×
09.06.2018
218.016.5b10

Результат интеллектуальной деятельности: СПОСОБ КОНТРОЛЯ ПРОИЗВОДИТЕЛЬНОСТИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА НА БЕСТЕНЕВЫХ ОРБИТАХ

Вид РИД

Изобретение

№ охранного документа
0002655561
Дата охранного документа
28.05.2018
Аннотация: Изобретение относится к эксплуатации солнечных батарей (СБ) космического аппарата (КА). Способ включает ориентацию нормали к рабочей поверхности СБ на Солнце (под углом α) и измерение тока СБ. На последовательных витках орбиты измеряют угол β между направлением на Солнце и плоскостью орбиты КА на моменты прохождения противосолнечной точки витков. Определяют изменение Δβ угла β за виток. Измеряют ток СБ в моменты, выбираемые из условия минимизации угла α в интервале между граничными точками фиксированных разворотов СБ. Эти точки суть ближайшие к противосолнечным точкам витков, на которых выполнено некоторое условие, зависящее от β, Δβ, видимых с КА угловых полурастворов дисков Земли и Солнца, а также угла возвышения верхней границы атмосферы над горизонтом. В эти же моменты определяют угол α и расстояние от Земли до Солнца, вычисляя по ним некоторый контрольный параметр и сравнивая его со значениями на предыдущих витках. Повторяют описанные действия, контролируя производительность СБ с учётом данного сравнения. Технический результат состоит в минимизации влияния подсветки от Земли на указанный контроль. 1 ил.

Изобретение относится к области космической техники, а именно к системам электроснабжения (СЭС) космических аппаратов (КА), и может быть использовано при эксплуатации солнечных батарей (СБ) СЭС КА.

Одной из составляющих контроля производительности СБ КА является контроль основных электрических характеристик СБ - выходного тока, напряжения и мощности СБ. На стадии проектирования и изготовления СБ осуществляется теоретический расчет выходных параметров СБ, который может быть основан на методе перемещений вольт-амперной характеристики, учитывающем различные влияния окружающей среды и параметров нагрузки на характеристики СБ (Система электроснабжения КА. Техническое описание. 300ГК.20Ю.0000-АТО. РКК «Энергия», 1998; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва, Энергоатомиздат, 1983, стр. 49, 54).

Недостаток указанного способа контроля производительности СБ заключается в том, что используемые в расчетах модели факторов космического полета имеют ограниченную точность, что не позволяет получить достоверные данные о реальных характеристиках СБ в полете, учитывающих процесс «деградации» СБ.

Для контроля фактических характеристик СБ в полете используются измерения фактического выходного тока СБ, генерируемого фотоэлектрическими преобразователями (ФЭП) под воздействием солнечного излучения, при этом панели СБ выставлены таким образом, чтобы световой поток поступал перпендикулярно рабочей поверхности СБ (Елисеев А.С. Техника космических полетов. Москва, «Машиностроение», 1983, стр. 190-194; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва, Энергоатомиздат, 1983, стр. 57; патент РФ №2353555 по заявке №2006131395/11, приоритет от 31.08.2006 - прототип), для чего разворачивают панели СБ в рабочее положение, соответствующее совмещению нормали к их освещенной рабочей поверхности с направлением на Солнце и контроль текущей производительности панели СБ осуществляют по результатам сравнения измеренных значений тока с задаваемыми значениями - текущая эффективность СБ оценивается по отношению измеренных фактических выходных параметров СБ к их номинальным значениям - проектным или некоторым исходным значениям, например, измеренным на предыдущих этапах полета.

Выбор силы тока в качестве контролируемой выходной характеристики СБ вызван тем, что его сила является переменной величиной, напрямую зависит от состояния СБ в целом, а напряжение на СБ является достаточно стабильной величиной и определяется в основном физическими свойствами используемых для изготовления СБ фотоэлектрических преобразователей, при этом режим работы ФЭП еще на стадии проектирования СБ задается таким образом, чтобы генерируемая мощность (как произведение силы тока и напряжения) была максимально возможной.

