×
09.06.2018
218.016.5cf4

Результат интеллектуальной деятельности: РАБОЧЕЕ ВЕЩЕСТВО ДЛЯ ТЕРМОЛЮМИНЕСЦЕНТНОЙ ДОЗИМЕТРИИ РЕНТГЕНОВСКОГО И ГАММА-ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиоэкологического мониторинга и дозиметрии рентгеновского и гамма-излучения и может быть использовано в персональных и аварийных дозиметрах для определения дозозатрат персонала рентгеновских кабинетов, мобильных комплексов радиационного контроля, зон с повышенным радиационным фоном, территорий хвостохранилищ отработанных радиоактивных материалов и отходов. Оксинитрид алюминия, активированный трехвалентными ионами церия с концентрацией 0,05-0,2 ат. %, характеризующийся химической формулой AlON:Се, применяют в качестве рабочего вещества для термолюминесцентной дозиметрии. Изобретение обеспечивает повышенный световыход термостимулированной люминесценции (ТСЛ) в диапазоне концентраций церия 0,05-0,2 ат. %, позволяет оперативно получать дозиметрическую информацию, уменьшить время и энергозатраты на ее обработку, исключить сложные процедуры подготовки рабочего вещества к измерениям дозовых нагрузок. 1 з.п. ф-лы, 7 ил., 3 пр.

Изобретение относится к области дозиметрии рентгеновского и гамма-излучения с помощью термолюминесцентных детекторов при решении задач персональной дозиметрии, особо при определении дозозатрат персонала рентгеновских кабинетов и обслуживающего персонала мобильных комплексов радиационного контроля, задач радиоэкологического мониторинга в зонах с повышенным радиационным фоном, особо на территориях хвостохранилищ отработанных урановых руд или других радиоактивных материалов и отходов.

Известно рабочее вещество для термолюминесцентной дозиметрии, имеющее состав LiF:Mg, Ti. (В.И. Иванов. Курс дозиметрии. М., Атомиздат, 1970. 392 с). Однако известное рабочее вещество для термолюминесцентной дозиметрии на основе LiF:Mg, Ti обладает недостаточно высоким световыходом термостимулированной люминесценции (ТСЛ).

Известно давно применяемое в дозиметрической практике рабочее вещество для термолюминесцентного детектора рентгеновского и гамма-излучения на основе сульфата кальция CaSO4:Mn и способ его получения (В.И. Иванов. Курс дозиметрии. М., Атомиздат, 1970. 392 с.). Известное рабочее вещество для ТЛД на основе CaSO4:Mn получают в виде монокристаллов или в виде таблеток, спрессованных из порошка. Рабочее вещество на основе CaSO4:Mn имеет простую кривую термовысвечивания с одним максимумом при 80-100°С и обеспечивает диапазон измеряемых доз рентгеновского и гамма-излучения до 10-2 Гр. Спектр термостимулированной люминесценции (ТСЛ) CaSO4:Mn находится в пределах 400-590 нм с максимумом вблизи 500 нм. Однако известное рабочее вещество для ТЛД на основе CaSO4:Mn обладает недостаточно высоким световыходом ТСЛ.

Известно рабочее вещество для термолюминесцентного детектора (термолюминофора) на основе сульфата калия K2SO4. (Л.М. Ким, Т.Л. Кукетаев, А.X. Орозбаев. Термостимулированная люминесценция сульфата калия. Сборник тезисов докладов международной конференции по радиационной физике. Бишкек-Каракол. Иссыккульский государственный университет, 1999. С. 43). Кристаллы K2SO4 имеют пики ТСЛ при 170-175, 200-205, 218-220, 230-265, 310-340, 345-350 и 400-410 К. Недостатком известного термолюминофора является наличие большого числа пиков ТСЛ, а также невысокий световыход ТСЛ кристаллов K2SO4.

Известно рабочее вещество для термолюминесцентного детектора рентгеновского и гамма-излучения (Патент №2468060 РФ, авторы М. Кидибаев, К. Шаршеев, У.К. Мамытбеков, Г.С. Денисов, И.И. Мильман, Б.В. Шульгин и Д.Г. Лисиенко. Заявл. 26.04.2010. Опубл. 27.11.2012. Бюл. №33), имеющее состав K2-xNaxSO4, где х=0,4-0,6 которое обладает ТСЛ со следующими характеристиками: пик ТСЛ расположен при температуре ~100°С, спектр свечения ТСЛ находится в пределах 410-440 нм. Эффективный атомный номер Zэф полученного K-Na сульфата, рассчитанный для комптон-эффекта и фотоэффекта, достаточно близок к Zэф костной ткани и равен 14,2. Однако световыход ТСЛ известного рабочего вещества для термолюминесцентного детектора невысокий.

