×
09.06.2018
218.016.5b1f

Результат интеллектуальной деятельности: Способ регистрации электромагнитного излучения в ИК, СВЧ и терагерцовом диапазонах длин волн

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники и касается способа регистрации электромагнитного излучения в ИК, СВЧ и терагерцовом диапазонах длин волн. Способ включает в себя направление электромагнитного излучения на чувствительный элемент приемника излучения, преобразование его в тепловую или другой вид энергии и ее регистрацию. Перед чувствительным элементом приемника, со стороны падающего на него излучения, размещают диэлектрическое устройство, формируют непосредственно на его выходе локальную область сконцентрированного электромагнитного поля с поперечными размерами порядка λ/3-λ/4, где λ - длина волны падающего излучения, и помещают в эту локальную область чувствительный элемент приемника. Технический результат заключается в повышении чувствительности и быстродействия приемников электромагнитного излучения. 5 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и касается нового способа регистрации электромагнитного излучения в ИК, СВЧ и терагерцовом диапазоне частот (0.3-10 ТГЦ) и может быть использовано в высокочувствительных приемниках электромагнитного излучения в различных диапазонах.

Для регистрации электромагнитного излучения в ИК, СВЧ диапазонах, включая терагерцовый, используются как радиотехнические способы, так и способы, применяемые в оптическом диапазоне.

Известны способы регистрации электромагнитного поля, использующие непрерывные среды, заключающиеся в том, что специальные среды (жидкие кристаллы, люминофоры, биолюминесцентные бактерии и т.д.) изменяют свои оптико-физические свойства (окраска, показатель преломления, коэффициент прохождения и т.д.) при воздействии энергии электромагнитного излучения и регистрации оптических характеристик специальных сред.

В качестве чувствительных элементов могут применяться жидкие кристаллы (Долгов В.М., Лихолетова Л.Г. О применении термооптических эффектов в жидких кристаллах для визуализации электромагнитных полей // Изв. Высших учебных заведений «Радиофизика», т. ХХVII, № 4, 1979, с. 480-487; Giannini F, Maltese P., Sorrentino R. Liquid crystal technique for field detection in microwave integrated circuitry // Alta Frequensa, vol. 46, N 4, pp. 170-178, 1977), получая тепловой рельеф, образованный вследствие поглощения некоторой части энергии соответствующим слоем термоиндикатора.

Для регистрации электромагнитного излучения поля применяют чувствительные элементы на основе из кристаллофосфоров, люминофоров (Бажулин А.П., Ирисова Н.А., Сасоров В.А., Тимофеев Ю.П., Фридман С.А. Радиовизор – прибор для визуального наблюдения и регистрации полей ИК-СВЧ излучения // Вестник АН СССР, 1973, № 12, с. 122-132; Бажулин А.П., Виноградова Е.А., Ирисова Н.А., Митрофанова Н.В., Тимофеев Ю.П., Фридман С.А., Щаенко В.В. Применение температурно чувствительных кристаллофосфоров для регистрации электромагнитного излучения // Известия АН СССР сер. Физическая, т. 35, № 7, 1971, с. 1450). Чувствительность таких приемников излучения определяется температурной чувствительностью люминофоров и условиями поглощения регистрируемого СВЧ излучения и отводом тепла с экрана.

Известен способ регистрации ИК-СВЧ излучения (Патент РФ № 486226) с помощью размещаемого в термостате экрана из люминофора с тепловым тушением, который одновременно облучают постоянным ультрафиолетовым и исследуемым ИК-СВЧ излучением.

Известен способ пространственного распределения плотности потока энергии СВЧ излучения (Патент РФ 1128198), заключающийся в воздействии на пленочный датчик, на котором индуцируют изотерму, снимают изотерму на фотопленку и определяют плотность потока энергии СВЧ излучения в границах изотермы.

