×
29.05.2018
218.016.5927

Результат интеллектуальной деятельности: Способ определения геомеханических параметров горных пород

Вид РИД

Изобретение

№ охранного документа
0002655279
Дата охранного документа
24.05.2018
Аннотация: Изобретение относится к исследованию скважин геофизическими методами и может найти применение при определении геомеханических параметров горных пород для выбора оптимальных участков при проведении гидравлического разрыва пласта (ГРП). Техническим результатом является повышение эффективности проведения ГРП, повышение качества определения геомеханических параметров. Способ включает определение геомеханических параметров. При этом по стволу скважины проводят комплекс геофизических исследований - ГИС - методами гамма-каротажа - GK, индукционного каротажа - IK, нейтронного гамма-каротажа - NGK, кавернометрии - DS, плотностного гамма-гамма-каротажа - RHOB, определяют интервалы продуктивных пластов и выделяют значения GK, IK, NGK, DS, RHOB в каждом интервале продуктивного пласта, далее выполняют коррекцию значения RHOB и, используя значения, полученные по результатам GK, IK и NGK, рассчитывают и усредняют значения интервального времени пробега продольной DTp и поперечной DTs волн, затем находят отношение времен пробега продольной и поперечной волн и, используя полученные значения DTp и DTs, а также скорректированное значение RHOB, вычисляют геомеханические параметры: модуль Юнга, модуль сдвига и коэффициент Пуассона в интервалах продуктивных пластов, по наименьшему значению этих параметров определяют целевой интервал продуктивного пласта для проведения гидравлического разрыва пласта.

Изобретение относится к исследованию скважин геофизическими методами и может найти применение при определении геомеханических параметров горных пород для выбора оптимальных участков при проведении гидравлического разрыва пласта (ГРП).

Известен способ определения коэффициента Пуассона горных пород (патент №2447284, МПК E21C 39/00, опубл. 10.04.2012 г. в бюл. №10), включающий вдавливание в образец стальных встречно-направленных нагрузочных элементов и измерение его деформации. В образец вдавливают сферические встречно-направленные нагрузочные элементы (сферические инденторы) до его разрыва по плоскости, проходящей через ось нагружения. В образце измеряют площадь поверхностей разрыва и зон разрушенной породы в областях контакта с обоими сферическими инденторами, при этом коэффициент Пуассона μк рассчитывают по формуле:

где S - площадь поверхности разрыва;

F - площадь поверхности большей из зон разрушенной породы в областях контакта со сферическими инденторами.

Недостатки способа:

1) кроме определения коэффициента Пуассона горных пород, невозможно определение остальных геомеханических параметров горных пород, таких как модуль Юнга и модуль сдвига;

2) низкая достоверность данных, полученных расчетным путем, т.е. без применения промысловых геофизических данных;

3) коэффициент Пуассона горных пород получен только на определенном образце горной породы, т.е. образце, взятом в определенном интервале, а не по всему стволу скважины.

Наиболее близким по технической сущности является способ определения геомеханических параметров образца горной породы (заявка №2014145357, МПК G01N 3/42, решение о выдаче патента от 11.01.2017 г., опубл. 10.16.2016 г. в бюл. №16), включающий несколько этапов. Этап нанесения царапины, в ходе которого измеряют горизонтальные и вертикальные усилия, прикладываемые к резцу, перемещающемуся вдоль образца с постоянной скоростью и постоянной глубиной реза, чтобы разрушить постоянный объем на единицу длины на поверхности образца породы. Этап микровдавливания, в ходе которого определяют механические свойства образца породы. Этап определения геомеханических параметров образца, в ходе которого посредством результатов измерений, выполненных во время этапов нанесения царапин и микровдавливания, оценивают по меньшей мере один параметр из следующего списка: предел прочности при одноосном сжатии, угол трения, внутренняя когезия, твердость по Бринелю и модуль Юнга. В ходе этапа определения геомеханических параметров образца определяют предел прочности при одноосном сжатии, угол трения, внутреннюю когезию, твердость по Бринелю и модуль Юнга породы. Дополнительно включают этап измерения акустических параметров образца породы, причем в ходе этапа определения геомеханических параметров образца определяют Пуассоново отношение образца породы. Акустические параметры включают в себя скорости распространения волн сжатия и поперечных волн. Измерения при микровдавливании и/или измерения акустических параметров выполняют в канавке, полученной в ходе этапа нанесения царапины. Во время нанесения царапины и микровдавливания записывают микросейсмическую эмиссию. Образец породы имеет форму керна, и этапы измерения и определения геомеханических параметров образца повторяют по длине. Образец фотографируют в ходе этапов измерения. Способ осуществляют на компьютерном программном продукте.

