×
29.05.2018
218.016.5759

Результат интеллектуальной деятельности: Устройство для определения тепловых параметров фазового превращения

Вид РИД

Изобретение

Аннотация: Изобретение относится к области исследования кинетики структурных и фазовых превращений в металлах. Предложено устройство для определения тепловых параметров фазового превращения, которое содержит печь с управляемым нагревателем со средством измерения его температуры, средства измерения температуры и записи кривых нагрева и охлаждения образца и средство подачи охлаждающего газа с регулируемым расходом. При этом средство измерения температуры образца выполнено в виде комплекса из пирометров, включающего калибровочный пирометр спектральных отношений, работающий на близких спектральных линиях, и один или несколько пирометров с перекрывающимися диапазонами измерений, обеспечивающих измерения в необходимом диапазоне температур. Для измерений использован температурно-однородный образец, а устройство снабжено механизмом перемещения образца из зоны нагрева в зону измерения, причем средство подачи газа выполнено с обеспечением непосредственного обдува образца, перемещенного в зону измерения, регулируемым равномерным однородным потоком воздуха со стабилизированным расходом. Технический результат - повышение точности определения искомого параметра. 1 ил.

Изобретение относится к области исследования кинетики структурных и фазовых превращений в металлах.

Известно устройство для комплексного определения теплофизических свойств веществ в области фазовых переходов, содержащее измерительную ячейку с исследуемым веществом, электронный коммутатор, источник тока и измерительное устройство, нагревательную систему, состоящую их блока питания и нагревателя, в котором размещена ячейка. При этом устройство снабжено программируемым процессором, исполнительным блоком и анализирующим узлом (SU 935764 [1]).

Недостатком известного устройства является ограниченность применения, поскольку оно предназначено для исследования веществ, имеющих фазовый переход «полупроводник - металл», и невысокая точность, т.к. о наличии фазовых переходов судят по кривой температурной зависимости электропроводности и термоЭДС.

Известно устройство для определения температур фазовых превращений в твердых телах, содержащее диэлектрический корпус, в котором расположен нагреватель, термопару с подключенным к ней измерителем и индикатором ЭДС и детектор теплоты фазового превращения. Детектор выполнен в виде двух полупроводниковых пластин различного типа проводимости с тонкопленочными омическими контактами различного типа проводимости на обеих сторонах. При этом на одних из сторон пластин, приведенных в соприкосновение с исследуемым твердым телом, омические контакты соединены между собой, а омические контакты на других сторонах пластин подключены к индикатору ЭДС (SU 940025 [2]).

Недостатком известного устройства является ограниченность применения, поскольку оно предназначено для исследования веществ, имеющих фазовый переход «полупроводник - металл», и невысокая точность.

Известно устройство для определения температуры фазовых превращений, содержащее измерительную ячейку, состоящую из теплопровода, термодатчика, потенциального, измерительного и охранного цилиндрических электродов, размещенных в теплопроводе и имеющую с ним общую ось симметрии, а также блок регистрации. При этом теплопровод состоит из цилиндрической рубашки, торцовых шайб и сквозного стержня, имеющих общую ось симметрии и образующих замкнутый кольцевой зазор, на цилиндрических внутренних поверхностях которого расположены потенциальный и измерительный электроды, выполненные из материала с большой теплопроводностью и отделенные от теплопровода электроизоляцией с высоким объемным удельным сопротивлением, а термодатчик расположен между поверхностью потенциального электрода и электроизоляцией (SU 1130785 [3]).

Однако данное устройство не может быть использовано для определения тепловых параметров фазового превращения в металлах, находящихся в твердом состоянии, поскольку предназначено для определения застывания или кристаллизации жидкостей, предпочтительно нефтепродуктов.