Известен способ определения воздействия электромагнитного излучения с помощью биолюминесценции бактерий (патент РФ № 2291196), включающий регистрацию физических параметров данного объекта до и после внешнего воздействия, по сравнению которых судят о степени воздействия, и в качестве физического параметра используют величину светового потока от них, отличающийся тем, что осуществляют воздействие электромагнитным излучением частотой 42 ГГц, а в качестве тест-системы используют бактерии Photobacterium leognathi, штамм 54, которые при увеличении времени экспозиции изменяют характер свечения.

В данных способах чувствительным элементом является специальная среда, помещенная в специальное устройство, обеспечивающее условия функционирования специальной среды. Вместе чувствительный элемент и специальное устройство образуют приемник электромагнитного излучения.

Недостатками способов регистрации электромагнитного излучения, использующих непрерывные среды, являются их низкие чувствительность и быстродействие.

Исходя из способов действия, приемники электромагнитного излучения могут быть разделены на три характерные группы (Кубарев В.В. Детекторы терагерцового излучения // Сб. трудов Первого рабочего совещания «Генерация и применение терагерцового излучения», Новосибирск, 24-25 ноября 2005 г., Институт ядерной физики им. Г.И. Будкера, 2006 – 35-40 с.). Первая группа – это детекторы теплового типа (термопары, термодатчики и основанные на них калориметры, пироэлектрические детекторы, оптико-акустические детекторы, микроболометры, охлаждаемые и сверхпроводящие болометры).

Способ их действия заключается в передаче тепла от широкополосного поглотителя, возникающего при облучении его электромагнитным излучением, к различным чувствительным элементам. Характерной особенностью этих приемников является широкий диапазон длин волн и, за исключением специальных микроконструкций, низкое или среднее временное разрешение.

Детекторы теплового типа (термопары и полупроводниковые датчики), несмотря на сравнительно низкую чувствительность и временное разрешение, могут работать в широком спектральном диапазоне: от 1 мкм до 1000 мкм и более. Сигнал с этих детекторов пропорционален температуре. Отечественная промышленность выпускала калориметры ИМО-2, ИМО-4С.

Термоэлементы представляют собой термопару с малой теплоемкостью и малой поверхностью, чтобы значительно изменять свою температуру при поглощении падающего излучения. При этом возникает термо э.д.с., которая прямо пропорциональна приращению температуры и, следовательно, поглощенной мощности.

Пироэлектрические детекторы [Техника субмиллиметровых волн. Колл. авторов под ред. Р.А. Валитова - М.: Советское радио, 1969, 480 с., с. 123-158] основаны на пироэффекте – зависимости спонтанной поляризации некоторых кристаллов (ТГС, LiTaO3, LiNiO3, BaTiO3 и др.) от температуры. Нагрев кристалла внешним излучением вызывает перетекание зарядов с его внешних металлических электродов через нагрузочное сопротивление. Отечественная промышленность выпускает малогабаритные детекторы МГ-30 и МГ-33 с приемным элементом 1×1 мм2. Хотя по паспорту детекторы сертифицированы до длин волн 20 мкм, они обладают хорошей чувствительностью и в субмиллиметровом диапазоне длин волн. За рубежом такие детекторы (но с большей приемной площадкой) выпускаются рядом фирм, например фирмой Molectron Detector Inc.

Чувствительный элемент детектора имеет обычно вид дисков, стержней, пластинок. Плоскости чувствительного элемента металлизируют, получая электроды для снятия заряда. Чувствительный элемент может размещаться на торце волновода или на торце рупорной антенны.

Несколько более высокую чувствительность и лучшую неселективность, чем пироприемники, имеют оптико-акустические детекторы. Оптико-акустический приемник работает на принципе расширения газа при его нагреве [Техника субмиллиметровых волн. Колл. авторов под ред. Р.А. Валитова - М.: Советское радио, 1969, 480 с., с. 123-158]. Электромагнитная энергия поглощается алюминиевой пленкой, тепло которой передается малому объему газа, находящегося в камере с подвижной зеркальной мембраной, которая изгибается при нагреве. Оптический луч, направленный на отражающий излучение слой мембраны, отражается и регистрируется. Изменение освещенности фотоэлемента приводит к появлению сигнала. Недостатком таких детекторов является относительно низкое быстродействие, большая чувствительность к различным перегрузкам, увеличение габаритов детектора. Отечественная промышленность выпускает детекторы типа ОАП-7. Эти же детекторы за рубежом продаются фирмой QMC Instruments Ltd.

