×
18.05.2018
218.016.50aa

КЕРАМИЧЕСКИЙ НАНОСТРУКТУРИРОВАННЫЙ МАТЕРИАЛ НА ОСНОВЕ НИТРИДА КРЕМНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу получения наноструктурированного керамического материала на основе нитрида кремния SiN, модифицированного углеродом. Материал может быть использован для изготовления пластин для бронежилетов, а также различных компонент изделий, требующих повышенную твердость и трещиностойкость. Техническим результатом изобретения является повышение твердости и трещиностойкости керамического материала на основе нитрида кремния. Высокая твердость и трещиностойкость достигается за счет модификации границ зерен нитрида кремния углеродом. При этом весь углерод распределен по границам зерен. Способ получения включает в себя измельчение нитрида кремния с фуллереном в планетарной мельнице до получения среднего размера частиц 20 нм. При этом происходит покрытие нанозерен SiN монослоем фуллерена. Полученный нанопорошок нитрида кремния с фуллереном спекают под давлением 1-5 ГПа при температуре 1100-1850°С. 2 н.п. ф-лы, 3 ил., 1 табл., 5 пр.
Реферат Свернуть Развернуть

1. Область техники

Изобретение относится к способу получения керамического материала на основе нитрида кремния Si3N4, в частности, модифицированного углеродом и обладающего высокой твердостью и трещиностойкостью. Материал может быть использован для изготовления пластин для бронежилетов, а также различных компонент изделий, требующих повышенную твердость и трещиностойкость.

2. Предпосылки для создания изобретения

Известно (Veprek S. // J. Vac. Sci. Technol. A. - 1999. - 17. - C. 2401), что размер зерна керамического материала существенно влияет на его механические свойства. На сегодняшний день существует множество доказательств того, что большой размер зерна (более 0,1 мкм) является причиной спонтанных микротрещин, плохих механических свойств, в частности низкой износостойкости. В связи с этим ведутся работы по снижению размера зерна в керамических материалах до субмикронного или нанометрового уровня.

Переход к наноразмерному состоянию увеличивает удельную поверхность материала, при этом масса материала остается неизменной. С точки зрения физико-химических процессов, которые могут происходить с керамическим материалом, возрастает удельная реакционная способность, называемая также активностью вещества. Известно, что уменьшение размера зерна снижает вероятность образования микротрещин. Известно, что существенное влияние на свойства материала оказывает структура границ зерен. В литературе (О.Л. Хасанов, Э.С. Двилис, З.Г. Бикбаева. Методы компактирования и консолидации наноструктурных материалов и изделий / Томск: Изд-во Томского политехнического университета, 2008. - 212 с.) граница зерен определяется как переходная область между двумя совершенными однофазными кристаллами (или зернами) с разной кристаллографической ориентацией, которые находятся в контакте друг с другом. Термин «межзеренная граница» соответствует термину «межкристаллитная граница». Поскольку «зерна» являются «кристаллами», более точным был бы термин «межкристаллическая граница» или «межкристаллитная граница». Граница между одинаковыми фазами называется гомофазной внутренней границей раздела, а граница между различными фазами - гетерофазной внутренней границей раздела (или межфазной границей). Таким образом, граница зерен представляет собой гомофазную внутреннюю границу раздела. Границы зерен представляют собой разупорядоченные (по сравнению с соседними зернами) двумерные дефекты, толщина которых не превышает нескольких межатомных расстояний (0,5-1 нм). Из-за большой структурной проницаемости границ энергия активации процесса диффузии по границам зерен, как правило, существенно меньше объемной, а перенос атомов происходит на несколько порядков быстрее, чем в объеме совершенного кристалла.