Известна установка для измерения температуры с прямым наблюдением фазовых превращений неорганических материалов, нагретых до высоких температур, содержащая камеру для образца, нагреватель, осветитель, оптическую систему с кинокамерой и систему измерения температуры. При этом нагреватель выполнен съемным, V-образной формы с углом при вершине 15-30°, а система измерения температуры содержит катушку сопротивления, соединенную последовательно с нагревателем, цифровой вольтметр и регистрирующий блок (SU 1402885 [4]).

Недостатком известного устройства является невозможность определения тепловых параметров фазового превращения в металлах, находящихся в твердом состоянии, поскольку оно предназначено для определения температур фазовых превращений материалов в виде порошков и волокон.

Наиболее близким к заявляемому по своей технической сущности является устройство для автоматического определения температур фазовых превращений в металлах (CN 101644690 [5]). Устройство представляет собой корпус, в котором размещен нагреватель в виде двух коаксиально установленных труб, обмотанных проволокой, подсоединенной к регулируемому источнику тока, и защищенных кожухом. По оси внутреннего трубчатого нагревателя установлена пробирка, внутри которой помещается проволочный образец. Внутри кожуха установлена термопара, контактирующая с поверхностью нагревателя. В боковой стенке корпуса установлен вентилятор с регулируемой скоростью вращения, воздушный поток которого направлен на поверхность кожуха нагревателя так, что обеспечивается его равномерный обдув (и соответственно отбор тепла) по всей поверхности кожуха. В результате при проведении экспериментов обеспечивается поддержание заданной фиксированной разницы температур между образцом и кожухом нагревателя. Устройство управляется компьютером, на который поступает сигнал от термопары и, в соответствии с заданной программой нагрева или охлаждения, корректируются режимы работы нагревателя и вентилятора. Кривые фазовой диаграммы записываются с помощью термопары с аналого-цифровым преобразователем, размещенной в пробирке с образцом.

Недостатком известного устройства является невозможность точного определения теплоты фазового превращения металлов, находящихся в твердом состоянии.

Заявляемое устройство для определения тепловых параметров фазового превращения направлено на повышение точности определения искомого параметра.

Указанный результат достигается тем, что устройство для определения тепловых параметров фазового превращения содержит печь с управляемым нагревателем со средством измерения его температуры, средства измерения температуры и записи кривых нагрева и охлаждения образца и средство подачи охлаждающего газа с регулируемым расходом. При этом средство измерения температуры образца выполнено в виде комплекса из пирометров, включающего калибровочный пирометр спектральных отношений, работающий на близких спектральных линиях, и один или несколько пирометров с перекрывающимися диапазонами измерений, обеспечивающих измерения в необходимом диапазоне температур, для измерений использован температурно-однородный образец, устройство снабжено механизмом перемещения образца из зоны нагрева в зону измерения, а средство подачи газа выполнено с обеспечением непосредственного обдува образца, перемещенного в зону измерения, регулируемым равномерным однородным потоком воздуха со стабилизированным расходом.

Отличительными признаками заявляемого устройства являются:

- средство измерения температуры образца выполнено в виде комплекса из пирометров, включающего калибровочный пирометр спектральных отношений, работающий на близких спектральных линиях, и один или несколько пирометров с перекрывающимися диапазонами измерений, обеспечивающих измерения в необходимом диапазоне температур;

- для измерений использован температурно-однородный образец;

- устройство снабжено механизмом перемещения образца из зоны нагрева в зону измерения;

- средство подачи газа выполнено с обеспечением непосредственного обдува образца, перемещенного в зону измерения, регулируемым равномерным однородным потоком воздуха со стабилизированным расходом.

Выполнение средства измерения температуры образца в виде комплекса из пирометров, включающего калибровочный пирометр спектральных отношений, работающий на близких спектральных линиях, и один или несколько пирометров с перекрывающимися диапазонами измерений, обеспечивающих измерения в необходимом диапазоне температур, дает возможность уменьшить погрешность измерений температуры за счет исключения ошибки, связанной с неточностью определения коэффициента черноты поверхности образца.