Данный способ обеспечивает контроль суммарной эффективности панели СБ в ходе полета КА. Меньшие значения фактических выходных токов СБ по отношению к заданным проектным или исходным значениям означают «деградацию» СБ. При этом особым случаем является этап эксплуатации КА, когда КА находится на солнечной орбите - на непрерывно освещенных Солнцем витках. На данных витках КА и его СБ постоянно освещены Солнцем, что приводит к отсутствию на витке теневого участка и, следовательно, отсутствию естественного периодического охлаждения СБ за счет затенения Землей.

Таким образом, на бестеневых орбитах реализуется установившийся температурный режим СБ, который поддерживается непрерывно в течение всех последовательных бестеневых витков орбиты КА. В полете равновесная рабочая температура СБ определяется термомеханическими и электрическими свойствами ФЭП СБ (например, может быть рассчитана по соотношениям, представленным в справочнике Раушенбах Г. Справочник по проектированию солнечных батарей. Москва, Энергоатомиздат, 1983, стр. 90).

К недостаткам способа-прототипа относится то, что он не предусматривает проведение замера тока СБ при одинаковых внешних полетных условиях (что необходимо для обоснованности дальнейшего сравнения результатов выполненных замеров) и не предусматривает учета влияния подсветки от Земли на точность контроля текущей эффективности СБ.

Задачей, на решение которой направлено настоящее изобретение, является повышение точности контроля текущей эффективности СБ в ходе полета КА.

Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в минимизации влияния подсветки от Земли при выполнении сеансов оценки эффективности СБ по результатам прямого замера генерируемого СБ электрического тока на бестеневых орбитах (на непрерывно освещенных Солнцем витках - витках, на которых отсутствует теневой участок).

Технический результат достигается тем, что в способе контроля производительности солнечной батареи космического аппарата на бестеневых орбитах, включающем ориентацию нормали к рабочей поверхности солнечной батареи на Солнце, измерение тока солнечной батареи и контроль ее текущей производительности по результатам сравнения значений тока, измеренных на текущем и предыдущих этапах полета, дополнительно последовательно разворачивают солнечную батарею в фиксированные положения, на последовательных витках орбиты измеряют угол βs между направлением на Солнце и плоскостью орбиты космического аппарата на моменты прохождения противосолнечной точки витков, определяют текущую величину Δβs изменения угла βs за виток, измеряют ток I солнечной батареи в моменты, выбираемые из условия минимизации угла между нормалью к рабочей поверхности солнечной батареи и направлением на Солнце в интервале между граничными точками поворотов солнечной батареи, ближайшими к противосолнечным точкам витков, на которых выполнено условие

,

где Qz и Qs - значения угловых полурастворов видимых с космического аппарата дисков Земли и Солнца, соответственно;

Qa - угол возвышения верхней границы атмосферы над видимым с космического аппарата горизонтом Земли,

определяют угол αI между нормалью к рабочей поверхности солнечной батареи и направлением на Солнце и расстояние DI от Земли до Солнца на упомянутые моменты измерения тока, в ходе полета повторяют вышеописанные действия, и контроль производительности солнечной батареи на бестеневых орбитах выполняют по результатам сравнения полученных на текущем и на предыдущих этапах полета значений контрольного параметра, определяемого по формуле , где Dср - среднее расстояние от Земли до Солнца.