Аналогами данного изобретения являются следующие патенты, описывающие спекание Si3N4 с помощью жидкой фазы, расположенной по границам зерен нитрида кремния: US patents 4071371 (31.01.1978, С04В 35/58), 4073845 (14.02.1978, С04В 33/32, С04В 35/58), 4205033 (27.05.1980, С04В 35/58), 4376652 (15.03.1983, С04В 35/58, С04В 35/04), 4407970 (04.10.1983, С04В 35/50, С04В 35/58), 4457958 (03.07.1984, B05D 3/02), 4596781 (24.06.1986, С04В 35/02, С04В 35/58), 5110772 (05.05.1992, С04В 35/48), 5240658 (31.08.1993, С04В 35/58), 5366941 (22.11.1994, С04В 35/54, С04В 35/56), 5552353 (03.09.1996, С04В 35/565, С04В 35/584), 5603877 (18.02.1997, С04В 35/584), и WO 2013/171324 (21.11.2013, С04В 35/593). Основные особенности отмеченных аналогов удобно просуммировать, воспользовавшись таблицей, представленной в работе (Branko Low Temperature Sintering Additives for Silicon Nitride. Dissertation an der Stuttgart. Bericht Nr. 137. August 2003). В таблице 1 представлены добавки, применяемые для спекания Si3N4 и температуры плавления добавок в чистом виде и в присутствии Si3N4.

Отметим, что свойства наилучших образцов Si3N4, спеченных по методам, описанным в отмеченных выше аналогах, следующие: твердость по Викерсу не превышает 23 ГПа (для сравнения, твердость кристаллического Si3N4 35 ГПа) и трещиностойкость К1C не превышает 10 МПа√м.

Известны технические решения (US 2004/0029706 (12.02.2004, C04B 35/52) [1] и WO 2014/149007 (25.09.2014, С04В 35/587)), в которых в качестве добавок, применяемых при спекании Si3N4, используются углеродные нанокластеры, в частности, фуллерены и нанотрубки, которые могут располагаться по границам зерен керамики.

Наиболее близким техническим решением к предлагаемому (аналогом изобретения) является [1], где описан способ получения керамического нанокомпозита, включающий, в частности, смешивание керамического порошка с углеродными нанокластерами в шаровой мельнице и спекание керамического изделия из полученной смеси. Размер зерен керамического порошка находится в интервале от 1 нм до 10 мкм, предпочтительно от 10 нм до 1 мкм. В работе [1] декларируется, что керамический нанокомпозит обладает, в частности, большей прочностью и трещиностойкостью, чем исходные керамические составляющие нанокомпозита. При этом в [1] не приводится никаких измерений или теоретических оценок прочности и трещиностойкости полученного керамического нанокомпозита. Более того, утверждение об улучшении механических свойств противоречит задекларированному размеру зерна (верхний интервал 1-10 мкм), поскольку, как известно из уровня техники, большой размер зерна (более 0,1 мкм) является причиной спонтанных микротрещин и, как следствие, плохих механических свойств, в частности низкой трещиностойкости. Именно крупная фракция, как наиболее слабые участки в керамическом материале, не позволят достичь большей прочности и трещиностойкости, чем исходные керамические составляющие нанокомпозита.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Задача, на решение которой направлено данное изобретение, нацелена на создание наноструктурированного керамического материала на основе Si3N4 с сохранением твердости на уровне монокристаллического нитрида кремния и повышение трещиностойкости.

Согласно предлагаемому техническому решению, эффект сохранения твердости на уровне монокристаллического нитрида кремния и повышения трещиностойкости керамического материала на основе Si3N4 достигают за счет модификации границ зерен углеродом и за счет предотвращения рекристаллизации нанозерен нитрида кремния при спекании. При этом подавление рекристаллизации обусловлено модификацией границ зерен нитрида кремния углеродом, который блокирует рекристаллизацию (рост зерна) при спекании.