Недостатки способа:

1) низкая эффективность проведения ГРП на основе исследования одного образца горной породы, полученного из целевого интервала, так как для осуществления ГРП требуется проведение дополнительных геофизических исследований скважины;

2) невозможность определения таких геомеханических параметров, как модуль сдвига и коэффициент Пуассона, которые в комплексе с модулем Юнга повышают качество исследования породы;

3) высокие затраты на реализацию способа, требующего отбор керна из скважины, доставку его на стенд, а также изготовление стенда и проведение испытаний по определению геомеханических параметров образца горной породы.

Техническими задачами изобретения являются повышение качества исследования горной породы за счет повышения достоверности и оперативности получаемых геомеханических параметров и эффективности проведения гидравлического разрыва пласта, а также снижение затрат на реализацию способа.

Поставленные технические задачи решаются способом определения геомеханических параметров горных пород, включающим определение геомеханических параметров.

Новым является то, что по стволу скважины проводят комплекс геофизических исследований - ГИС - методами гамма-каротажа - GK, индукционного каротажа - IK, нейтронного гамма-каротажа - NGK, кавернометрии - DS, плотностного гамма-гамма-каротажа - RHOB, определяют интервалы продуктивных пластов и выделяют значения GK, IK, NGK, DS, RHOB в каждом интервале продуктивного пласта, далее выполняют коррекцию значения RHOB и, используя значения, полученные по результатам GK, IK и NGK, рассчитывают и усредняют значения интервального времени пробега продольной DTp и поперечной DTs волн, затем находят отношение времен пробега продольной и поперечной волн и, используя полученные значения DTp и DTs, а также скорректированное значение RHOB, вычисляют геомеханические параметры: модуль Юнга, модуль сдвига и коэффициент Пуассона в интервалах продуктивных пластов, по наименьшему значению этих параметров определяют целевой интервал продуктивного пласта для проведения гидравлического разрыва пласта.

Предлагаемый способ реализуют следующим образом.

1. Проводят комплекс геофизических исследований - ГИС - методами гамма-каротажа - GK, индукционного каротажа - IK, нейтронного гамма-каротажа - NGK, кавернометрии - DS и плотностного гамма-гамма-каротажа - RHOB по стволу скважины. В стволе скважины определяют интервалы продуктивных пластов, потенциально предназначенных для проведения ГРП. Выделяют значения GK, IK, NGK, DS, RHOB в каждом интервале продуктивного пласта.

Производят коррекцию значения плотностного гамма-гамма-каротажа - RHOB по формуле:

где IF - оператор «если»;

RHOB - значение плотностного гамма-гамма-каротажа, г/см3;

DS - значение каверномера, мм;

2.78 - значение плотности матрицы горной породы;

0.23 - значение диаметра ствола скважины.

2. Используя значения, полученные по методам исследования GK, IK, NGK, рассчитывают интервальное время пробега продольной волны DTp и интервальное время пробега поперечной волны DTs по следующим формулам:

где DTp - интервальное время пробега продольной волны, мкс/м;

DTs - интервальное время пробега поперечной волны, мкс/м;

GK - значение гамма-каротажа, мкс/м.

где IK - значение индукционного каротажа, Омм.

где NGK - значение нейтронного гамма-каротажа, у.е.

3. Усредняют полученные по формулам (2), (4), (6) значение DTp и значение DTs по формулам (3), (5), (7).

4. Находят отношение времен пробега продольной и поперечной волн по формуле:

где R - отношение времен пробега;

DTS - интервальное время пробега поперечной волны, мкс/м;

DTp - интервальное время пробега продольной волны, мкс/м.