Суть предлагаемого изобретения поясняется на фиг. 1, на которой представлена схема отсчета угла между направлением на Солнце и плоскостью орбиты КА в момент нахождения КА в противосолнечной точке витка орбиты. На фиг. 1 обозначено:

K - местоположение КА;

КВ - плоскость орбиты КА;

Z - Земля;

О - центр Земли;

Р - направление в надир;

А - верхняя граница атмосферы Земли;

S - вектор направления на Солнце;

С - модель Солнца;

Qz и Qs - значения угловых полурастворов видимых с КА дисков Земли и Солнца, соответственно;

Qa - угол возвышения верхней границы атмосферы над видимым с КА горизонтом Земли;

βs - угол между направлением на Солнце и плоскостью орбиты КА на момент прохождения противосолнечной точки витка;

NСБ - вектор нормали к рабочей поверхности СБ;

α - угол между вектором S и вектором NСБ.

На чертеже модель Солнца С показана для иллюстрации угла Qs.

На чертеже углы Qz, Qs, Qa и βs отсчитываются в плоскости чертежа, а угол α в общем случае выходят из плоскости чертежа.

Поясним предложенные в способе действия.

Рассмотрим орбитальный КА, например КА типа международной космической станции (МКС), движущийся по околокруговой орбите.

Считаем, что система управления положением СБ КА предусматривает выставку СБ в заданные положения, фиксированные в связанной с КА системе координат, а поворот СБ между данными фиксированными положениями выполняется с заданной угловой скоростью. При этом для выполнения полетных операций предусмотрены различные режимы управления ориентаций СБ, в том числе режим автоматического наведения (отслеживания) СБ на Солнце и режим выставки СБ в заданное положение (такие положения выбираются из перечня упомянутых заданных положений СБ, фиксированных в связанной с КА системе координат). При этом в режиме автоматического наведения (отслеживания) СБ на Солнце система управления автоматически выбирает момент начала поворота СБ для перевода СБ из текущего фиксированного положения СБ в последующее.

Таким образом, в произвольный текущий момент времени СБ находится или в одном из фиксированных положений (в этом случае оно является текущим фиксированным положением СБ) или в процессе перехода между двумя фиксированными положениями. При этом в режиме автоматического наведения (отслеживания) СБ на Солнце моменты нахождения панели СБ в одном из фиксированных положений определяются по измерениям текущей ориентации КА и измерениям положения Солнца путем определения моментов начала и окончания поворотов СБ с учетом логики автоматического управления СБ в данном режиме.

Солнечное излучение, поступающее к Земле, отражается от ее поверхности, от облаков, рассеивается атмосферой и не поддается точному учету. Таким образом, кроме прямого солнечного излучения в полете на СБ КА попадает поток уходящего от Земли излучения, что вносит неопределенность в решение задачи контроля производительности СБ. Неопределенность при этом заключается в завышении тока СБ: энергия уходящего от Земли излучения, сосредоточенная в спектральном диапазоне области чувствительности солнечных элементов СБ, также воспринимается СБ и увеличивает генерируемый СБ ток на неопределенную величину.

В предлагаемом техническом решении для решения поставленной задачи реализуют штатный режим автоматического наведения (отслеживания) СБ на Солнце, при котором последовательно разворачивают СБ в фиксированные положения, текущее из которых выбирается из условия минимизации угла между нормалью к рабочей поверхности СБ и направлением на Солнце.

Например, для СБ КА типа модуля «Звезда» МКС число фиксированных положений СБ N=16 и величина угла между положениями нормали к рабочей поверхности СБ в последовательных фиксированных положениях СБ составляет В этом случае при положении Солнца, близком к перпендикуляру к оси вращения СБ, минимальный угол между направлением на Солнце и нормалью к рабочей поверхности СБ в фиксированном положении СБ не превышает величину

На последовательных витках орбиты измеряют значения угла βs между направлением на Солнце и плоскостью орбиты КА на моменты прохождения противосолнечной точки витков орбиты. Моменты прохождения противосолнечной точки витка равны моментам прохождения подсолнечной точки витка, уменьшенным на половину периода обращения КА.

Определяют текущую величину изменения угла между направлением на Солнце и плоскостью орбиты за виток Δβs.