Способ получения наноструктурированного керамического материала включает в себя следующие операции: в инертной атмосфере смешивают порошок нитрида кремния (фракция меньше 1 мм) и фуллерен C60 (предпочтительно 3 вес. %) и засыпают в барабаны планетарной мельницы. Далее в планетарной мельнице осуществляют обработку указанной смеси в течение 20-120 мин при рабочей частоте водила 550-1100 об/мин. При такой обработке нитрид кремния измельчают до среднего размера зерна 20 нм. Концентрация добавляемого фуллерена обусловлена условием покрытия монослоем фуллерена получаемых в результате обработки в планетарной мельнице наночастиц нитрида кремния. При среднем размере зерна 20 нм 3 вес. % фуллерена как раз обеспечивают монослой фуллерена между зерен нитрида кремния.

Затем полученный порошок компактируют методом двустороннего одноосного прессования и спекают под давлением 1-5 ГПа при температуре 1100-1850°С. Предпочтительно, что воздействие ведут при температуре 1600 градусов и давлении 2-5 ГПа. Таким образом, при спекании керамики толщина модифицирующего углеродного слоя, полученного из фуллерена, имеет характерную толщину порядка границы зерен и, фактически, оказывает влияние на их свойства, не образуя объемных 3D областей.

Для характеристики механических свойств наноструктурированного керамического материала проводили испытания по известным методикам измерения твердости и трещиностойкости.

Твердость измеряли пирамидой Виккерса в соответствии с ГОСТ 9450-76. Трещиностойкость измеряли известным методом по длине трещин, образующихся при индентировании образца пирамидой Виккерса.

Для характеристики структуры полученных образцов использовали известный метод рентгенофазового анализа, просвечивающей электронной микроскопии (ПЭМ) и комбинационного рассеяния света (КРС).

КРАТКОЕ ОПИСАНИЕ ФИГ. 1, 2, 3

На Фиг. 1 представлена дифрактограмма нитрида кремния, модифицированного фуллереном, после спекания.

На Фиг. 2 представлено полученное с помощью просвечивающего электронного микроскопа (ПЭМ) JEM-2010 изображение зерен нитрида кремния в спеченном образце.

На Фиг. 3 представлены спектры комбинационного рассеяния света (КРС) спеченных образцов керамического материала.

Следующие примеры иллюстрируют предлагаемое изобретение.

Пример 1. Получение керамического наноструктурированного материала на основе нитрида кремния в соответствии с изобретением.

В инертной атмосфере смешивают порошок нитрида кремния (фракция меньше 1 мм) с добавлением 3 вес. % фуллерена C60. Полученную смесь засыпают в барабаны и осуществляют обработку в планетарной мельнице со следующими параметрами: время обработки - 30 минут, рабочая частота водила - 550 об/мин. Затем смесь в количестве 2 г загружают в камеру высокого давления типа наковальня с лункой, нагружают до фиксированного давления 4 ГПа и нагревают до температуры 1600°С с временем выдержки 100 с. После разгрузки исследуют структуру и механические свойства образцов. На Фиг. 1 представлена дифрактограмма нитрида кремния, модифицированного фуллереном, после спекания. На Фиг. 2 представлено полученное с помощью просвечивающего электронного микроскопа (ПЭМ) JEM-2010 изображение зерен нитрида кремния в спеченном образце. На Фиг. 3 представлены спектры КРС спеченных образцов керамического материала. Рентгенофазовый анализ и исследование, проведенное с помощью ПЭМ, показывают, что средний размер зерна в керамическом наноструктурированном материале на основе нитрида кремния составляет 20 нм. Эти зерна покрыты ~1 нм углеродным слоем, образовавшимся при спекании из C60. Напрямую получить изображение таких слоев в ПЭМ достаточно сложно, а скоплений углеродного материала размером больше 1 нм, которые могли бы быть обнаружены в образце в случае их наличия, обнаружено не было. Однако идентифицировать слои, которыми покрыты нанокристаллы, можно с помощью спектров КРС. При спекании фуллерен трансформировался в аморфный углерод: на спектрах КРС видны только так называемые D и G пики (фиг. 3) в керамическом наноструктурированном материале на основе нитрида кремния.

В результате полученный материал обладает следующими характеристиками: твердость Н=35 ГПа, трещиностойкость К1C=15 МПа√м.