Принцип действия болометров основан на изменении сопротивления тонкой металлической нити или тонкой пленки при нагревании поглощенной электромагнитной энергии. Чувствительный элемент болометра может располагаться на торце рупорной антенны или торце волновода.

Резкий скачок в увеличении чувствительности болометров дает его охлаждение до температур жидкого гелия и ниже. Хорошо известным представителем этого класса приборов являются Si-болометры фирмы Infrared Lab., которые за рубежом используются в экспериментах со слабым терагерцовым излучением фемтосекундных лазеров. В сверхпроводящих болометрах используется сильная нелинейность сопротивления сверхпроводника при выходе из сверхпроводящего состояния (Кубарев В.В. Детекторы терагерцового излучения // Сб. трудов Первого рабочего совещания «Генерация и применение терагерцового излучения», Новосибирск, 24-25 ноября 2005 г., Институт ядерной физики им. Г.И. Будкера, 2006 – 35-40 с.; Техника субмиллиметровых волн. Колл. авторов под ред. Р.А. Валитова - М.: Советское радио, 1969, 480 с.)

Способ действия второй группы приемников электромагнитного излучения основан на эффекте фотопроводимости (Кубарев В.В. Детекторы терагерцового излучения // Сб. трудов Первого рабочего совещания «Генерация и применение терагерцового излучения», Новосибирск, 24-25 ноября 2005 г., Институт ядерной физики им. Г.И. Будкера, 2006 – 35-40 с.) (фотопроводимость на мелких примесных уровнях, эффекты нагрева свободных электронов в зоне проводимости, резонансная фотопроводимость на переходах между уровнями Ландау полупроводника в магнитном поле). Эта группа характеризуется хорошей чувствительностью и лучшим временным разрешением. Однако ее существенным недостатком является необходимость охлаждения до гелиевых температур.

Детекторы на основе фотопроводимости имеют немного меньшую чувствительность, но гораздо лучшее временное разрешение, чем охлаждаемые болометры. Эти детекторы перекрывают диапазон длин волн от инфракрасного до сантиметрового. Для этого используются эффекты собственной и примесной фотопроводимости, фотопроводимость «горячих» электронов в зоне проводимости. В дальнем инфракрасном и миллиметровом диапазонах хорошо работает n-InSb детектор на «горячих» электронах в зоне проводимости. При наложении магнитного поля этот детектор приобретает узкополосность из-за квантования энергетических уровней (уровни Ландау). Смещать пик чувствительности детектора по длинам волн можно изменением величины магнитного поля.

Чувствительный элемент детектора – кристалл полупроводникового материала InSb, к которому припаиваются выводы и помещается в гелиевый криостат. Падающее излучение через прозрачное окно криостата и световод направляется на чувствительный элемент [Техника субмиллиметровых волн. Колл. авторов под ред. Р.А. Валитова - М.: Советское радио, 1969, 480 с., с. 123-158].

В третью группу можно выделить самые быстродействующие детекторы, основанные на диодах Шотки микронного и субмикронного размера. Эти малогабаритные детекторы работают обычно при комнатной температуре. Основные недостатки этой группы – неустойчивость микродиодов к различным перегрузкам и довольно средняя чувствительность в низкочастотном диапазоне сигнальной частоты из-за фликкер-шумов.

Детекторы на основе диодов Шоттки имеют граничную частоту до ≈5-6 ТГц (Кубарев В.В. Детекторы терагерцового излучения // Сб. трудов Первого рабочего совещания «Генерация и применение терагерцового излучения», Новосибирск, 24-25 ноября 2005 г., Институт ядерной физики им. Г.И. Будкера, 2006 – 35-40 с.) и среднюю чувствительность в режиме видеодетектора. Детектор этого типа не работоспособен без какой-либо антенны, собирающей заметную долю падающего излучения.