5. Используя скорректированное значение RHOB, а также полученные усредненные значения DTS и DTp, вычисляют геомеханические параметры: модуль Юнга, модуль сдвига и коэффициент Пуассона в интервалах продуктивных пластов.

Коэффициент Пуассона находят по формуле:

где PR - коэффициент Пуассона, м/м.

Модуль сдвига находят по формуле:

где G - модуль сдвига, МПа;

RHOB - скорректированная плотность гамма-гамма-каротажа, г/см3;

DTs - интервальное время пробега поперечной волны, мкс/м.

Модуль Юнга находят по формуле:

где E - модуль Юнга, МПа.

Далее по наименьшему значению показателей геомеханических параметров, определенных в интервалах продуктивных пластов в стволе скважины, определяют целевой интервал продуктивного пласта для проведения ГРП.

Предлагаемый способ позволяет повысить качество определения геомеханических параметров за счет повышения достоверности получаемых геомеханических параметров, так как способ основан на определении геомеханических параметров непосредственно в скважине в интервалах продуктивных пластов.

Кроме модуля Юнга, в предлагаемом способе также определяют такие параметры, как модуль сдвига и коэффициент Пуассона. Для этого проводят комплекс геофизических исследований методами GK, IK, NGK, DS, RHOB.

Предлагаемый способ позволяет повысить эффективность проведения гидроразрыва пласта, так как целевой интервал подбирается на основе определения геомеханических параметров, что повышает достоверность полученных данных.

Снижаются затраты на реализацию способа, так как они включают в себя только затраты на проведение комплекса геофизических методов, а расчет геомеханических параметров производится с помощью компьютерного программного продукта.

Пример конкретного применения способа

1. По стволу скважины провели комплекс ГИС методами гамма-каротажа - GK, индукционного каротажа - IK, нейтронного гамма-каротажа - NGK, кавернометрии - DS и плотностного гамма-гамма-каротажа - RHOB и определили значения.

По стволу скважины имеется три интервала продуктивных пластов, потенциально предназначенных для проведения ГРП:

1) 1610-1616 м;

2) 1632-1639 м;

3) 1654-1660 м.

Выделили значения для каждого интервала продуктивного пласта.

Для первого интервала: глубина - 1613 м (выбрали значение внутри интервала); GK - 1,374 мкс/м; NGK - 3,236 у.е.; DS - 219 мм; RHOB - 2,618 г/см3; IK - 24,2 Омм.

Для второго интервала: глубина - 1635 м; GK - 1,655 мкс/м; NGK - 3,627 у.е.; DS - 219 мм; RHOB - 2,754 г/см3; IK - 27,3 Омм.

Для третьего интервала: глубина - 1657 м; GK - 1,015 мкс/м; NGK - 2,973 у.е.; DS - 219 мм; RHOB - 2,243 г/см3; IK - 21,6 Омм.

Используя программы для обработки LAS-файлов (например, программу «Геомеханика» от фирмы ООО «Литосфера» или программу CurveEditor), выполнили коррекцию RHOB по формуле (1):

Здесь диаметр скважины по долоту равен 0,22 м. Выбираем граничное значение диаметра, начиная с которого будет проводиться корректировка плотности, увеличенного на 1 см и равного 0,23 м.

Эта же формула, записанная в Excel:

Здесь в ячейке Е21 записано значение RHOB, а в ячейке Е22 - значение DS.

Эта формула означает, что если на заданной глубине показания RHOB больше 2,78 г/см3, то принимают значение RHOB, равное 2,78 г/см3. Если плотность по каротажу RHOB меньше 2,78 г/см3, то проверяют значение диаметра скважины. Если показания DS больше 0,23 м, то принимают значение RHOB, равное 2,78 г/см3. Если RHOB не превышает 2,78 г/см3 и DS не превышает 0,23 м, принимают текущее показание. В данном примере на глубинах 1613 м, 1635 м, 1657 м показания RHOB равны 2,618 г/см3, 2,754 г/см3, 2,243 г/см3 соответственно. Поэтому их и принимают для дальнейшего расчета.

2. Используя значения, полученные методами каротажа, вычислили значения DTp и DTs по формулам (2-7):

Для первого интервала: DTp=9,21⋅1,374+168,5=181,1545 мкс/м.