Пример 2. Получение керамического наноструктурированного материала на основе нитрида кремния при концентрации фуллерена, отличающейся от оптимальной, приведенной в примере 1.

В инертной атмосфере смешивают порошок нитрида кремния (фракция меньше 1 мм) с добавлением 1 вес. % фуллерена C60. Дальнейшие операции проводят аналогично примеру 1. В результате полученный материал обладает следующими характеристиками: твердость Н=28 ГПа, трещиностойкость К1C=13 МПа√м.

Пример 3. Получение керамического наноструктурированного материала на основе нитрида кремния при концентрации фуллерена, отличающейся от оптимальной, приведенной в примере 1.

В инертной атмосфере смешивают порошок нитрида кремния (фракция меньше 1 мм) с добавлением 5 вес. % фуллерена C60. Дальнейшие операции проводят аналогично примеру 1. В результате полученный материал обладает следующими характеристиками: твердость Н=25 ГПа, трещиностойкость К1C=14 МПа√м.

Пример 4. Получение керамического наноструктурированного материала на основе нитрида кремния в соответствии с изобретением при температурах в температурном диапазоне 1100-1850°С.

Изготовляют несколько образцов. Для этого в инертной атмосфере смешивают порошок нитрида кремния (фракция меньше 1 мм) с добавлением 3 вес. % фуллерена С60. Полученную смесь засыпают в барабаны и осуществляют обработку в планетарной мельнице со следующими параметрами: время обработки - 30 минут, рабочая частота водила - 550 об/мин. Затем смесь в количестве 2 г загружают в камеру высокого давления типа наковальня с лункой, нагружают до фиксированного давления 4 ГПа и нагревают до выбранной температуры с временем выдержки 100 с. Были получены образцы при температурах 1100, 1300, 1850°С. В результате полученный материал обладает следующими характеристиками: твердость Н в пределах 25-30 ГПа, трещиностойкость К1C в пределах 13-14 МПа√м.

Пример 5. Получение керамического наноструктурированного материала на основе нитрида кремния в соответствии с изобретением в при давлениях 1 и 5 ГПа.

Изготовляют несколько образцов. Для этого в инертной атмосфере смешивают порошок нитрида кремния (фракция меньше 1 мм) с добавлением 3 вес. % фуллерена C60. Полученную смесь засыпают в барабаны и осуществляют обработку в планетарной мельнице со следующими параметрами: время обработки - 30 минут, рабочая частота водила - 550 об/мин. Затем смесь в количестве 2 г загружают в камеру высокого давления типа наковальня с лункой, нагружают до выбранного давления и нагревают до температуры 1600°С с временем выдержки 100 с. Были получены образцы при давлениях 1 и 5 ГПа. В результате полученный материал обладает следующими характеристиками: твердость Н=25 ГПа и трещиностойкость К1C=12 МПа√м для образца, спеченного при давлении 1 ГПа и Н=35 ГПа и трещиностойкость К1C=15 МПа√м для образца, спеченного при давлении 5 ГПа.


КЕРАМИЧЕСКИЙ НАНОСТРУКТУРИРОВАННЫЙ МАТЕРИАЛ НА ОСНОВЕ НИТРИДА КРЕМНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
КЕРАМИЧЕСКИЙ НАНОСТРУКТУРИРОВАННЫЙ МАТЕРИАЛ НА ОСНОВЕ НИТРИДА КРЕМНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
Источник поступления информации: Портал edrid.ru

Показаны записи 1-10 из 27.
20.06.2013
№216.012.4c09

Способ получения углерод-азотного материала

Изобретение может быть использовано для изготовления демпфирующих элементов, амортизаторов, пар трения и износостойких деталей микромеханизмов. В рабочий объем помещают исходный углеродный материал, закачивают и удаляют азот до полного вытеснения воздуха. Затем на первом этапе закачивают азот...
Тип: Изобретение
Номер охранного документа: 0002485047
Дата охранного документа: 20.06.2013
10.09.2013
№216.012.66e4