Известен способ регистрации электромагнитного излучения [Патент РФ № 1478918], заключающийся в освещении подзатворной области полевого транзистора с р-n переходом или диодом Шоттки, регистрированным излучением, оценку интенсивности и временных характеристик по току.

Для регистрации СВЧ излучения используются детекторы с точечным контактом [Техника субмиллиметровых волн. Колл. авторов под ред. Р.А. Валитова - М.: Советское радио, 1969, 480 с., с. 123-158], например Д-407. Полупроводниковые диоды с точечным контактом являются весьма чувствительными, простыми и быстродействующими детекторными устройствами. Эти диоды используются в качестве видеодетекторов и смесителей до длин волн примерно 0,3 мм. Чувствительным элементом детектора является контакт между заостренной металлической иглой и поверхностью полупроводника. Малая площадь контакта обеспечивает малую емкость перехода. Чувствительный элемент располагают в отрезке волновода. Одним из недостатков обычных точечных диодов является нестабильность их характеристик и чувствительность к перегрузкам.

Рассмотренные способы регистрации электромагнитного излучения В ИК, СВЧ, включая терагерцовый диапазон длин волн имеют низкую чувствительность, обусловленную неэффективностью преобразования электромагнитной энергии на чувствительный элемент приемника.

В качестве ближайшего аналога (прототипа) выбран описанный в техническом решении (патент США № 5717208) способ регистрации электромагнитного излучения, заключающийся в том, что регистрируемое излучение фокусируют линзой и направляют на приемник излучения и осуществляют его регистрацию.

Недостатком данного способа является низкая чувствительность приемников излучения, реализующих способ, обусловленная размером области фокусировки излучения на чувствительный элемент приемника излучения, ограниченного дифракционным пределом формирующей системы.

Для повышения быстродействия размеры чувствительного элемента стремятся уменьшить, и на сегодняшний день характерные размеры приемного элемента меньше характерных поперечных размеров волновода, или конца рупорной антенны, или поперечного размера области фокусировки линзы. Поэтому значительная часть энергии падающего электромагнитного излучения на приемник излучения не попадает на чувствительный элемент приемника.

Известно, что диаметр пятна Эйри h определяется так называемым критерием Рэлея, который устанавливает предел концентрации (фокусировки) электромагнитного поля с помощью оптических систем [Борн М., Вольф Э., Основы оптики // -М.: Наука. – 1970]:

h=2.44 λFD-1,

где λ - длина волны излучения, D - диаметр первичного зеркала или линзы оптической системы, F - фокусное расстояние оптической системы.

Предельный минимальный размер пятна Эйри стремится к величине λ/2, но для реальных фокусирующих систем эта величина намного больше.

Задачей, решаемой предлагаемым способом, является повышение чувствительности приемника электромагнитного излучения, за счет повышения концентрации электромагнитного излучения на чувствительном элементе приемника, превышающей дифракционный предел.

Технический результат, который может быть получен при выполнении заявленного способа – повышение чувствительности и быстродействия приемников электромагнитного излучения.

Поставленная задача решается благодаря тому, что в способе регистрации электромагнитного излучения в ИК, СВЧ и терагерцовом диапазонах длин волн, включающем направление электромагнитного излучения на чувствительный элемент приемника излучения, преобразование в тепловую или другой вид энергии, и осуществление его регистрации, новым является то, что перед чувствительным элементом приемника, со стороны падающего на него излучения, размещают диэлектрическое устройство, формируют непосредственно на его выходе локальную область сконцентрированного электромагнитного поля с поперечными размерами порядка λ/3 - λ/4, где λ длина волны падающего излучения, помещают в эту область чувствительный элемент приемника, кроме того, поперечный размер локальной области сконцентрированного электромагнитного излучения выбирают не более поперечного размера чувствительного элемента приемника излучения, кроме того, относительный коэффициент преломления материала диэлектрического устройства выбирают в диапазоне от 1.2 до 1.8, кроме того, характерный размер диэлектрического устройства выбирают не менее λ/2, кроме того, выбирают форму диэлектрического устройства в виде осесимметричного тела, например шара, или усеченного шара, или диска, или цилиндра, или конуса, кроме того, выбирают форму диэлектрического устройства в виде неосесимметричного тела, например куба или пирамиды.

