×
29.05.2018
218.016.59b6

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЛЮМИНОФОРА НА ОСНОВЕ ГУБЧАТОГО НАНОПОРИСТОГО ОКСИДА АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к химической промышленности и может быть использовано при изготовлении эффективных люминофоров для элементов нано-оптоэлектроники и источников света в видимом диапазоне. Алюминий анодируют в растворе 0,9 - 10 моль/л фтороводородной кислоты в этиленгликоле при постоянном напряжении в диапазоне 75 - 400 В с поддержанием постоянной температуры 1°С. В качестве анода используют пластинку алюминия технической чистоты, в качестве катода – нержавеющую сталь. Полученный губчатый нанопористый оксид алюминия люминесцирует при дневном освещении, его свечение воспринимается невооруженным глазом. Способ прост и не требует использования материалов высокой чистоты. 5 ил., 2 пр.

Изобретение относится к электрохимической технологии получения соединений алюминия, а именно к технологии получения губчатого нанопористого оксида алюминия в виде оксидной пленки анодированием, и может быть использовано при разработке эффективных люминофоров для новых источников света в видимом диапазоне, а также при создании элементов нано-оптоэлектроники.

Оксид алюминия является перспективным материалом для целей оптоэлектроники благодаря уникальным физико-химическим свойствам. Оптические свойства анодированного оксида алюминия (АОА) зависят от структурных (концентрация собственных и примесных дефектов, фазовый состав и др.) и геометрических параметров (форма, упорядочение и размер пор, расстояние между ними), которые можно варьировать, подбирая условия анодирования (Получение и исследования наноструктур: Лабораторный практикум по нанотехнологиям / Под ред. А.С. Сигова, М.: МИРЭА, 2008. - 116 с.).

Известен метод получения анодного оксида алюминия с высокоупорядоченной пористой структурой (Патент RU 2555366 C2, МПК C01F 7/42, В82В 3/00, C25D 11/10, C25D 11/12, опубл. 10.07.15), включающий механическую и/или электрохимическую полировку поверхности алюминия с последующим анодным окислением в водных или водно-спиртовых растворах щавелевой Н2С2О4, фосфорной Н3РО4, серной H2SO4, янтарной C4H6O4, лимонной C6H8O7 кислот с концентрацией от 0.05 до 0.5 моль/литр при температуре от -20÷10°С и напряжении в диапазоне от 5 до 250 В для формирования оксидной пленки в один или два этапа в случае использования металла с гладкой поверхностью. Недостатком данного способа является необходимость использования высокочистого монокристаллического алюминия и проведения дополнительного травления пленки анодного оксида в растворе кислоты или двухэтапного окисления, что усложняет и удорожает процесс. Также отсутствуют данные о люминесценции.

Известен способ получения анодного оксида алюминия в водном растворе 0.4% HF + 4% H2C2O4 (Dhahri S. Porous aluminum room temperature anodizing process in a fluorinated-oxalic acid solution. / S. Dhahri, E. Fazio, F. Barreca, F. Neri, H. Ezzouia // Applied Physics A: Materials Science and processing. - 2016. - №122), заключающийся в напылении алюминия высокой чистоты на поверхность стали, стекла или алюминиевого сплава, который затем последовательно дважды анодируют в течение 15 мин при токе 50 мА и 150 мА, стравливая оксидный слой после первого анодирования в растворе кислот. В данном методе присутствуют такие недостатки, как необходимость напыления высокочистого алюминия на подложку перед анодированием, а также в процессе синтеза губчатая структура образуется только в случае анодирования на подложке из нержавеющей стали. Отсутствуют данные о люминесценции.