Способ получения сверхтвердого композиционного материала

Изобретение относится к получению сверхтвердого композиционного материала на основе углерода, который может быть использован для изготовления инструментов для горнодобывающей, камнеобрабатывающей и металлообрабатывающей промышленности. Способ включает воздействие высокого давления и температуры...
Тип: Изобретение
Номер охранного документа: 0002491987
Дата охранного документа: 10.09.2013
10.04.2014
№216.012.b5c6

Способ формирования эффективного внутреннего геттера в монокристаллических бездислокационных пластинах кремния

Изобретение относится к технологии производства бездислокационных пластин полупроводникового кремния, вырезаемых из монокристаллов, выращенных методом Чохральского, и применяемых для изготовления интегральных схем и дискретных электронных приборов. Изобретение обеспечивает формирование...
Тип: Изобретение
Номер охранного документа: 0002512258
Дата охранного документа: 10.04.2014
20.07.2014
№216.012.e15b

Способ получения сверхтвердого композиционного материала

Изобретение может быть использовано при изготовлении инструментов для горнодобывающей, камнеобрабатывающей и металлообрабатывающей промышленности. Готовят исходную композицию, состоящую из следующих компонентов, мас.%: фуллерены С-60 или С-70 - 30-50; теплопроводящий компонент - 10-60;...
Тип: Изобретение
Номер охранного документа: 0002523477
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e161

Способ упрочнения углеродного волокна

Изобретение относится к технологии получения углеродных волокнистых композиционных материалов, в частности к способу упрочнения углеродного волокна, и имеет широкий спектр применения от спортивного инвентаря до деталей самолетов. Способ включает пропитку углеродного волокна раствором С или...
Тип: Изобретение
Номер охранного документа: 0002523483
Дата охранного документа: 20.07.2014
10.09.2014
№216.012.f3f9

Способ получения термоэлектрического материала

Изобретение относится к области получения термоэлектрических материалов, применяемых для изготовления термостатирующих и охлаждающих устройств, систем кондиционирования и в других областях техники. Сущность: способ включает механоактивационную обработку в планетарной шаровой мельнице твердых...
Тип: Изобретение
Номер охранного документа: 0002528280
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f433

Наноструктурный термоэлектрический материал

Изобретение относится к наноструктурному термоэлектрическому материалу. Материал содержит теллурид сурьмы в виде тройного твердого раствора состава ВiSbТе, где х имеет значения от 0,4 до 0,5, и дисперсный наполнитель, выполненый из ультрадисперсного алмаза со средним размером частиц от 3 до 5...
Тип: Изобретение
Номер охранного документа: 0002528338
Дата охранного документа: 10.09.2014
27.09.2014
№216.012.f6c9

Лампа вакуумная ультрафиолетового диапазона спектра

Изобретение относится к светотехнике и может быть использовано при создании и применении ультрафиолетовых вакуумных ламп, в частности для обеззараживания воды и воздуха, сортировки и анализа минералов, в лазерной технике, в оптоэлектронике. Технический результат- продление срока службы и...
Тип: Изобретение
Номер охранного документа: 0002529014
Дата охранного документа: 27.09.2014
10.01.2015
№216.013.17ab

Способ получения материала на основе углеродных нанотрубок

Изобретение может быть использовано при изготовлении изделий, работающих в агрессивных средах и повышенной температуре, таких как мембраны, фильтры, покрытия. Материал на основе углеродных нанотрубок получают газофазным осаждением в вертикальном CVD-реакторе 1, который предварительно...
Тип: Изобретение
Номер охранного документа: 0002537487
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.17af

Способ получения легированного алмаза

Изобретение относится к технологическим процессам получения легированных алмазов, которые могут быть использованы в электронике и приборостроении, а также в качестве ювелирного камня. Легированный алмаз получают методом химического осаждения из газовой фазы (ХОГФ) на подложку в реакционной...
Тип: Изобретение
Номер охранного документа: 0002537491
Дата охранного документа: 10.01.2015
Показаны записи 1-10 из 16.
27.01.2013
№216.012.213d