Преодолеть дифракционный предел в оптике можно различными способами, например с помощью эффекта «фотонной наноструи» (например, см. A.Heifetz et al. Experimental confirmation of backscattering enhancement induced by a photonic jet // Appl.Phys.Lett., 89, 221118 (2006)). Поперечный размер фотонной наноструи составляет 1/3 … 1/4 длины волны излучения, что меньше дифракционного предела классической линзы, и возможна концентрация падающего излучения в область с малыми поперечными размерами, меньшими, чем сечение волновода соответствующего диапазона.

При этом формировать локальные области концентрирования электромагнитной энергии вблизи поверхности мезоразмерных диэлектрических частиц возможно с помощью частиц различной формы, например в форме сферы, куба, пирамиды, при облучении их электромагнитной волной с плоским волновым фронтом и т.д. [V. Pacheco Репа, М. Beruete, I.V. Minin, О.V. Minin. Terajets produced by 3D dielectric cuboids. Appl. Phys. Lett. 105. 084102 (2014); I.V. Minin, О.V. Minin, Geintz Y.E. Localized EM and photonic jets from non-spherical and no-symmetrical dielectric mesoscal objects: brief review. Annalen der Physik (AdP), May 2015 DOI: 10.1002/andp.201500132; I.V. Minin, О.V. Minin. Diffractive optics and nanophotonics: Resolution below the diffraction limit. Springer, 2016].

В результате проведенных исследований было обнаружено, что диэлектрическое устройство, например, в форме осесимметричного тела, например шара, или усеченного шара, или диска, или цилиндра, или конуса, или куба, или пирамиды, с характерным размером не менее λ/2, λ - длина волны используемого излучения, с относительным коэффициентом преломления материала, лежащим в диапазоне от 1.2 до 1.8, при ее облучении электромагнитной волной со сферически сходящимся волновым фронтом или волной с плоским фронтом, формируют на ее внешней границе с противоположной стороны от падающего излучения локальную область с повышенной интенсивностью излучения с поперечными размерами порядка λ/3-λ/4 и протяженностью не более 10 λ.

При характерных размерах диэлектрического устройства менее λ/2 локальная концентрация электромагнитного поля вблизи поверхности устройства не возникает.

При относительном коэффициенте преломления материала диэлектрического устройства менее 1.2 поперечный размер локальной области концентрации поля становится порядка дифракционного предела и может быть обеспечен формирующей системой, например линзой. При относительном коэффициенте преломления материала диэлектрического устройства более 1.8 локальная концентрация электромагнитного поля возникает внутри тела диэлектрического устройства и не может быть использовано для облучения чувствительного элемента приемного устройства.

На Фиг. 1 показан пример концентрирования электромагнитной энергии диэлектрическим устройством в виде шара диаметром 4 λ, где λ - длина волны падающего излучения, и относительным коэффициентом преломления материала, равным 1.46.

На Фиг. 2 приведены примеры концентрирования электромагнитной энергии диэлектрическим устройством в виде осесимметричного конуса, в виде призмы, шестигранной призмы, деформированного куба, куба, из материала с относительным показателем преломления, равным 1.6, и характерным размером, равным длине волны освещающего излучения и соответствующих областей концентрации электромагнитной энергии на выходе диэлектрического устройства.

На фиг. 3 приведен пример схемы устройства, реализующего предлагаемый способ.

Обозначения: 1 – источник электромагнитного излучения, 2 – диэлектрическое устройство, 3 – область концентрации электромагнитного поля с субволновыми размерами фокусировки, 4 – чувствительный элемент приемного устройства, 5 – регистрирующее устройство.