Измеряют ток СБ I в моменты, выбираемые из условия минимизации угла между нормалью к рабочей поверхности СБ и направлением на Солнце в интервале между граничными точками поворотов СБ, ближайшими к противосолнечным точкам витков орбиты, на которых выполнено условие

где Qz и Qs - значения угловых полурастворов видимых с космического аппарата дисков Земли и Солнца, соответственно;

Qa - угол возвышения верхней границы атмосферы над видимым с космического аппарата горизонтом Земли.

На фиг. 1 представлена схема отсчета угла βs в момент нахождения КА в противосолнечной точке витка орбиты. Виток, на котором выполняется измерение тока СБ, выбирается из условия максимальной близости углов βs и Qz+Qa+Qs при превышении углом βs значения суммы углов Qz+Qa+Qs. При этом разность между углами βs и Qz+Qa+Qs не превышает модуля текущего изменения угла βs за виток, который, например, для орбит КА типа МКС составляет

В момент измерения тока СБ КА находится на бестеневой орбите, определяемой условием расположения видимого с КА диска Солнца над видимым с КА горизонтом Земли в момент прохождения КА противосолнечной точки витка. При этом видимый с КА диск Солнца в момент измерения тока от СБ практически касается верхней границы атмосферы Земли сверху.

Слой атмосферы Земли, который рассеивает поступающее на КА излучение от Солнца, задается высотой своей верхней границы от поверхности Земли Нa (Крошкин М.Г. Физико-технические основы космических исследований. - М.: Машиностроение, 1969). Определение угла Qa может быть осуществлено, например, по соотношению

где Rz - радиус Земли;

Норб - высота орбиты КА.

Определение угла Qs может осуществляться, например, по методике, используемой при расчете таблиц видимого радиуса Солнца в Астрономических ежегодниках.

При касании верхней границы атмосферы Земли видимым с КА диском Солнца направление потока солнечного излучения, поступающего на КА, проходит по касательной к поверхности Земли. В этом случае уходящее от Земли излучение, поступающее на СБ КА, включает только излучение от видимого с КА лимба, образованного подсвеченной Солнцем атмосферой Земли, влияние которого на генерацию электроэнергии СБ пренебрежительно мало в сравнении с поступающим на СБ прямым излучением от Солнца.

На практике наряду с условием (1) можно использовать условие

где - величина, характеризующая максимально допустимый размер видимого с КА лимба, образованного подсвеченной Солнцем атмосферой Земли (подстилающей поверхностью), влиянием которого на генерацию электроэнергии СБ можно пренебречь (в сравнении с поступающим на СБ прямым излучением от Солнца).

В случае, когда в момент прохождения КА противосолнечной точки витка СБ находится в фиксированном положении, определенном из условия минимизации угла между нормалью к рабочей поверхности СБ и направлением на Солнце, то момент измерения тока СБ I выбирается в интервале между моментами окончания предыдущего поворота СБ и начала следующего поворота СБ как момент, в который угол между нормалью к рабочей поверхности СБ и направлением на Солнце принимает минимальное значение. В этом случае момент измерения тока СБ I может совпадать с моментом прохождения противосолнечной точки витка.

В случае, когда в момент прохождения КА противосолнечной точки витка СБ находится в процессе поворота от одного фиксированного положения к следующему, то момент измерения тока СБ I выбирается в интервале между моментами начала и окончания данного поворота СБ как момент, в который угол между нормалью к рабочей поверхности СБ и направлением на Солнце принимает минимальное значение. Направление поворота СБ определяется возможностями системы ориентации СБ (в том числе наличием ограничителя/упора поворота СБ). При повороте СБ по кратчайшему пути поворота момент измерения тока СБ I (момент минимизации указанного угла) находится внутри интервала между моментами начала и окончания поворота СБ и может совпадать с моментом прохождения противосолнечной точки витка. При повороте СБ по «длинному» пути поворота момент измерения тока СБ I (момент минимизации указанного угла) совпадает с одной из точек - точкой начала или точкой окончания поворота СБ.