Для второго интервала: DTp=9,21⋅1,655+168,5=183,7425 мкс/м.

Для третьего интервала: DTp=9,21⋅1,015+168,5=177,8481 мкс/м.

Для первого интервала: DTs=18,87⋅1,374+328,3=354,2273 мкс/м.

Для второго интервала: DTs=18,87⋅1,655+328,3=359,5298 мкс/м.

Для третьего интервала: DTs=18,87⋅1,015+328,3=348,1135 мкс/м.

Для первого интервала: DTp=0,38/24,2+164,6=164,6157 мкс/м.

Для второго интервала: DTp=0,38/27,3+164,6=164,6139 мкс/м.

Для третьего интервала: DTp=0,38/21,6+164,6=164,6176 мкс/м.

Для первого интервала: DTs=0,5/24,2+337,3=337,3206 мкс/м.

Для второго интервала: DTs=0,5/27,3+337,3=337,3183 мкс/м.

Для третьего интервала: DTs=0,5/21,6+337,3=337,3231 мкс/м.

Для первого интервала: DTp=-44,85⋅3,236+323,4=178,2654 мкс/м.

Для второго интервала: DTp=-44,85⋅3,627+323,4=160,7290 мкс/м.

Для третьего интервала: DTp=-44,85⋅2,973+323,4=190,0609 мкс/м.

Для первого интервала: DTs=-31,56⋅3,236+522,4=420,2718 мкс/м.

Для второго интервала: DTs=-31,56⋅3,627+522,4=407,9319 мкс/м.

Для третьего интервала: DTs=-31,56⋅2,973+522,4=428,5721 мкс/м.

3. Затем полученные значения DTp и DTs усреднили. Для этого из трех значений выбрали два наиболее близких, и между ними нашли среднее.

Для первого интервала:

Значения DTp, полученные по формулам (2), (4), (6):

(2)=181,1545 мкс/м; (4)=164,6157 мкс/м; (6)=178,2654 мкс/м.

Как видим, больше всего подходят значения, полученные по формулам (2) и (6). Берем их за основу и находим среднее значение: DTp=(181,1545 мкс/м+178,2654 мкс/м)/2=179,7099 мкс/м.

Значения DTs, полученные по формулам (3), (5), (7):

(3)=354,2273 мкс/м; (5)=337,3206 мкс/м; (7)=420,2718 мкс/м.

Как видим, больше всего подходят значения, полученные по формулам (3) и (5). Берем их за основу и находим среднее DTs=(354,2273 мкс/м+337,3206 мкс/м)/2=345,7739 мкс/м.

Для второго интервала:

Значения DTp, полученные по формулам (2), (4), (6):

(2)=183,7425 мкс/м; (4)=164,6139 мкс/м; (6)=160,7290 мкс/м.

Как видим, больше всего подходят значения, полученные по формулам (4) и (6). Берем их за основу и находим среднее значение: DTp=(164,6139 мкс/м+160,7290 мкс/м)/2=162,6714 мкс/м.

Значения DTs, полученные по формулам (3), (5), (7):

(3)=359,5298 мкс/м; (5)=337,3183 мкс/м; (7)=407,9319 мкс/м.

Как видим, больше всего подходят значения, полученные по формулам (3) и (5). Берем их за основу и находим среднее DTs=(359,5298 мкс/м+337,3183 мкс/м)/2=348,42405 мкс/м.

Для третьего интервала:

Значения DTp, полученные по формулам (2), (4), (6):

(2)=177,8481 мкс/м; (4)=164,6176 мкс/м; (6)=191,4064 мкс/м.

Как видим, больше всего подходят значения, полученные по формулам (2) и (6). Берем их за основу и находим среднее значение: DTp=(177,8481 мкс/м+191,4064 мкс/м)/2=184,6272 мкс/м.

Значения DTs, полученные по формулам (3), (5), (7):

(3)=348,1135 мкс/м; (5)=337,3231 мкс/м; (7)=428,5751 мкс/м.

Как видим, больше всего подходят значения, полученные по формулам (3) и (5). Берем их за основу и находим среднее DTs=(348,1135 мкс/м+337,3231 мкс/м)/2=342,7183 мкс/м.