Устройство, реализующее способ, работает следующим образом. Источник электромагнитного излучения 1, соответствующего диапазона длин волн, излучает электромагнитное излучение в направлении диэлектрического устройства 2, выполненного, например, в форме шара или конуса, куба или пирамиды, диска или цилиндра, выполненного из материала с относительным коэффициентом преломления, находящимся в диапазоне от 1.2 до 1.8, и характерным размером не менее половины длины волны падающего излучения. Диэлектрическое устройство 2 преобразует и концентрирует падающую электромагнитную волну со сходящимся сферическим волновым фронтом или плоским волновым фронтом в локальную область, формируемую непосредственно у внешней границы диэлектрического устройства 2 по направлению распространения электромагнитного излучения 3, с поперечными размерами порядка λ/3 – λ/4. За счет дополнительной концентрации электромагнитного поля в этой области повышается интенсивность излучения на 5-7 дБ, для диэлектрического устройства с характерным размером 0.5λ - λ. При больших размерах диэлектрического устройства концентрация электромагнитного излучения увеличивается еще сильнее. Чувствительный элемент приемного устройства 4 размещается в области максимальной концентрации излучения 3. Чувствительным элементом 4 осуществляется преобразование падающего электромагнитного излучения, сформированного источником излучения 1, в тепловую или другой вид энергии, и осуществляется его регистрация устройством регистрации 5, например вольтметром.

Использование предлагаемого технического решения позволяет просто создавать системы регистрации электромагнитного излучения в ИК, СВЧ и терагерцовом диапазонах длин волн с высокой чувствительностью, уменьшить размеры чувствительных элементов, а значит, и повысить быстродействие приемников электромагнитного излучения.


Способ регистрации электромагнитного излучения в ИК, СВЧ и терагерцовом диапазонах длин волн
Способ регистрации электромагнитного излучения в ИК, СВЧ и терагерцовом диапазонах длин волн
Способ регистрации электромагнитного излучения в ИК, СВЧ и терагерцовом диапазонах длин волн
Способ регистрации электромагнитного излучения в ИК, СВЧ и терагерцовом диапазонах длин волн
Источник поступления информации: Роспатент

Показаны записи 11-20 из 26.
29.08.2019
№219.017.c440

Способ геодезического мониторинга деформационного состояния земной поверхности на территории разрабатываемых открытым способом крупных рудных месторождений с применением технологии лазерного сканирования

Изобретение относится к вычислительной технике. Технический результат - повышение эффективности и достоверности геодезического мониторинга. Способ геодезического мониторинга деформационного состояния земной поверхности на территории разрабатываемых открытым способом крупных рудных месторождений...
Тип: Изобретение
Номер охранного документа: 0002698411
Дата охранного документа: 26.08.2019
01.11.2019
№219.017.dc68

Способ геодинамического мониторинга за смещениями блоков верхней части земной коры и деформационного состояния земной поверхности с применением технологии высокоточного спутникового позиционирования глобальной навигационной спутниковой системы (гнсс) глонасс /gps

Изобретение относится к области геодезических измерений. Технический результат - повышение точности и достоверности способа обработки геодезических измерений за счёт получения максимально точных значений пространственных координат опорных пунктов планово-высотной основы (ПВО) и наблюдательной...
Тип: Изобретение
Номер охранного документа: 0002704730
Дата охранного документа: 30.10.2019
21.11.2019
№219.017.e47b

Способ определения местоположения, координат точек, геометрических и семантических характеристик картографических объектов в интерактивном режиме при работе с традиционной картой в условиях отсутствия связи для передачи цифровых данных

Изобретение относится к области обработки и отображения пространственной информации, компьютерным средствам преобразования, визуального восприятия получаемого изображения, и может быть использовано для определения местоположения, координат и семантических характеристик картографических объектов...
Тип: Изобретение
Номер охранного документа: 0002706465
Дата охранного документа: 19.11.2019
17.01.2020
№220.017.f616