Люминофоры на основе нанопористого Al2O3 можно получить анодированием алюминия высокой чистоты в растворах 3 вес. % серной, щавелевой или фосфорной кислот (Gopal Khan, G. Structure dependent photoluminescence of nanoporous amorphous anodic aluminium oxide membranes: Role of F+ center defects / G. Gopal Khan, A.K. Singh, K. Mandal // Journal of Luminescence. - 2013. - №134) в два этапа при 200 А/м2 в течение 30 мин и 2-6 ч соответственно, проведя перед началом отжиг при 400°С в течение 4 ч и электрополировку, а также стравливая оксидный слой после первого анодирования в растворе кислот. Недостатком данного способа является необходимость использования специального оборудования для возбуждения и регистрации люминесценции. Кроме этого необходимы высокочистый алюминий (99.99%) и сложная предварительная обработка поверхности.

Известен способ получения губчатого нанопористого ("sponge-like nano-porous") Al2O3, применяемого для повышения теплопроводности (Zhang, В.J. Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling / B.J. Zhang, K.J. Kim, H. Yoon // International Journal of Heat and Mass Transfer. - 2012. - №55), заключающийся в анодном окислении алюминиевого сплава в электролите 0.3 моль/л ортофосфорной кислоты при 140 В и 5°С, проходящем в два этапа с длительностью второго шага в 2 ч, перед которым поверхность предварительно очищают и полируют электрохимически, а в промежутке между анодированиями и после них оксидный слой подвергают травлению в растворе кислоты. Для этого метода не представлено данных о люминесцентных свойствах материала. Также недостатком такого процесса является то, что для его реализации необходимо использование сплава А1 6061 (аналог АД33), что удорожает технологию.

Наиболее близким к заявляемому является метод синтеза люминофора на основе нанопористого оксида алюминия (Nourmohammadi, А. Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphori cacid / A. Nourmohammadi, S.J. Asadabadi, M.H. Yousefi, M. Ghasemzadeh // Nanoscale Research Letters. - 2012. - №1) двухстадийным анодированием алюминия в растворе ортофосфорной кислоты при постоянных значениях температуры 1°С, напряжения 100-130 В и длительности процесса 20 ч на каждом из этапов, где алюминиевая фольга предварительно подвергается химической обработке в смеси кислот, отжигают и электрохимически полируют, а по завершении всего процесса подложку из алюминия растворяют в растворе HgCl2. Недостатками данного метода являются: высокие временные и материальные затраты, которые связаны с необходимостью использования высокочистого алюминия (99.997% Al), с предварительной обработкой поверхности и с большой длительностью двухстадийного процесса анодирования, а также недостаточная интенсивность свечения синтезированного люминофора, которую можно регистрировать только с использованием специализированного спектрометрического оборудования и при возбуждении ультрафиолетовым излучением.

Технической проблемой, на решение которой направлено изобретение, является отсутствие способа получения люминофора на основе губчатого нанопористого Al2O3 со свечением, воспринимаемым невооруженным человеческим глазом при дневном освещении.

Техническим результатом, достигаемым при реализации изобретения, является получение нового люминофора на основе губчатого нанопористого Al2O3 со свечением, воспринимаемым невооруженным человеческим глазом при дневном освещении.

Заявляемый способ получения люминофора на основе губчатого нанопористого оксида алюминия включает анодирование алюминия.

От прототипа способ отличается тем, что в качестве электролита используется раствор 0.9 - 10 моль/л фтороводородной кислоты (HF) в этиленгликоле при постоянном напряжении в диапазоне 75 - 400 В.

Сущность изобретения поясняется фигурами, на которых изображено:

- на фиг. 1 - изображение поверхности губчатого нанопористого Al2O3, полученного в растворе 0.9 моль/л HF при напряжении 150 В;

- на фиг. 2 - изображение скола губчатого нанопористого Al2O3, полученного в растворе 0.9 моль/л HF при напряжении 150 В;

- на фиг. 3 - нормированные спектры свечения губчатого нанопористого Al2O3, полученного в растворах с разной концентрацией HF при напряжении 150 В;

- на фиг. 4 - нормированные спектры свечения губчатого нанопористого Al2O3, полученного в растворе 0.9 моль/л HF при разных напряжениях;

- на фиг. 5 - сравнение спектра свечения губчатого нанопористого Al2O3, полученного в растворе 6.2 моль/л HF при напряжении 150 В с известным люминесцентным аналогом.