Известны люминесцентные керамические материалы/люминофоры на основе сиалона (Yu.F. Kargin, N.S. Akhmadullina, K.A. Solntsev. Inorganic materials, 50, 13, 2014. P. 1325-1342). Однако термолюминесцентные свойства сиалона неизвестны.

Известен прозрачный поликристаллический сцинтиллятор на основе ALON:Ce3+ (Chin-Fong Chen, Pin Yang, G. King, J. Am. Ceram. Society. 99(2), 2016. P. 424-430). Однако термолюминесцентные свойства этого соединения неизвестны.

Наиболее близким к заявляемому по составу и по исполняемым функциям является известное рабочее вещество для термолюминесцентной дозиметрии рентгеновского и гамма-излучения на основе монокристаллов анион-дефектного корунда Al2O3:С (ТЛД-500) (М.S. Akselrod, V.S. Kortov, D.Y. Kravetsky, V.I. Gotlib. Highly sensitive thermoluminescence anion-defect α-Al2O3:С single crystal detectors. Radiation protection dosimetry. Vol. 33, №4, 1990. P. 119-122). Оно имеет эффективный атомный номер, близкий к эффективному атомному номеру костной ткани (что соответствует требованиям персональной дозиметрии), имеет пик ТСЛ с максимумом при 130-190°С (его положение зависит от скорости нагрева и процедур подготовки рабочего вещества к измерениям). Имеющийся у известного состава Al2O3:С низкотемпературный пик ТСЛ при 50-60°С не используется для дозиметрических целей, поскольку имеет очень низкую интенсивность. Спектр свечения Al2O3:С расположен в области 380-480 нм с максимумом при 450 нм. Линейный диапазон измеряемых доз от 10-6 Гр до 10 Гр. Чувствительность известного рабочего вещества на основе Al2O3:С к гамма-излучению примерно в 50 раз выше, чем у LiF:Mg, Ti. Однако известное рабочее вещество на основе Al2O3:С имеет ряд недостатков.

Так, для известного рабочего вещества Al2O3:С, помимо основного рабочего пика ТСЛ при температуре 130-190°С, имеются более высокотемпературные пики ТСЛ при температурах 450, 500 и 650°С. Причем интенсивность пика ТСЛ при 130-190°С оказывается тем выше, чем больше заполняются при облучении более глубокие ловушки, ответственные за высокотемпературные пики ТСЛ. Это обстоятельство усложняет и удлиняет процедуру подготовки к измерениям и проведение самих измерений. За счет влияния неконтролируемой заселенности глубоких ловушек в кристаллах Al2O3:C ТСЛ-информация, получаемая с использованием рабочего пика ТСЛ при 130-190°С, оказывается искаженной.

Недостатком известного рабочего вещества Al2O3:C для термолюминесцентной дозиметрии является также то, что линейный диапазон измеряемых доз (10-6-101 Гр) не превышает 10 Гр, что несколько сужает сферу применения известного рабочего вещества Al2O3:С для персональной термолюминесцентной дозиметрии в рамках ТЛД- метода.

Техническая проблема, решение которой обеспечивается при реализации заявляемого изобретения, связана с разработкой рабочего вещества, близкого по эффективному атомному номеру к эффективному атомному номеру костной ткани, имеющего основной рабочий пик ТСЛ при температуре не выше 100°С, не требующего сложных процедур подготовки к измерениям и поэтому пригодного для персональной оперативной термолюминесцентной дозиметрии рентгеновского и гамма-излучения, включая аварийную дозиметрию с пониженными временными и энергозатратами в более широком линейном диапазоне измеряемых доз радиации, чем у прототипа.

Достигаемый технический результат заключается, таким образом, в реализации назначения заявляемого вещества, то есть в возможности использовать его для персональной оперативной термолюминесцентной дозиметрии рентгеновского и гамма-излучения без использования при этом сложных процедур подготовки к измерениям с пониженными временными и энергозатратами в расширенном линейном диапазоне измеряемых доз радиации.

