fucus evanescens, состоящую из фукоидана в количестве...
Тип: Изобретение
Номер охранного документа: 0002315487
Дата охранного документа: 27.01.2008
+ добавить свой РИД