Определяют угол αI между нормалью к рабочей поверхности СБ и направлением на Солнце на упомянутые моменты измерения тока от СБ.

Определяют значение расстояния от Земли до Солнца DI на упомянутые моменты измерения тока от СБ.

В ходе полета повторяют вышеописанные действия и контроль производительности СБ на бестеневых орбитах выполняют по результатам сравнения полученных на текущем и на предыдущих этапах полета значений контрольного параметра, определяемого по формуле

где Dср - среднее расстояние от Земли до Солнца;

αI - угол между нормалью к рабочей поверхности СБ и направлением на Солнце на упомянутые моменты измерения тока от СБ.

В соотношении (3) деление на косинус угла между нормалью к рабочей поверхности СБ и направлением на Солнце обеспечивает одинаковые условия замера тока СБ в части учета изменений тока СБ, вызванных отклонением направления солнечного излучения от нормали к СБ. При этом учитывается, что текущая величина тока СБ I определятся выражением (Грилихес В.А., Орлов П.П., Попов Л.Б. Солнечная энергия и космические полеты. Москва, Наука, 1984, стр. 109; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва, Энергоатомиздат, 1983)

I=IMAXcosα,

где IМАХ - максимальный ток, вырабатываемый при ориентации освещенной рабочей поверхности панели СБ перпендикулярно солнечным лучам;

α - текущий угол между нормалью к рабочей поверхности СБ и направлением на Солнце.

В соотношении (3) умножение на величину обеспечивает одинаковые условия замера тока СБ в части учета изменений тока СБ, вызванных отклонением текущего значения внеатмосферной интенсивности солнечной радиации от фиксированного номинального (среднего) значения. При этом учитывается, что текущее значение внеатмосферной интенсивности солнечной радиации с достаточной степенью точности обратно пропорционально значению расстояния от Земли до Солнца (Макарова Е.А., Харитонов А.В. Распределение энергии в спектре Солнца и солнечная постоянная. М., 1972; Поток энергии Солнца и его изменения, под ред. О. Уайта, пер. с англ., М., 1980; Кмито А.А., Скляров Ю.А. Пиргелиометрия, Л.)

где Вср - фиксированное номинальное (среднее) значение внеатмосферной интенсивности солнечной радиации;

ВI - текущее значение внеатмосферной интенсивности солнечной радиации на моменты измерения тока от СБ.

Таким образом, в ходе полета повторяют вышеописанные действия на различных этапах полета КА, для каждого этапа полета получают значения контрольного параметра, рассчитываемые по соотношениям (3), и контроль текущей производительности СБ на бестеневых орбитах осуществляют по результатам сравнения получаемых значений данного контрольного параметра.

Опишем технический эффект предлагаемого изобретения.

При эксплуатации в открытом космосе СБ подвергаются воздействию факторов открытого космического пространства, что приводит к их постепенной «деградации». Контроль производительности панели СБ, в частности, связан с получением текущих значений параметров производительности панели СБ и количественных оценок ее текущей эффективности.

Предлагаемое техническое решение позволяет обеспечить при выполнении сеансов оценки эффективности СБ по результатам прямого замера генерируемого СБ электрического тока на бестеневых орбитах одинаковые условия замера тока СБ с учетом изменений измеряемого тока, вызванных как наличием эффекта подсветки СБ уходящим от Земли излучением и изменениями текущего значения внеатмосферной интенсивности солнечной радиации, так и отклонением направления солнечного излучения от нормали к СБ и наличием технологических углов между сегментами панели СБ.

При контроле производительности СБ на бестеневых орбитах КА по предлагаемому техническому решению отсутствует завышение значений производительности СБ от попадания уходящего от Земли излучения на СБ (т.е. отсутствует влияние уходящего от Земли излучения на величину подлежащей определению производительности СБ) и осуществляется учет изменений интенсивности солнечной радиации. Таким образом предлагаемое техническое решение позволяет увеличить точность контроля производительности СБ за счет минимизации (исключения) влияния на выработку электроэнергии уходящего от Земли излучения, а также за счет учета изменений интенсивности солнечной радиации при расчете контрольного параметра, по которому осуществляется контроль производительности СБ.