Технический результат достигается за счет того, что предложено рабочее вещество для термолюминесцентной дозиметрии рентгеновского и гамма-излучения на основе оксинитрида алюминия, активированного трехвалентными ионами церия с концентрацией 0,05-0,2 ат. %, - Al5O6N:Ce3+, которое, имея Zэфф, равный 11,23, близкий к Zэфф костной ткани, пригодно для оперативной персональной термолюминесцентной дозиметрии рентгеновского и гамма-излучения. Предложенное рабочее вещество обладает простой кривой высвечивания ТСЛ, содержащей один основной пик ТСЛ при температуре вблизи 80°С (пик ТСЛ с максимумом в синей области (λ=430 нм), обладает линейной зависимостью световыхода ТСЛ от дозы облучения в расширенном диапазоне доз (до 60-80 Гр), не требует при подготовке к измерениям сложных процедур дополнительного облучения высокими дозами радиации, а из-за низкой температуры рабочего пика ТСЛ снижает время и энергозатраты на получение и обработку дозиметрической информации.

Таким образом, при реализации изобретения решается проблема разработки нового состава рабочего вещества для термолюминесцентной дозиметрии на основе оксинитрида алюминия, активированного трехвалентными ионами церия с концентрацией 0,05-0,2 ат. %, - Al5O6N:Се3+, обладающего Zэфф, равным 11,23, близким к Zэфф костной ткани, и с кривой высвечивания ТСЛ, содержащей один основной пик ТСЛ вблизи 80°С, обладающего линейной дозовой зависимостью световыхода ТСЛ в диапазоне доз до 60-80 Гр. Последнее делает его пригодным для персональной аварийной дозиметрии. Показано, что на этапе синтеза, осуществляемого методами твердофазных реакций путем комбинации карботермического восстановления-азотирования с золь-гель технологией, наиболее эффективно внедрение допанта в виде оксида (СеО2), а не в виде ацетилацетоната церия (N.S. Akhmadullina, A.S. Lysenkov, A.A. Ashmarin et. al. Effect of dopant concentration on the phase composition and luminescence properties of Eu2+ - and Ce3+-doped AlONs. Inorganic materials. Vol. 51, issue 5, 2015. P. 473-481). Предложенное рабочее вещество может быть использовано и использовалось в виде порошкообразных образцов или в виде керамических образцов-таблеток диаметром 10 мм, толщиной (0,5-1,0) мм, получаемых твердофазовым спеканием в атмосфере азота без давления. Повышенный световыход ТСЛ предлагаемого рабочего вещества наблюдается в диапазоне концентраций церия 0,05-0,2 ат. %. Наибольший световыход ТСЛ предлагаемого рабочего вещества достигается при оптимальной концентрации активатора 0,1 ат. %.

То есть суть изобретения заключается в том, что в качестве рабочего вещества для ТЛД применяется оксинитрид алюминия, активированный трехвалентными ионами церия Al5O6N:Ce3+ с концентрацией активатора от 0,05 до 0,2 ат. %, для которого наличие только одного рабочего низкотемпературного пика ТСЛ при 80°С обеспечивает оперативный съем дозиметрической информации и не требует, как в случае прототипа, сложных процедур дополнительного облучения рабочих веществ высокими дозами радиации; при этом для предлагаемого рабочего вещества зафиксирован повышенный линейный диапазон измеряемых доз радиации до 60-80 Гр, что почти на порядок выше, чем у известного рабочего вещества.

Сущность изобретения поясняется чертежами, где изображено:

- на фиг. 1 - кривые ТСЛ Al5O6N:Се3+ (0,1 ат. %) и Al2O3,

- на фиг. 2 - кривые ТСЛ Al5O6N:Се3+ (0,1 ат. %) при разных дозах облучения,

- на фиг. 3 - дозовая зависимость ТСЛ Al5O6N:Ce3+ (0,1 ат. %),

- на фиг. 4 - кривые ТСЛ Al5O6N:Ce3+ (0,05 ат. %) при разных дозах облучения,

- на фиг. 5 - дозовая зависимость ТСЛ Al5O6N:Ce3+ (0,05 ат. %),

- на фиг. 6 - кривые ТСЛ Al5O6N:Ce3+ (0,2 ат. %) при разных дозах облучения,

- на фиг. 7 - дозовая зависимость ТСЛ Al5O6N:Се3+ (0,2 ат. %).