Использование температурно-однородных образцов позволяет обеспечить повышение точности определения искомого параметра за счет того, что исключается влияние на результат эффектов теплопроводности.

Снабжение устройства механизмом перемещения образца из зоны нагрева в зону измерения позволяет минимизировать время перемещения образца и синхронизовать включение средств измерения и тем самым влияет на точность определения тепловых параметров фазового превращения.

Охлаждение однородным по температуре и скорости перемещения теплоносителем (газом) также влияет на повышение точности определения теплоты фазового превращения, поскольку однородный поток теплоносителя снижает неоднородности температуры на контролируемой пирометрами поверхности образца. Для этого необходимо обеспечить равномерный и однородный поток газа (воздуха) со стабилизированным расходом.

О величине теплоты фазового превращения судят по величине отклонения кривой охлаждения от аппроксимирующей экспериментальные данные экспоненциальной кривой, поскольку площадь, образованная границами реальной кривой охлаждения и аппроксимирующей экспоненты, соответствует искомому параметру.

Сущность заявляемого устройства определения теплоты фазового превращения поясняется примером его реализации и чертежом, на котором представлена принципиальная схема устройства.

Устройство содержит нагревательную печь 1, содержащую обмотку электронагревателя 2, размещенную в теплоизоляции 3. Печь снабжена зонной термопарой 4 и регулятором температуры 5 с электронным реле 6. Исследуемый образец 7 закрепляется на механизме перемещения образца 8, снабженном датчиком положения механизма 9. Механизм перемещения образца позволяет перемещать образец из зоны нагрева (из печи) в зону измерения 10, в которой размещены пирометры 11. Устройство снабжено системой охлаждения 12, в состав которой входят сопловая решетка 13, быстродействующий электромагнитный клапан 14, датчик измерения давления 15, редуктор 16, ресивер 17, компрессор 18. Управляет работой устройства контроллер 19.

Устройство используется следующим образом.

В печь 1 помещается образец 7 из исследуемого материала и нагревается до равновесной температуры печи, определяемой ее штатной зонной термопарой 4, заведомо более высокой, чем ожидаемая температура фазового перехода. После выдержки в печи, время которой определяется необходимостью приведения фазового состава материала к равновесному состоянию, образец извлекается из печи 1 механизмом 8. Назначение механизма перемещения образца - с минимальными потерями тепла перенести образец из печи и зафиксировать его точно в зоне измерения 10, на которую юстированы пирометры 11. При этом датчик 9 положения механизма сигнализирует контроллеру 19 о фиксации образца в зоне измерения, и контроллер включает регистрацию температуры поверхности образца пирометрами 11. Одновременно или с необходимой задержкой включается быстродействующий электромагнитный клапан 14, подающий воздух в сопловую решетку 13, формирующую однородный поток воздуха с плоским фронтом. Система охлаждения построена таким образом, чтобы обеспечить стабильный расход воздуха в течение всего эксперимента, стабильность расхода контролируется датчиком давления 15, показания которого также регистрируются контроллером 19.

Измерения температуры образца производятся несколькими рабочими пирометрами 11 с пересекающимися границами диапазонов измерения. Количество и тип пирометров определяется необходимостью перекрытия требуемого диапазона температур. Важным параметром, определяющим погрешность пирометрических измерений, является коэффициент черноты поверхности. Для его определения используют пирометр спектральных отношений, работающий на близких спектральных линиях. Показания такого пирометра не зависят от коэффициента черноты, и, соответственно, позволяют откалибровать систему пирометров и получить единую зависимость температуры образца от времени во всем диапазоне исследуемых температур.

На полученной зависимости температуры от времени определяют зону исследуемого фазового превращения и участки охлаждения образца до и после фазового превращения. Построив температурные кривые для этих участков, определяют, при какой величине энерговыделения кривые совпадут. Полученная величина есть искомый тепловой эффект образования заданной фазовой композиции.