Детектор ионизирующих излучений

Изобретение относится к сцинтилляционным детекторам радиационного излучения. Сущность изобретения заключается в том, что детектор ионизирующих излучений содержит сцинтилляционный детектор радиационного излучения и фотоприемник, между которыми, непосредственно на поверхности сцинтилляционного...
Тип: Изобретение
Номер охранного документа: 0002711241
Дата охранного документа: 15.01.2020
04.02.2020
№220.017.fd1b

Способ определения величины и направления деформации наружной составляющей бугров пучения вечной мерзлоты

Изобретение относится к области геодезического пространственного мониторинга инженерных сооружений и природных объектов и может быть использовано как для наблюдений за осадками и деформациями инженерных сооружений, так и природных объектов (бугров, провалов, холмов, склонов, оползней и т.п.)....
Тип: Изобретение
Номер охранного документа: 0002712796
Дата охранного документа: 31.01.2020
10.04.2020
№220.018.13b1

Способ создания и использования в интерактивном режиме источника геопространственной информации в условиях отсутствия связи для передачи цифровых данных

Изобретение относится к области картографии, обработки и отображения геопространственной информации, компьютерным средствам преобразования, визуального восприятия получаемого изображения и может быть использовано для получения геопространственной информации об объектах местности при работе в...
Тип: Изобретение
Номер охранного документа: 0002718472
Дата охранного документа: 08.04.2020
24.07.2020
№220.018.3749

Способ создания аудиотактильного источника картографической информации с применением цифровых информационных и нанотехнологий и его использования в активном режиме незрячими или слабовидящими людьми

Изобретение относится к области обработки и отображения, компьютерным средствам преобразования, а затем чтения картографической информации незрячими или слабовидящими людьми, дающее пользователям с дефектами зрения возможность замены прямого зрительного восприятия другими видами восприятия, а...
Тип: Изобретение
Номер охранного документа: 0002727558
Дата охранного документа: 22.07.2020
31.07.2020
№220.018.3914

Панорамная двухспектральная зеркально-линзовая система

Зеркально-линзовая система состоит из вогнутого и выпуклого зеркал и линзовой системы переноса изображения визуального диапазона спектра. В систему введено защитное стекло в виде полусферы, обращенное выпуклостью к объекту. Зеркала выполнены с внутренним отражением и сплошное вогнутое зеркало...
Тип: Изобретение
Номер охранного документа: 0002728321
Дата охранного документа: 29.07.2020
21.04.2023
№223.018.5078

Устройство оптического инициирования

Изобретение относится к средствам взрывания, а именно к оптическим средствам инициирования для использования в горнорудной и угледобывающей промышленности, сейсморазведке, нефтедобыче при перфорации скважин, строительстве и спецтехнике для подрыва одиночных и разнесенных зарядов при...
Тип: Изобретение
Номер охранного документа: 0002794055
Дата охранного документа: 11.04.2023
20.05.2023
№223.018.67c9

Устройство бесконтактной акустической сушки материалов

Изобретение относится к области техники, связанной с осуществлением технологических процессов сушки различных материалов при помощи акустических колебаний, и может быть использовано в фармацевтической, химической и биологической промышленности, а также при переработке продукции сельского...
Тип: Изобретение
Номер охранного документа: 0002794688
Дата охранного документа: 24.04.2023
Показаны записи 11-20 из 28.
13.01.2017
№217.015.8638

Способ изготовления анизотропной облицовки кумулятивного заряда

Изобретение относится к технологии изготовления кумулятивных облицовок, которые могут быть использованы в перфорационной технике при прострелочно-взрывных работах в нефтедобыче или боевых частях снарядов или ракет. Способ включает изготовление заготовки оболочечной детали кумулятивной облицовки...
Тип: Изобретение
Номер охранного документа: 0002603327
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9d86

Способ создания комбинированной низкотемпературной помехи для ложной цели или маскировочной завесы

Изобретение относится к боеприпасам, предназначенным для постановки высотных завес и защиты объектов от высокоточных средств поражения. В способе создания комбинированной низкотемпературной помехи для ложной цели или маскировочной завесы снаряжение боеприпасов выполняют в виде тлеющих ленточных...
Тип: Изобретение
Номер охранного документа: 0002610792
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.c6bc