Пример 1. Рабочее вещество для термолюминесцентной дозиметрии рентгеновского и гамма-излучения включает в свой состав оксинитрид алюминия Al5O6N, допированный ионами Се3+ с концентрацией 0,1 ат. % относительно алюминия.

Рабочее вещество Al5O6N:Ce3+ получено обжигом смеси оксида алюминия Al2O3, нитрида алюминия AlN и оксида церия CeO2 в соотношении, соответствующем стехиометрии получаемого материала, в токе азота при температуре 1600°С. Оксид алюминия для синтеза получали золь-гель методом: раствор изопропоксида алюминия в изопропаноле концентрацией 0.8 моль/л подвергали гидролизу посредством добавления равного объема дистиллированной воды с последующей стабилизацией лимонной кислотой (соотношение алюминий : кислота = 2:1). Полученный гель сушили при температуре 60°С в течение 8 часов, после чего отжигали при температуре 750°С в течение 3 часов. Полученный ксерогель измельчался, смешивался и перетирался с нитридом алюминия и оксидом церия и отжигался, как указано выше.

Измерение интенсивности термостимулированной люминесценции (ТСЛ) проводилось при помощи люминесцентного спектрометра Perkin Elmer LS55 в режиме Time Drive (измерение интенсивности от времени). Измерение проводилось в полосе максимума люминесценции образцов, λ=430 нм. Специальный держатель для образца снабжен нагревательным элементом с возможностью линейного нагрева до температуры 600°С и термопарой. Управление нагревом, измерение температуры и контроль линейности нагрева осуществлялись при помощи системы National Instruments PXI 1042Q и программой в среде LabView. После измерения зависимости интенсивности ТСЛ от времени и температуры от времени строилась кривая термостимулированной люминесценции I(T). Измерения кривых ТСЛ для новых разработанных рабочих веществ проводились в научно-образовательном центре «Наноматериалы и нанотехнологии» Уральского Федерального Университета по методу А.С. Вохминцева и др. (Vokhmintsev A.S., Minin М.G., Chaykin D.V., Weinshtein I.A. A High-Temperature Accessory for Measurements of the Spectral Characteristics of Thermoluminescence. Instruments and Experimental Techniques, 2014. P. 369-373).

Кривая ТСЛ на примере состава Al5O6N:Се3+ (0,1%) приведена на фиг. 1 в сравнении с кривой ТСЛ для прототипа Al2O3:С (ТЛД-500К). Кривые ТСЛ для Al5O6N:Ce3+ (0,1%) для доз 20, 40, 60 Гр рентгеновского излучения (U=48 кВ, I=50 μА) приведены на фиг. 2, а дозовая зависимость световыхода рабочего вещества приведена на фиг. 3. Аналогичные кривые наблюдаются для случая облучения рабочих веществ гамма-излучением от изотопного источника 137Cs. Предлагаемое рабочее вещество для ТЛД по интенсивности основного пика ТСЛ (фиг. 1) уступает прототипу в 1,6 раза, однако по величине интегральной запасенной светосуммы не уступает таковой для прототипа. Наличие основного рабочего низкотемпературного (80°С) пика ТСЛ у предлагаемого рабочего вещества позволяет более оперативно получать дозиметрическую информацию и снизить энергозатраты на обработку информации, не требует при подготовке к измерениям сложных процедур дополнительного облучения дозиметрических датчиков высокими дозами радиации. Преимуществом предлагаемого рабочего вещества перед прототипом является повышенный диапазон линейности дозовой зависимости световыхода ТСЛ. Если для ТЛД-500К реализуется диапазон линейной зависимости с верхней границей в 10 Гр, то для предлагаемого рабочего вещества верхняя граница линейного диапазона увеличивается до 60-80 Гр.

Пример 2. Рабочее вещество для термолюминесцентной дозиметрии рентгеновского и гамма-излучения представляет собой оксинитрид алюминия Al5O6N, дотированный ионами Се3+ с концентрацией 0,05 ат. % относительно алюминия.