Процесс получения губчатого нанопористого оксида алюминия проходит в типовой двухэлектродной электрохимической ячейке с термостатированием. Поддержание постоянной температуры позволяет исключить возрастание величины тока анодирования, что могло бы привести к неконтролируемому росту скорости протекания реакции и процесса травления. В качестве анода используют пластинку алюминия технической чистоты (сплав А5). В качестве катода применяют нержавеющую сталь. Перед началом процесса анодирования заливают электролит. На протяжении всего процесса синтеза между катодом и анодом устанавливают заданное напряжение и поддерживают постоянную температуру электролита. С увеличением длительности процесса, а также при повышении значений напряжения, температуры и концентрации фтороводородной кислоты растет толщина итогового оксидного слоя и, соответственно, интенсивность фотолюминесценции.

Анализ снимков, полученных с помощью электронного микроскопа Sigma VP Carl Zeiss, показал, что оксид алюминия образуется в виде анодного оксидного слоя с губчатой структурой, возникающего на поверхности алюминия (Фиг. 1). Этот слой Al2O3 имеет неупорядоченную структуру с порами диаметром до 300 нм и направленностью роста вглубь алюминия (Фиг. 2). Отсутствие периодичности в расположении пор получаемого оксида и их сложный разветвленный характер возникает вследствие использования фтороводородной кислоты. С помощью рентгенофазового анализа на дифрактометре PANalytical Pro установлено, что полученный в результате синтеза оксид алюминия является аморфным. При помощи спектрометра Perkin Elmer LS 55 зарегистрирована полоса фотолюминесценции в области 370 - 600 нм, определенная по уровню 0.1 от максимальной интенсивности, при возбуждении в полосе 277 нм.

Способ получения люминофора на основе губчатого оксида алюминия иллюстрируется следующими примерами выполнения.

Пример 1. В электрохимическую ванну заливают раствор 0.9 - 10 моль/л фтороводородной кислоты в этиленгликоле и термостатируют при 1°С. Между катодом и анодом устанавливают постоянное напряжение 150 В. Продолжительность процесса синтеза составляет 2 ч. За это время на поверхности алюминия формируется слой губчатого Al2O3 с аморфной структурой.

Пример 2 проведен аналогично примеру 1 с изменением ряда характеристик способа. В электрохимическую ванну заливают раствор 0.9 моль/л фтороводородной кислоты в этиленгликоле и поддерживают температуру 1°С. Между катодом и анодом устанавливают постоянное напряжение 75 - 400 В.

Нормированные спектры фотолюминесценции полученных в Примере 1 и 2 образцов приведены на Фиг. 3 и 4, соответственно. Анодирование в электролите с указанными концентрациями при постоянном напряжении в заявленном диапазоне позволяет получить люминофор с широкой полосой свечения, при этом возможно варьировать ее интенсивность в пределах 0.2-1.8 от среднего значения и положение максимума в диапазоне 440 - 480 нм.

На Фиг. 5 приведены спектры свечения губчатого нанопористого оксида алюминия и АОА, полученного в электролите щавелевой кислоты при известных условиях (Li, Z. Blue luminescence in porous anodic alumina films / Z. Li, K. Huang // J. Phys.: Condens. Matter. - 2007. - №19). Предложенный люминофор в спектральной области 370 - 600 нм имеет интегральную интенсивность свечения, которая больше в ≈130 раз по сравнению с известными аналогами на основе нанопористого оксида алюминия.

Таким образом, достигается заявленный технический результат - получение нового люминофора на основе губчатого нанопористого Al2O3. Дополнительное преимущество заключается в том, что регистрируемое свечение видно невооруженным глазом при дневном освещении, а при получении используется более дешевый алюминий технической чистоты.