В эксперименте использовался образец размером 20×80×0.7 мм из стали 65Г, предварительно нормализованный нагревом до температуры 900°С, с выдержкой 5 мин и охлаждением на воздухе. Такая нормализация устраняла индивидуальные особенности структуры материала и формировала на поверхности тонкую окисную пленку, стабилизировавшую коэффициент черноты поверхности. Размеры образца выбирались из следующих соображений.

Толщина образца обеспечивает скорость охлаждения без обдува примерно 30-40°С/с при температуре 900°С, при этом перепад температуры по толщине составляет доли градуса. Влиянием эффекта теплопроводности в плоскости образца за время эксперимента можно пренебречь. Образец нагревался до 900°С в печи с изолирующей аргоновой атмосферой, выдерживался при этой температуре 5 минут. Затем механизмом перемещения образца перемещался и фиксировался в точке визирования пирометров за время менее 1 с. В момент фиксации образца в точке визирования включалась регистрация показаний пирометров.

В экспериментах использовались 3 пирометра (на схеме показаны два).

2 пирометра Raytek Marathon FR1A - пирометры ближнего инфракрасного спектра, имеющие диапазон измерения 550-1100°С. Один из этих пирометров работает в режиме спектральных отношений, другой - в режиме измерения полного потока излучения.

Третий - быстродействующий пирометр OPTRIS CTfast, работающий в среднем ИК-диапазоне. Диапазон измеряемых температур прибора - 50-975°С.

Пирометры опрашивались контроллером в режиме 10 измерений в секунду, что близко к их максимальному быстродействию.

Подача воздуха в сопловую решетку обеспечивалась по сигналу механизма перемещения образца без задержки, давление охлаждающего воздуха составляло 4 атм и поддерживалось редуктором неизменным все время измерения.

Устройство для определения тепловых параметров фазового превращения, содержащее печь с управляемым нагревателем со средством измерения его температуры, средства измерения температуры и записи кривых нагрева и охлаждения образца и средство подачи охлаждающего газа с регулируемым расходом, отличающееся тем, что средство измерения температуры образца выполнено в виде комплекса из пирометров, включающего калибровочный пирометр спектральных отношений, работающий на близких спектральных линиях, и один или несколько пирометров с перекрывающимися диапазонами измерений, обеспечивающих измерения в необходимом диапазоне температур, для измерений использован температурно-однородный образец, устройство снабжено механизмом перемещения образца из зоны нагрева в зону измерения, а средство подачи газа выполнено с обеспечением непосредственного обдува образца, перемещенного в зону измерения, регулируемым равномерным однородным потоком воздуха со стабилизированным расходом.
Устройство для определения тепловых параметров фазового превращения
Устройство для определения тепловых параметров фазового превращения
Источник поступления информации: Роспатент

Показаны записи 11-12 из 12.
24.06.2020
№220.018.29ea

Способ производства стального проката

Изобретение относится к области металлургии, и в частности, к производству проката нового поколения из экономнолегированных сталей. Для комплексного измельчения зерна феррита до размера не более 10 мкм для экономнолегированных сталей способ производства стального проката включает получение...
Тип: Изобретение
Номер охранного документа: 0002724217
Дата охранного документа: 22.06.2020
16.06.2023
№223.018.79ba

Способ производства проката из стали

Изобретение относится к области металлургии, в частности к технологии горячей прокатки стали. Для определения структурного состояния прокатанного металла по технологическим параметрам прокатки выплавляют сталь требуемого химического состава, осуществляют ее прокатку с фиксацией...
Тип: Изобретение
Номер охранного документа: 0002729801
Дата охранного документа: 12.08.2020
Показаны записи 11-20 из 60.
29.05.2018
№218.016.5757

Устройство для измерения теплопроводности твердых материалов

Изобретение относится к тепловым испытаниям, а именно к устройствам для определения теплопроводности материалов, и может быть применено для определения теплотехнических свойств материалов, например, при проектировании режимов термообработки металлоизделий. Предложено устройство для измерения...
Тип: Изобретение
Номер охранного документа: 0002654826
Дата охранного документа: 22.05.2018
29.05.2018
№218.016.5779