Рабочее вещество для ТЛД получено таким же способом, как и в примере 1. Кривые ТСЛ при дозах радиационного воздействия 20, 40, 60 Гр приведены для этого вещества на фиг. 4, а дозовая зависимость световыхода для рабочего вещества Al5O6N:Ce3+ (0,05%) приведена на фиг. 5. Наличие низкотемпературного пика ТСЛ у предлагаемого рабочего вещества позволяет более оперативно получать дозиметрическую информацию и снизить энергозатраты на обработку информации. Дозовая зависимость световыхода ТСЛ отличается высокой степенью линейности в повышенном по сравнению с прототипом диапазоне доз. Если для ТЛД-500К реализуется диапазон линейной зависимости с верхней границей в 10 Гр, то для предлагаемого рабочего вещества верхняя граница линейного диапазона увеличится до 60-80 Гр.

Пример 3. Рабочее вещество для термолюминесцентной дозиметрии рентгеновского и гамма-излучения представляет собой оксинитрид алюминия Al5O6N, допированный ионами Се3+ с концентрацией 0,2 ат. % относительно алюминия.

Рабочее вещество для ТЛД получено таким же способом, как и в примерах 1 и 2. Кривые ТСЛ для материала Al5O6N:Ce3+ (0,2%) при дозах радиационного воздействия 20, 40, 60 Гр приведены на фиг. 6, а дозовая зависимость световыхода этого вещества приведена на фиг. 7. Наличие рабочего пика ТСЛ у предлагаемого рабочего вещества при более низкой температуре, чем у прототипа, позволяет более оперативно получать дозиметрическую информацию и снизить время и энергозатраты на обработку информации. Дополнительным преимуществом предлагаемого рабочего вещества перед прототипом является повышенный диапазон линейности дозовой зависимости световыхода ТСЛ. Если для ТЛД-500К реализуется диапазон линейной зависимости с верхней границей в 10 Гр, то для предлагаемого рабочего вещества верхняя граница линейного диапазона достигает 60-80 Гр.


РАБОЧЕЕ ВЕЩЕСТВО ДЛЯ ТЕРМОЛЮМИНЕСЦЕНТНОЙ ДОЗИМЕТРИИ РЕНТГЕНОВСКОГО И ГАММА-ИЗЛУЧЕНИЯ
РАБОЧЕЕ ВЕЩЕСТВО ДЛЯ ТЕРМОЛЮМИНЕСЦЕНТНОЙ ДОЗИМЕТРИИ РЕНТГЕНОВСКОГО И ГАММА-ИЗЛУЧЕНИЯ
РАБОЧЕЕ ВЕЩЕСТВО ДЛЯ ТЕРМОЛЮМИНЕСЦЕНТНОЙ ДОЗИМЕТРИИ РЕНТГЕНОВСКОГО И ГАММА-ИЗЛУЧЕНИЯ
РАБОЧЕЕ ВЕЩЕСТВО ДЛЯ ТЕРМОЛЮМИНЕСЦЕНТНОЙ ДОЗИМЕТРИИ РЕНТГЕНОВСКОГО И ГАММА-ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 315.
20.07.2014
№216.012.e143

Способ получения шихты для композиционного материала на основе карбоната кальция и гидроксиапатита и/или карбонатгидроксиапатита для восстановления костной ткани при реконструктивно-пластических операциях

Изобретение относится к способу получения шихты для композиционного материала на основе карбоната кальция - гидроксиапатита и/или карбонатгидроксиапатита для восстановления костной ткани при реконструктивно-пластических операциях. Заявленный способ включает получение шихты для спекания...
Тип: Изобретение
Номер охранного документа: 0002523453
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e5c8

Способ увеличения прочности цементов для медицины

Изобретение относится к области медицины и касается цементных материалов для пластической реконструкции поврежденных костных тканей. Описаны кальцийфосфатные цементные материалы, которые получают на основе порошков тетракальциевого фосфата и/или трикальцийфосфата. В качестве цементной жидкости...
Тип: Изобретение
Номер охранного документа: 0002524614
Дата охранного документа: 27.07.2014
20.08.2014
№216.012.eaef

Способ переработки лопаритового концентрата

Изобретение относится к переработке лопаритового концентрата. Способ включает измельчение концентрата и пирометаллургическое вскрытие концентрата в два этапа. На первом этапе проводят углетермическое восстановление натрия из концентрата путем испарения натрия при давлении p=10-50 Па,...
Тип: Изобретение
Номер охранного документа: 0002525951
Дата охранного документа: 20.08.2014
20.11.2014
№216.013.0683