Способ получения люминофора на основе губчатого нанопористого оксида алюминия путем анодирования алюминия с поддержанием постоянной температуры, отличающийся тем, что в качестве электролита используется раствор 0,9 - 10 моль/л фтороводородной кислоты в этиленгликоле и процесс ведут при постоянном напряжении в диапазоне 75 - 400 В.
СПОСОБ ПОЛУЧЕНИЯ ЛЮМИНОФОРА НА ОСНОВЕ ГУБЧАТОГО НАНОПОРИСТОГО ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ЛЮМИНОФОРА НА ОСНОВЕ ГУБЧАТОГО НАНОПОРИСТОГО ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ЛЮМИНОФОРА НА ОСНОВЕ ГУБЧАТОГО НАНОПОРИСТОГО ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ЛЮМИНОФОРА НА ОСНОВЕ ГУБЧАТОГО НАНОПОРИСТОГО ОКСИДА АЛЮМИНИЯ
Источник поступления информации: Роспатент

Показаны записи 131-140 из 207.
18.12.2019
№219.017.ee33

Устройство и способ определения фильтрующих свойств керамических фильтров по расплавленной смеси галогенидов щелочных металлов

Группа изобретений предназначена для определения фильтрующих свойств пористых керамических фильтров в форме цилиндров с боковой фильтрующей поверхностью по расплавленной смеси галогенидов щелочных металлов, например, хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных...
Тип: Изобретение
Номер охранного документа: 0002709092
Дата охранного документа: 13.12.2019
18.12.2019
№219.017.ee51

Комплекс для переработки бокситового сырья

Техническое решение относится к области цветной металлургии, в частности к технологии производства глинозема из бокситов. Комплекс для переработки бокситового сырья содержит две линии, в первой из которых последовательно расположены дробилка для дробления высококачественного боксита, мельница...
Тип: Изобретение
Номер охранного документа: 0002709084
Дата охранного документа: 13.12.2019
18.12.2019
№219.017.ee7a

Способ синтеза оксида титана

Изобретение может быть использовано при получении пигментного оксида титана для пищевой и косметической промышленности. Способ синтеза оксида титана с фазовой модификацией анатаз включает приготовление водного раствора хлорида титанила и гидролиз указанного раствора при добавлении аммиака с...
Тип: Изобретение
Номер охранного документа: 0002709093
Дата охранного документа: 13.12.2019
19.12.2019
№219.017.eef0

Устройство определения задымления в лабораторной электропечи

Изобретение относится к технической физике, в частности к определению параметров металлических расплавов. Устройство определения задымления в лабораторной электропечи, входящее в состав водоохлаждаемой вакуумной электропечи, заполненной инертным газом, содержит патрубок электропечи, вакуумные...
Тип: Изобретение
Номер охранного документа: 0002709436
Дата охранного документа: 17.12.2019
19.12.2019
№219.017.ef23

Способ переработки гидролизной серной кислоты

Изобретение относится к неорганической химии и может быть использовано в бумажной, лакокрасочной, пищевой и строительной промышленности. Для переработки гидролизной серной кислоты осуществляют экстракцию из нее скандия на экстрагенте, состоящем из смеси Ди2ЭГФК и ТБФ. Промывают насыщенный...
Тип: Изобретение
Номер охранного документа: 0002709369
Дата охранного документа: 17.12.2019
19.12.2019
№219.017.ef4d

Способ получения инфракрасных волоконных сборок на основе галогенидсеребряных световодов

Изобретение относится к области получения ИК волоконных сборок из галогенидсеребряных световодов, предназначенных для передачи теплового изображения в среднем инфракрасном диапазоне (2-20 мкм) и востребованных для применения в промышленной и медицинской термографии с целью визуализации...
Тип: Изобретение
Номер охранного документа: 0002709371
Дата охранного документа: 17.12.2019
21.12.2019
№219.017.f039