Учет наличия технологических углов между сегментами панели СБ обеспечивается тем, что при контроле производительности СБ освещение СБ обеспечивается по направлению, минимально отклоненному от нормали к рабочей поверхности СБ, что минимизирует различие условий освещения различных сегментов панели СБ. Наряду с этим, минимальное отклонение направления освещения СБ от нормали к рабочей поверхности СБ минимизирует влияние возможных методических погрешностей учета угла отклонения Солнца от нормали к рабочей поверхности СБ.

Одинаковые условия замера тока СБ позволяют получать сопоставимые данные в разные моменты полета КА, обоснованно сравнивать получаемые измерения и судить по ним об изменениях и текущей производительности СБ.

Знание текущих значений параметров производительности СБ необходимо для более точного моделирования функционирования СЭС КА в полете, например, для прогнозирования генерации тока СБ при решении различных задач управления полета КА, а также своевременно выявлять моменты снижения эффективности СБ. Таким образом, получаемый технический эффект повышает эффективность контроля производительности СЭС КА на бестеневых орбитах.

В настоящее время технически все готово для реализации предложенного способа. Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено с использованием существующих технических средств.


СПОСОБ КОНТРОЛЯ ПРОИЗВОДИТЕЛЬНОСТИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА НА БЕСТЕНЕВЫХ ОРБИТАХ
СПОСОБ КОНТРОЛЯ ПРОИЗВОДИТЕЛЬНОСТИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА НА БЕСТЕНЕВЫХ ОРБИТАХ
СПОСОБ КОНТРОЛЯ ПРОИЗВОДИТЕЛЬНОСТИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА НА БЕСТЕНЕВЫХ ОРБИТАХ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 111.
19.12.2018
№218.016.a8e4

Струйный диод

Струйный диод предназначен для использования в струйной гидро- и пневмотехнике. Струйный диод содержит корпус со штуцерами входа и выхода, отверстия которых сообщаются с концами выполненного в корпусе главного канала спиральной формы. По руслу главного канала спиральной формы выполнены один или...
Тип: Изобретение
Номер охранного документа: 0002675172
Дата охранного документа: 17.12.2018
20.12.2018
№218.016.a9e5

Способ построения ориентации космического объекта, отделяемого от другого космического объекта

Изобретение относится к космической технике. Способ построения ориентации космического объекта (КО), отделяемого от другого космического объекта (ДКО), включает выполнение импульсов для разворота связки ДКО и КО в необходимую ориентацию, используя для определения параметров разворота данные об...
Тип: Изобретение
Номер охранного документа: 0002675483
Дата охранного документа: 19.12.2018
13.02.2019
№219.016.b946

Способ контроля исправности блока конденсаторов (варианты)

Группа изобретений относится к области электротехники и электроники, может быть использовано в устройствах электропитания, в устройствах накопления электроэнергии и т.п. Раскрыты способы контроля исправности блока конденсаторов, содержащего конденсаторы, подключенные к шинам питания через...
Тип: Изобретение
Номер охранного документа: 0002679471
Дата охранного документа: 11.02.2019
13.02.2019
№219.016.b950

Устройство для разделения элементов конструкции

Изобретение относится к ракетно-космической технике. Устройство для разделения элементов конструкции содержит разрывной болт с головкой и стержнем, расположенный в цилиндрическом отверстии, переходящем в коническое, одного из разделяемых элементов конструкции, а также в отверстии другого...
Тип: Изобретение
Номер охранного документа: 0002679520
Дата охранного документа: 11.02.2019
13.02.2019
№219.016.b99d

Колесо с квазигазовым наполнителем для лунного и планетного транспорта и способ его сборки