4. Затем нашли отношение времен пробега продольной и поперечной волн по формуле (8):

Для первого интервала: R=345,7739 мкс/м / 179,7099 мкс/м=1,924 мкс/м.

Для второго интервала: R=348,42405 мкс/м / 162,6714 мкс/м=2,149 мкс/м.

Для третьего интервала: R=342,7183 мкс/м / 184,6272 мкс/м=1,856 мкс/м.

5. Используя полученные значения DTp и DTs, а также скорректированное значение RHOB, в интервалах продуктивных пластов вычислили геомеханические параметры.

Определили коэффициент Пуассона по формуле (9):

Для первого интервала: PR=(0,5⋅1,9242-1) / 1,9242-1=0,3148.

Для второго интервала: PR=(0,5⋅2,1492-1) / 2,1492-1=0,3618.

Для третьего интервала: PR=(0,5⋅1,8562-1) / 1.8562-1=0,2955.

Определили модуль сдвига по формуле (10):

Для первого интервала: G=(2,618 / (345,7739)2)⋅109=21897,0 МПа.

Для второго интервала: G=(2,754 / (348,42405)2)⋅109=22685,5 МПа.

Для третьего интервала: G=(2,243 / (342,7183)2)⋅109=19096,7 МПа.

Определили модуль Юнга по формуле (11):

Для первого интервала: Е=2⋅21897,0⋅(1+0,3148)=57580,35 МПа.

Для второго интервала: Е=2⋅22685,5⋅(1+0,3618)=61786,22 МПа.

Для третьего интервала: Е=2⋅19096,7⋅(1+0,3335)=50930,90 МПа.

Как видно из расчетов по формулам (6), (7), (8), наименьшими значениями геомеханических параметров: модуля Юнга, модуля сдвига и коэффициента Пуассона - обладает третий интервал. Поэтому его выбрали для проведения ГРП.

Предлагаемый способ определения геомеханических параметров горных пород позволяет:

- повысить эффективность проведения ГРП;

- повысить качество определения геомеханических параметров;

- снизить затраты на реализацию способа.

Способ определения геомеханических параметров горных пород, включающий определение геомеханических параметров, отличающийся тем, что по стволу скважины проводят комплекс геофизических исследований - ГИС - методами гамма-каротажа - GK, индукционного каротажа - IK, нейтронного гамма-каротажа - NGK, кавернометрии - DS, плотностного гамма-гамма-каротажа - RHOB, определяют интервалы продуктивных пластов и выделяют значения GK, IK, NGK, DS, RHOB в каждом интервале продуктивного пласта, далее выполняют коррекцию значения RHOB и, используя значения, полученные по результатам GK, IK и NGK, рассчитывают и усредняют значения интервального времени пробега продольной DTp и поперечной DTs волн, затем находят отношение времен пробега продольной и поперечной волн и, используя полученные значения DTp и DTs, а также скорректированное значение RHOB, вычисляют геомеханические параметры: модуль Юнга, модуль сдвига и коэффициент Пуассона в интервалах продуктивных пластов, по наименьшему значению этих параметров определяют целевой интервал продуктивного пласта для проведения гидравлического разрыва пласта.
Источник поступления информации: Роспатент

Показаны записи 251-260 из 432.
07.02.2019
№219.016.b780

Устройство для опрессовки превентора в скважине

Изобретение относится к нефтедобывающей промышленности и предназначено для опрессовки превентора на скважине. Устройство для опрессовки превентора на скважине включает опорную трубу, проходящую через корпус превентора и выполненную с конической с наружной резьбой, куда завернута муфта. Также...
Тип: Изобретение
Номер охранного документа: 0002679004
Дата охранного документа: 05.02.2019
07.02.2019
№219.016.b78d

Состав для кислотной обработки прискважинной зоны пласта (варианты)

Группа изобретений относится к области нефтедобычи. Технический результат - улучшенные физико-химические и технологические свойствами состава, полное предотвращение выпадения кольматирующих гелеобразных железосодержащих осадков в процессе обработки составом, ингибирование процесса образования...
Тип: Изобретение
Номер охранного документа: 0002679029
Дата охранного документа: 05.02.2019
08.02.2019
№219.016.b80e