Акустическая линза

Изобретение относится к акустике, в частности к средствам фокусирования акустического поля. Акустическая линза выполнена в виде кубоида с радиальным градиентом акустического коэффициента преломления с величиной ребра кубоида, равной (0.9-1.2)λΝ, где N=1,2,…, λ - длина упругой волны....
Тип: Изобретение
Номер охранного документа: 0002618600
Дата охранного документа: 04.05.2017
26.08.2017
№217.015.dd1c

Детекторная головка

Изобретение относится к области измерительной техники и касается детекторной головки. Детекторная головка включает в себя корпус, который выполнен в виде основания и крышки. В основании выполнен сквозной волноводный канал, а в крышке расположен короткозамыкатель. Между основанием и крышкой...
Тип: Изобретение
Номер охранного документа: 0002624608
Дата охранного документа: 04.07.2017
29.12.2017
№217.015.f16a

Способ формирования изображения объектов с субдифракционным разрешением в миллиметровом, терагерцевом, инфракрасном и оптическом диапазонах длин волн

Изобретение относится к области получения изображений и касается способа формирования изображения объектов с субдифракционным разрешением в миллиметровом, терагерцевом, инфракрасном и оптическом диапазонах длин волн. Способ включает в себя облучение источником электромагнитного излучения...
Тип: Изобретение
Номер охранного документа: 0002631006
Дата охранного документа: 15.09.2017
19.01.2018
№218.016.0dcd

Кумулятивный заряд для формирования компактного элемента

Изобретение относится к конструкциям боевых частей боеприпасов с осесимметричными кумулятивными выемками. Кумулятивный заряд содержит профилированный корпус с размещенным в нем зарядом взрывчатого вещества с кумулятивной выемкой, металлическую облицовку кумулятивной выемки, инициирующее...
Тип: Изобретение
Номер охранного документа: 0002633021
Дата охранного документа: 11.10.2017
29.05.2018
№218.016.5570

Способ формирования изображения объектов с субдифракционным разрешением в акустическом диапазоне длин волн

Использование: для формирования изображения объектов с субдифракционным разрешением в акустическом диапазоне длин волн. Сущность изобретения заключается в том, что выполняют размещение объекта исследования в фокальной области акустической линзы, при этом между линзой и объектом размещается...
Тип: Изобретение
Номер охранного документа: 0002654387
Дата охранного документа: 17.05.2018
23.11.2018
№218.016.9fee

Микроскопное покровное стекло

Изобретение относится к области оптического приборостроения, нанотехнологий в оптике, в частности к области микроскопических исследований биологических объектов, клеток крови и т.д. Устройство микроскопного покровного стекла включает покровное стекло, на заднюю поверхность которого нанесена...
Тип: Изобретение
Номер охранного документа: 0002672980
Дата охранного документа: 21.11.2018
11.07.2019
№219.017.b2cf

Способ формирования изображения объектов с субдифракционным разрешением в миллиметровом, терагерцевом, инфракрасном и оптическом диапазонах длин волн

Изобретение относится к способам радиовидения в миллиметровом, терагерцевом, инфракрасном и оптическом диапазонах электромагнитного излучения и может быть использовано для построения радиоизображений различных объектов, в том числе в оптически непрозрачных средах, например в устройствах...
Тип: Изобретение
Номер охранного документа: 0002694123
Дата охранного документа: 09.07.2019
17.01.2020
№220.017.f616

Детектор ионизирующих излучений

Изобретение относится к сцинтилляционным детекторам радиационного излучения. Сущность изобретения заключается в том, что детектор ионизирующих излучений содержит сцинтилляционный детектор радиационного излучения и фотоприемник, между которыми, непосредственно на поверхности сцинтилляционного...
Тип: Изобретение
Номер охранного документа: 0002711241
Дата охранного документа: 15.01.2020
+ добавить свой РИД