Колесо содержит обод с посадочными полками, диск обода, шину, выполненную из кольчужной сетки, при этом шина с ободом жестко соединены между собой посредством прижимных колец крепежными элементами в виде единого целого. Полость, образованная внутренней поверхностью шины и ободом, заполнена...
Тип: Изобретение
Номер охранного документа: 0002679522
Дата охранного документа: 11.02.2019
16.03.2019
№219.016.e1c4

Спиральный пружинный механизм

Изобретение относится к области машиностроения. Спиральный пружинный механизм состоит из входного вала, пружинной ленты и развязанного с входным валом неподвижного барабана. Пружинная лента выполнена с участком постоянной ширины и с участком в форме трапеции и основаниями, переходящими в ленту...
Тип: Изобретение
Номер охранного документа: 0002682028
Дата охранного документа: 14.03.2019
20.03.2019
№219.016.e333

Средства распределения и подачи термостатирующего воздуха на поверхность панельного космического аппарата при наземных испытаниях

Изобретение относится к устройствам термостатирования космического аппарата (КА) при его различных (электрических, радиотехнических и др.) наземных испытаниях. Предлагаемые средства выполнены в виде модульной конструкции – панелей термостатирования, содержащих закрепленные на технологической...
Тип: Изобретение
Номер охранного документа: 0002673213
Дата охранного документа: 22.11.2018
20.03.2019
№219.016.e33e

Способ эксплуатации пилотируемой орбитальной станции

Изобретение относится к управлению полётом и жизнеобеспечению экипажей космических аппаратов (КА), преимущественно орбитальных станций. Способ включает выделение углекислого газа из воздуха обитаемых отсеков КА путем адсорбции, а также последующую десорбцию, охлаждение (с частичным сжижением) и...
Тип: Изобретение
Номер охранного документа: 0002673215
Дата охранного документа: 22.11.2018
20.06.2019
№219.017.8ca2

Способ забора и доставки на землю проб космической пыли из окрестностей точек либрации системы земля-луна и комплекс средств для его реализации

Группа изобретений относится к технологиям проведения исследований в космическом пространстве. Способ включает запуск с борта окололунной орбитальной станции (ООС) малого космического аппарата (МКА) на гало-орбиту вокруг одной из точек либрации и, через некоторое время полёта (дрейфа) по этой...
Тип: Изобретение
Номер охранного документа: 0002691686
Дата охранного документа: 17.06.2019
20.06.2019
№219.017.8cf8

Способ регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной холодильной установки

Изобретение относится к парокомпрессионным холодильным установкам и может быть использовано для регулирования температуры жидкого хладоносителя в различных технологических процессах. Заявлен способ регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной...
Тип: Изобретение
Номер охранного документа: 0002691777
Дата охранного документа: 18.06.2019
Показаны записи 61-70 из 95.
09.05.2019
№219.017.4e4e

Способ управления положением солнечных батарей космического аппарата и система для его осуществления

Изобретения относятся к энергоснабжению космических аппаратов (КА). Предлагаемый способ включает разворот панелей солнечных батарей (СБ) в рабочее положение, когда нормаль к освещенной поверхности СБ совмещена с плоскостью, образуемой осью вращения СБ и направлением на Солнце. При этом...
Тип: Изобретение
Номер охранного документа: 0002325311
Дата охранного документа: 27.05.2008
09.05.2019
№219.017.506a

Планшет для выбора объектов наблюдения с орбитального космического аппарата

Планшет для выбора объектов наблюдения с орбитального космического аппарата (КА) относится к космической технике. Планшет для выбора объектов наблюдения с орбитального КА включает пластину с картой земной поверхности, полупрозрачную пластину, установленную поверх карты планеты, и средство...
Тип: Изобретение
Номер охранного документа: 0002463559
Дата охранного документа: 10.10.2012
19.06.2019
№219.017.8b6c