Пробойник

Изобретение относится к ручным инструментам, предназначенным для получения отверстия в стенке трубы, и может быть использовано для извлечения жидкости из полости нефтепровода. Пробойник выполнен в виде стержня с конусообразным концом. Конусообразный конец стержня выполнен съемным и в форме...
Тип: Изобретение
Номер охранного документа: 0002679235
Дата охранного документа: 06.02.2019
10.02.2019
№219.016.b920

Способ разработки залежи сверхвязкой нефти с водоносными интервалами

Изобретение относится к нефтедобывающей промышленности и может быть использовано при термическом способе добычи высоковязкой нефти и/или битума при наличии водоносных интервалов или водонефтяного контакта. Технический результат - увеличение эффективности разработки и снижение уровня пластовой...
Тип: Изобретение
Номер охранного документа: 0002679423
Дата охранного документа: 08.02.2019
13.02.2019
№219.016.b997

Способ исследования нагнетательных скважин

Изобретение относится к способам и измерительному комплексу изучения смешанного потока газа, жидкости и твердых частиц. Техническим результатом является повышение точности измерения расхода многофазной жидкости. Способ исследования нагнетательных скважин, где одна или несколько скважин являются...
Тип: Изобретение
Номер охранного документа: 0002679462
Дата охранного документа: 11.02.2019
13.02.2019
№219.016.b9af

Пневматический ловитель насосных штанг

Изобретение относится к нефтедобывающей промышленности и может быть использовано при ловильных работах в скважине. Устройство включает встроенный баллон высокого давления со сжатым воздухом, используемый как источник энергии и включающий индикатор давления. Корпус выполнен с центрирующим упором...
Тип: Изобретение
Номер охранного документа: 0002679459
Дата охранного документа: 11.02.2019
15.02.2019
№219.016.ba9d

Способ очистки фильтрационной зоны горизонтальной скважины с аномально низким пластовым давлением

Изобретение относится к нефтедобывающей промышленности и может найти применение при очистке фильтрационной зоны горизонтальной скважины с аномально низким пластовым давлением. Способ включает спуск в скважину гибкой трубы (ГТ) в район уровня жидкости, прокачку через нее воздухоазотной смеси до...
Тип: Изобретение
Номер охранного документа: 0002679779
Дата охранного документа: 12.02.2019
16.02.2019
№219.016.bb17

Устройство для выполнения отверстия в трубопроводе, находящемся под давлением

Изобретение относится к трубопроводному транспорту жидкостей и газов и может быть использовано перед подготовкой трубопровода к демонтажу и при проведении ремонтных работ на трубопроводе. Устройство для выполнения отверстия в трубопроводе, находящемся под давлением, содержит установленный на...
Тип: Изобретение
Номер охранного документа: 0002680002
Дата охранного документа: 14.02.2019
16.02.2019
№219.016.bb37

Скважинная штанговая насосная установка

Изобретение относится к нефтегазодобывающей промышленности и предназначено для использования в штанговых насосных установках для поворота колонны насосных штанг. Скважинная штанговая насосная установка содержит станок-качалку с балансиром, имеющим на головке две выпуклые цилиндрические стенки,...
Тип: Изобретение
Номер охранного документа: 0002680001
Дата охранного документа: 14.02.2019
17.02.2019
№219.016.bbcb

Способ разработки залежи сверхвязкой нефти с водоносными интервалами

Изобретение относится к нефтедобывающей промышленности и, в частности, к термическим способам добычи высоковязкой нефти и/или битума при наличии водоносных интервалов или водонефтяного контакта. Технический результат – возможность реанимировать скважину, пробуренную в плохих геологических...
Тип: Изобретение
Номер охранного документа: 0002680089
Дата охранного документа: 15.02.2019
Показаны записи 251-260 из 312.
19.06.2019
№219.017.8711

Способ эксплуатации двухустьевой скважины

Изобретение относится к области разработки месторождений углеводородов двухустьевыми горизонтальными скважинами и может быть использовано при добыче вясоковязких нефтей и битума. Обеспечивает повышение эффективности способа за счет упрощения монтажа пакера в скважине и возможности его...
Тип: Изобретение
Номер охранного документа: 0002350744
Дата охранного документа: 27.03.2009
19.06.2019
№219.017.8774