Способ упрочнения пластической деформацией проволоки

Изобретение относится к области металлургии и может быть использовано при упрочнении проволоки путем интенсивной проработки структуры металла пластической деформацией. Проволоку подвергают изгибу циклами до достижения необходимого уровня упрочнения. Каждый цикл включает стадию наматывания...
Тип: Изобретение
Номер охранного документа: 0002709554
Дата охранного документа: 18.12.2019
24.12.2019
№219.017.f1b5

Способ получения композиций на основе оксидов циркония и церия

Изобретение может быть использовано при получении трехмаршрутных катализаторов для очистки выхлопных газов. Способ получения композиций на основе оксидов циркония и церия, применяемых в составе трехмаршрутных катализаторов, включает приготовление раствора, содержащего нитраты циркония, церия,...
Тип: Изобретение
Номер охранного документа: 0002709862
Дата охранного документа: 23.12.2019
27.12.2019
№219.017.f2ba

Приливная гэс

Изобретение относится к конструкциям автономных приливных бесплотинных электростанций небольшой мощности и может быть использовано для преобразования энергии морских течений (приливов-отливов) в электрическую энергию. Назначение: обеспечение энергией удаленных потребителей, лишенных...
Тип: Изобретение
Номер охранного документа: 0002710135
Дата охранного документа: 24.12.2019
27.12.2019
№219.017.f2eb

Установка для производства воды из сухого атмосферного воздуха

Изобретение относится к области водоснабжения. Установка содержит аккумулятор холода, водосборник и воздуховод в виде вытяжной трубы с нагревателем воздуха, соединенным с солнечным коллектором. В качестве аккумулятора холода использован грунт, в который помещен дополнительно введенный...
Тип: Изобретение
Номер охранного документа: 0002710187
Дата охранного документа: 24.12.2019
Показаны записи 1-4 из 4.
25.08.2017
№217.015.9c98

Способ лечения острых бактериальных послеоперационных эндофтальмитов

Изобретение относится к медицине, в частности к офтальмологии, и предназначено для лечения острых бактериальных послеоперационных эндофтальмитов. Способ включает удаление содержимого витреальной полости путем субтотальной витрэктомии с одномоментной заменой стекловидного тела на раствор BSS,...
Тип: Изобретение
Номер охранного документа: 0002610408
Дата охранного документа: 09.02.2017
25.08.2017
№217.015.c14a

Способ получения нитевидного нитрида алюминия

Изобретение относится к химической технологии получения нитевидных нанокристаллов нитрида алюминия (или нановискеров) и может быть использовано при создании элементов нано- и оптоэлектроники, а также люминесцентно-активных наноразмерных сенсоров медико-биологического профиля. Сущность...
Тип: Изобретение
Номер охранного документа: 0002617495
Дата охранного документа: 25.04.2017
12.04.2023
№223.018.4450

Способ получения субмикронных кристаллов нитрида алюминия

Изобретение относится к химической технологии субмикронных кристаллов нитрида алюминия в форме гексагональных призм и комбинации гексагональной призмы с дипирамидой и пинакоидом, которое может быть использовано при создании элементов нано-, микро- и оптоэлектроники, а также...
Тип: Изобретение
Номер охранного документа: 0002738328
Дата охранного документа: 11.12.2020
12.04.2023
№223.018.4478

Способ получения фотокатализатора на основе нанотубулярного диоксида титана

Изобретение относится к технологии получения нанотубулярного диоксида титана (TiO-НТ) с повышенной фотокаталитической активностью анодированием. Способ получения фотокатализатора на основе нанотубулярного диоксида титана включает процесс анодирования титана во фторсодержащем растворе...
Тип: Изобретение
Номер охранного документа: 0002732130
Дата охранного документа: 11.09.2020
+ добавить свой РИД