Планшет для выбора объектов наблюдения с орбитального космического аппарата

Планшет для выбора наземного объекта наблюдения с орбитального космического аппарата (КА) относится к космической технике. Планшет для выбора наземных объектов наблюдения с орбитального КА включает в себя гибкую ленту с картой поверхности планеты, установленную над ней полупрозрачную пластину и...
Тип: Изобретение
Номер охранного документа: 0002469274
Дата охранного документа: 10.12.2012
20.06.2019
№219.017.8ce6

Способ определения деформации корпуса объекта преимущественно космического аппарата

Изобретение относится к способам технологического контроля технических средств. Способ определения деформации корпуса объекта, преимущественно космического аппарата, включает измерение острого угла α между направлением от ориентира на поверхности объекта к источнику освещения и нормалью к...
Тип: Изобретение
Номер охранного документа: 0002691776
Дата охранного документа: 18.06.2019
22.06.2019
№219.017.8e91

Устройство для ориентирования перемещаемой на борту пилотируемого корабля аппаратуры наблюдения

Изобретение относится к космической технике. Устройство для ориентирования перемещаемой на борту пилотируемого корабля аппаратуры наблюдения содержит разъемное соединение, одна из разъемных частей которого жестко соединена с аппаратурой наблюдения, штанги, на которых размещены ультразвуковые...
Тип: Изобретение
Номер охранного документа: 0002692205
Дата охранного документа: 21.06.2019
26.06.2019
№219.017.9209

Система ориентирования перемещаемой на борту пилотируемого корабля аппаратуры

Изобретение относится к аэрокосмической технике. Система ориентирования перемещаемой на борту пилотируемого корабля (ПК) аппаратуры включает блок определения текущего положения ориентира относительно ПК, ультразвуковые излучатели, датчик температуры, ультразвуковые приемники, блок...
Тип: Изобретение
Номер охранного документа: 0002692284
Дата охранного документа: 24.06.2019
05.07.2019
№219.017.a582

Способ ориентирования перемещаемой на борту пилотируемого корабля аппаратуры

Изобретение относится к аэрокосмической технике и может быть использовано для обеспечения ориентирования экипажем пилотируемого корабля аппаратуры, перемещаемой относительно движущегося корабля. Ориентирование перемещаемой на борту пилотируемого корабля (ПК) аппаратуры (1) включает определение...
Тип: Изобретение
Номер охранного документа: 0002693634
Дата охранного документа: 03.07.2019
06.07.2019
№219.017.a6d0

Способ определения деформации корпуса объекта преимущественно космического аппарата

Изобретение относится к технологическому контролю, преимущественно космических объектов (КО). Способ включает измерение угла (α) между направлением от ориентира на КО к источнику освещения (Солнцу) и нормалью к поверхности КО в точке ориентира. Измеряют также угол (β) между оптической осью...
Тип: Изобретение
Номер охранного документа: 0002693750
Дата охранного документа: 04.07.2019
10.07.2019
№219.017.aec5

Способ управления положением солнечных батарей космического аппарата и система для его осуществления

Изобретения относятся к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Предлагаемый способ включает разворот панелей СБ в рабочее положение, соответствующее совмещению нормали к их освещенной рабочей поверхности с плоскостью, образуемой осью вращения панелей СБ и...
Тип: Изобретение
Номер охранного документа: 0002325312
Дата охранного документа: 27.05.2008
10.07.2019
№219.017.aedf

Устройство для выбора объекта наблюдения с орбитального космического аппарата

Устройство относится к космической технике. Устройство включает глобус с нанесенной на него картой, два охватывающих глобус кольца, центры которых совмещены с центром глобуса, элемент в виде витка спирали, соответствующий осредненному витку орбиты движущегося по околокруговой орбите КА, начиная...
Тип: Изобретение
Номер охранного документа: 0002327112
Дата охранного документа: 20.06.2008
+ добавить свой РИД