Способ приготовления тампонажной композиции в скважине

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам приготовления тампонажной композиции в скважине с целью проведения ремонтно-изоляционных работ, включает спуск в эксплуатационную колонну перфорированного патрубка на насосно-компрессорных трубах,...
Тип: Изобретение
Номер охранного документа: 0002373376
Дата охранного документа: 20.11.2009
19.06.2019
№219.017.8782

Устьевое устройство для освобождения колонны труб из скважины

Изобретение относится к нефтегазодобывающей промышленности, в частности к устьевым устройствам для освобождения аварийной колонны труб, прихваченной в скважине. Устройство включает демпфер, установленный между подъемником и генератором вертикальных импульсов, соединенным с колонной труб....
Тип: Изобретение
Номер охранного документа: 0002373373
Дата охранного документа: 20.11.2009
19.06.2019
№219.017.87ae

Газожидкостный смеситель

Изобретение относится к сбору и транспорту газожидкостных смесей и может быть использовано при совместном сборе и транспорте продукции нефтяных газоконденсатных месторождений. Диспергирующее устройство для смешивания газа и жидкости содержит корпус с поперечными диафрагмами, трубопровод для...
Тип: Изобретение
Номер охранного документа: 0002336940
Дата охранного документа: 27.10.2008
29.06.2019
№219.017.9c0c

Устройство для промывки скважин с низким пластовым давлением от песчаной пробки

Изобретение относится к нефтедобывающей промышленности и может быть использовано в текущем и капитальном ремонтах скважин, связанных с промывкой скважин с поглощающими пластами от песчаных пробок, осадков грязи, окалины и т.д. Устройство содержит колонну труб, заглушенный сверху патрубок,...
Тип: Изобретение
Номер охранного документа: 0002346145
Дата охранного документа: 10.02.2009
29.06.2019
№219.017.9c21

Способ разработки неоднородного нефтяного месторождения

Изобретение относится к нефтедобывающей промышленности, а именно к области разработки нефтяных месторождений, и может быть использовано для повышения нефтеотдачи пластов неоднородных нефтяных месторождений. Задачей изобретения является исключение ошибочного расчета количества подвижной нефти и...
Тип: Изобретение
Номер охранного документа: 0002347893
Дата охранного документа: 27.02.2009
10.07.2019
№219.017.ab01

Устройство для восстановления и сохранения коллекторских свойств пласта

Изобретение относится к нефтедобывающей промышленности и может быть использовано в качестве оборудования для очистки призабойной зоны пласта и забоя скважины от шлама, песка, парафина, смол и других трудноизвлекаемых промывкой отложений. Обеспечивает восстановление и сохранение коллекторских...
Тип: Изобретение
Номер охранного документа: 0002291950
Дата охранного документа: 20.01.2007
10.07.2019
№219.017.ac0c

Перфоратор для скважины

Изобретение относится к нефтедобывающей промышленности, в частности к строительству и ремонту скважин, и может быть использовано для создания перфорационных каналов в обсадной колонне труб. Технический результат - надежность за счет защиты от несанкционированного перехода в рабочее положение,...
Тип: Изобретение
Номер охранного документа: 0002348796
Дата охранного документа: 10.03.2009
10.07.2019
№219.017.ac2b

Пакер-пробка

Изобретение относится к нефтедобывающей промышленности и предназначено для временного перекрытия ствола скважины. Пакер-пробка состоит из ствола с внутренней цилиндрической выборкой, с наружной стороны которого установлены уплотнительный элемент с упором. Выше последнего находится упорная...
Тип: Изобретение
Номер охранного документа: 0002346142
Дата охранного документа: 10.02.2009
10.07.2019
№219.017.ac5f

Пакер-пробка

Изобретение относится к нефтедобывающей промышленности для временного перекрытия ствола скважины, обеспечивает простоту конструкции, гарантированное и безопасное извлечение пакера-пробки без заклинивания. Пакер-пробка включает ствол, уплотнительный элемент, фиксатор положения уплотнительного...
Тип: Изобретение
Номер охранного документа: 0002391488
Дата охранного документа: 10.06.2010
+ добавить свой РИД