Способ измерения теплопроводности твердых материалов

Изобретение относится к тепловым испытаниям, а именно к определению теплопроводности материалов. Предложен способ измерения теплопроводности твердых материалов, который включает изготовление образца из исследуемого материала в виде стержня постоянного сечения, создание заданного перепада...
Тип: Изобретение
Номер охранного документа: 0002654823
Дата охранного документа: 22.05.2018
29.05.2018
№218.016.57bc

Устройство для измерения теплоемкости материалов

Изобретение относится к тепловым испытаниям, а именно к устройствам для определения теплоемкости материалов, и может быть применено для определения их теплотехнических свойств. Предложено устройство для измерения теплоемкости материалов, которое содержит две калориметрические ячейки,...
Тип: Изобретение
Номер охранного документа: 0002654824
Дата охранного документа: 22.05.2018
09.06.2018
№218.016.5a72

Способ производства проката

Изобретение относится к области обработки металлов давлением. Способ включает предварительное задание списка подлежащих контролю технологических параметров производства и допустимых диапазонов их значений, нагрев заготовки, последующую ее прокатку в одну или несколько стадий, охлаждение,...
Тип: Изобретение
Номер охранного документа: 0002655398
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5abf

Способ определения удельного теплового эффекта фазового превращения

Изобретение относится к области исследования кинетики структурных и фазовых превращений в металлах. Заявлен способ определения удельного теплового эффекта фазового превращения, включающий регистрацию кривых охлаждения, охлаждение до комнатных температур и определение их фазового состава. При...
Тип: Изобретение
Номер охранного документа: 0002655458
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5af8

Способ измерения теплоемкости материалов

Изобретение относится к тепловым испытаниям, а именно к устройствам для определения теплоемкости материалов, и может быть применено для определения их теплотехнических свойств. Предложен способ измерения теплоемкости материалов, который осуществляется посредством дифференциального...
Тип: Изобретение
Номер охранного документа: 0002655459
Дата охранного документа: 28.05.2018
20.02.2019
№219.016.bf8a

Способ производства холоднокатаной стальной ленты

Изобретение предназначено для улучшения потребительских свойств стальной ленты, используемой в автомобильной промышленности. Способ включает травление горячекатаной полосовой заготовки и ее последующую холодную прокатку на непрерывном стане. Повышение механических свойств ленты обеспечивается...
Тип: Изобретение
Номер охранного документа: 0002350407
Дата охранного документа: 27.03.2009
20.02.2019
№219.016.c329

Способ изготовления партий горячекатаного листа

Изобретение предназначено для минимизации отходов при изготовлении заданного числа листов в партии и снижения остатков беззаказной продукции на складах. Способ включает получение слябов на машинах непрерывного литья заготовок (МНЛЗ), их нагрев, прокатку и раскрой полученного раската на листы...
Тип: Изобретение
Номер охранного документа: 0002405639
Дата охранного документа: 10.12.2010
01.03.2019
№219.016.cd14

Способ производства травленых стальных полос

Изобретение относится к прокатному производству и может быть использовано при изготовлении травленой горячекатаной полосовой стали. Способ включает промасливание травленых стальных полос и смотку в рулоны, при этом перед смоткой горячекатаные полосы равномерно покрывают консервационным маслом с...
Тип: Изобретение
Номер охранного документа: 0002305719
Дата охранного документа: 10.09.2007
01.03.2019
№219.016.cd2e

Способ производства холоднокатаной полосы

Изобретение относится к области металлургии и может быть использовано в производстве полосовой низкоуглеродистой стали, в частности черной жести с нормированной твердостью. Техническим результатом изобретения является возможность получения черной жести степени твердости «В» по ГОСТ 13345-85....
Тип: Изобретение
Номер охранного документа: 0002307173
Дата охранного документа: 27.09.2007
+ добавить свой РИД