Способ получения порошковых магнитотвердых сплавов на основе системы железо-хром-кобальт

Изобретение относится к порошковой металлургии, в частности к получению постоянных магнитов из магнитотвердых сплавов системы железо-хром-кобальт. Шихту, содержащую порошки железа, хрома, кобальта, легирующие добавки и до 15 мас.% нанопорошков железа, хрома и кобальта, формуют с получением...
Тип: Изобретение
Номер охранного документа: 0002533068
Дата охранного документа: 20.11.2014
20.02.2015
№216.013.2ae6

Способ получения пористого керамического матрикса на основе карбоната кальция для заполнения костных дефектов при реконструктивно-пластических операциях

Изобретение относится к области медицины и касается керамических материалов для пластической реконструкции поврежденных костных тканей. Описан способ пропитки пористых полимерных матриц жидким шликером на основе порошка карбоната кальция, содержащим спекающие добавки карбоната или карбонатов...
Тип: Изобретение
Номер охранного документа: 0002542439
Дата охранного документа: 20.02.2015
27.04.2015
№216.013.46d6

Состав жидкости для получения пористых керамических образцов на основе фосфатов кальция для костной инженерии при 3d формовании и/или 3d печати

Изобретение относится к материалам, пригодным для метода 3D формования и/или 3D печати, и может быть использовано для получения формованных изделий на основе фосфатов кальция, применяемых в медицине для костной инженерии в качестве матриксов, обладающих биологической совместимостью и...
Тип: Изобретение
Номер охранного документа: 0002549638
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4c40

Способ получения оксида кобальта соо для производства твердых сплавов

Изобретение относится к гидрометаллургии цветных металлов, а именно к получению оксида кобальта CoO для производства твердых сплавов типа WC-Co. Оксид кобальта осаждают из азотнокислого раствора кобальтсодержащего сырья путем обработки в автоклаве гидроксидом аммония (NHOH) при температуре...
Тип: Изобретение
Номер охранного документа: 0002551034
Дата охранного документа: 20.05.2015
27.06.2015
№216.013.5adf

Способ получения композиционного материала на основе фосфата кальция

Изобретение относится к области медицины и представляет собой способ получения композиционного материала на основе фосфата кальция, заключающийся в том, что получают частицы фосфата кальция в хитозановой матрице путем их осаждения in situ в растворе, содержащем высокомолекулярный хитозан и...
Тип: Изобретение
Номер охранного документа: 0002554804
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5ae6

Способ получения пористых хитозановых губок, содержащих фосфаты кальция, для заполнения костных дефектов

Изобретение относится к медицине. Описан способ получения композиционного материала на основе хитозана, содержащего аспарагиновую или глутаминовую аминокислоты в количестве от 2 до 5% мас., а также фосфаты кальция с соотношением Ca/P от 1,0 до 1,67. Способ заключается в барботировании через...
Тип: Изобретение
Номер охранного документа: 0002554811
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5cff

Способ получения пористых керамических гранул на основе карбоната кальция и гидроксиапатита и/или карбонатгидроксиапатита для заполнения костных дефектов при реконструктивно-пластических операциях

Изобретение относится к области медицины и касается керамических материалов для реконструктивно-пластических операций при поврежденных костных тканях. Описаны материалы на основе системы карбонат кальция - гидроксиапатит и/или каронатгидроксиапатит, содержащие от 20 до 80 масс. % карбоната...
Тип: Изобретение
Номер охранного документа: 0002555348
Дата охранного документа: 10.07.2015
Показаны записи 11-20 из 38.
25.08.2017
№217.015.bf59

Способ диагностики римановой кривизны решетки нанотонких кристаллов

Использование: для диагностики римановой кривизны решетки нанотонких кристаллов. Сущность изобретения заключается в том, что способ диагностики римановой кривизны решетки нанотонких кристаллов включает получение электронно-микроскопического изображения нанотонкого кристалла в светлом поле,...
Тип: Изобретение
Номер охранного документа: 0002617151
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c14a

Способ получения нитевидного нитрида алюминия

Изобретение относится к химической технологии получения нитевидных нанокристаллов нитрида алюминия (или нановискеров) и может быть использовано при создании элементов нано- и оптоэлектроники, а также люминесцентно-активных наноразмерных сенсоров медико-биологического профиля. Сущность...
Тип: Изобретение
Номер охранного документа: 0002617495
Дата охранного документа: 25.04.2017
26.08.2017
№217.015.d4d9

Рабочее вещество для термоэкзоэлектронной дозиметрии высокоэнергетического электронного излучения

Изобретение относится к термоэкзоэлектронной (ТЭЭ) дозиметрии электронного излучения и может быть пригодно для высокодозной дозиметрии электронного излучения высоких энергий (до 10 МэВ). Рабочее вещество для термоэкзоэлектронной дозиметрии электронного излучения высоких энергией на основе...
Тип: Изобретение
Номер охранного документа: 0002622240
Дата охранного документа: 13.06.2017
29.12.2017
№217.015.f410

Способ получения диссипативных структур

Использование: для получения диссипативных структур. Сущность изобретения заключается в том, что способ получения диссипативной структуры в аморфной пленке в виде нанотонких кристаллов с упругим ротационным искривлением решетки включает нагревание и последующее охлаждение, где предварительно на...
Тип: Изобретение
Номер охранного документа: 0002637396
Дата охранного документа: 04.12.2017
10.05.2018
№218.016.46b8

Способ рентгенофлуоресцентного определения концентрации цинка в антикоррозионных эпоксидных покрытиях протекторного типа

Использование: для рентгенофлуоресцентного определения концентрации цинка в антикоррозионных эпоксидных покрытиях протекторного типа. Сущность изобретения заключается в том, что определение фактического содержания элементарного цинка в высоконаполненных эпоксидных антикоррозионных покрытиях...
Тип: Изобретение
Номер охранного документа: 0002650608
Дата охранного документа: 16.04.2018
29.05.2018
№218.016.56a7

Способ повышения электрической и механической прочности вакуумно-плотных окон ввода/вывода свч-излучений (варианты)

Изобретение относится к электронной и ускорительной технике для повышения электрической и механической прочности вакуумно-плотных окон ввода и/или вывода энергии СВЧ-излучения в волноводные ускоряющие структуры и может быть использовано при создании/эксплуатации мощных современных ускорителей...
Тип: Изобретение
Номер охранного документа: 0002654582
Дата охранного документа: 22.05.2018
09.08.2018
№218.016.7908

Термолюминофор

Изобретение относится к области низкотемпературной дозиметрии рентгеновского, а также смешанного электронного и гамма-излучения с использованием термолюминесцентных датчиков – термолюминофоров. Предложен термолюминофор на основе фторида натрия, который дополнительно содержит фторид лития и...
Тип: Изобретение
Номер охранного документа: 0002663296
Дата охранного документа: 03.08.2018
11.10.2018
№218.016.90c4

Термолюминофор

Изобретение относится к области низкотемпературной термолюминесцентной дозиметрии рентгеновского и гамма-излучения. Термолюминофор для низкотемпературной ТСЛ-дозиметрии на основе алона AlON, синтезированного из химически чистого α-AlO и нитрида алюминия, содержащего ряд примесей, при этом имеет...
Тип: Изобретение
Номер охранного документа: 0002668942
Дата охранного документа: 05.10.2018
26.01.2019
№219.016.b479

Способ получения фотокаталитического диоксида титана модификации анатаз и брукит на поверхности керамического изделия из рутила, полученного окислительным конструированием

Изобретение может быть использовано при получении фотокатализаторов различной формы на основе диоксида титана для фотокаталитической очистки воды и воздуха от органических соединений. Способ получения фотокаталитического диоксида титана TiO основывается на поверхностной модификации фазы рутила,...
Тип: Изобретение
Номер охранного документа: 0002678206
Дата охранного документа: 24.01.2019
01.03.2019
№219.016.ceb7

Способ получения спеченных изделий на основе нитрида кремния

Изобретение относится к области получения изделий из высокотемпературных конструкционных материалов на основе нитрида кремния, которые могут использоваться в машиностроении, авиации и других высокотехнологических отраслях промышленности. Способ получения спеченных изделий на основе нитрида...
Тип: Изобретение
Номер охранного документа: 0002458023
Дата охранного документа: 10.08.2012
+ добавить свой РИД