Нанокомпозитный термоэлектрик и способ его получения

Изобретение относится к области наноструктурированных и нанокомпозитных материалов. Одним из основных применений изобретения являются термоэлектрики с улучшенной добротностью. Задачей изобретения является модификация электрических свойств материалов за счет изменения концентрации носителей...
Тип: Изобретение
Номер охранного документа: 0002474010
Дата охранного документа: 27.01.2013
27.08.2014
№216.012.ef12

Почвообрабатывающий посевной агрегат

Почвообрабатывающий посевной агрегат содержит раму, опирающуюся на пневматические колеса. Рама имеет механизм и трубу подъема с гидроцилиндром, сницу с прицепным устройством. На раме установлена высевающая система из комбинированных ящиков для семян и туков, высевающих аппаратов,...
Тип: Изобретение
Номер охранного документа: 0002527021
Дата охранного документа: 27.08.2014
10.03.2015
№216.013.3087

Высокотвердый углеродный материал и способ его получения

Изобретение предназначено для аэрокосмической отрасли, оборонной промышленности и обработки твёрдых и сверхтвёрдых материалов. На молекулярный фуллерен С или фуллеренсодержащую сажу с добавкой серосодержащего соединения воздействуют давлением от 0,2 до 12 ГПа и температурой от 0 до 2000 С. В...
Тип: Изобретение
Номер охранного документа: 0002543891
Дата охранного документа: 10.03.2015
10.07.2015
№216.013.622b

Способ получения композитного материала на основе углерода и композитный материал

Изобретении может быть использовано в ракетно-космической и авиационной отраслях, при металлообработке, обработке природных и искусственных камней, твердых и сверхтвердых материалов. Способ получения композитного материала включает воздействие на смесь углеродсодержащего материала, наполнителя...
Тип: Изобретение
Номер охранного документа: 0002556673
Дата охранного документа: 10.07.2015
25.08.2017
№217.015.c17a

Мажоритарный элемент "8 и более из 15"

Изобретение относится к области радиотехники и может найти применение в радиосредствах специальной радиосвязи для высоконадежной передачи данных по радиоканалу в условиях воздействия комплекса помех, а также может быть использовано как элемент более сложного устройства - блока логической...
Тип: Изобретение
Номер охранного документа: 0002617588
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.c882

Мажоритарный элемент "4 и более из 7"

Изобретение относится к области радиотехники и может найти применение в радиосредствах специальной радиосвязи для высоконадежной передачи данных по радиоканалу в условиях воздействия комплекса помех. Техническим результатом изобретения является схемотехническое упрощение, сокращение...
Тип: Изобретение
Номер охранного документа: 0002619197
Дата охранного документа: 12.05.2017
25.08.2017
№217.015.d0ec

Мажоритарный элемент "6 и более из 11"

Изобретение относится к области радиотехники. Технический результат заключается в схемотехническом упрощении, сокращении номенклатуры и числа используемых логических элементов. Мажоритарный элемент «6 и более из 11» содержит 30 двухвходовых элементов И и 33 элемента ИЛИ, одиннадцать...
Тип: Изобретение
Номер охранного документа: 0002621340
Дата охранного документа: 02.06.2017
26.08.2017
№217.015.e8b7

Керамический материал на основе корунда и способ его получения

Изобретение относится к способу синтеза керамического материала на основе корунда, модифицированного углеродом. Материал может быть использован для изготовления пластин для бронежилетов, а также различных компонент изделий, требующих повышенной твердости. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002627522
Дата охранного документа: 08.08.2017
26.08.2017
№217.015.e9dc

Мажоритарный элемент "7 и более из 13"

Изобретение относится к области радиотехники и может найти применение в радиосредствах специальной радиосвязи для высоконадежной передачи данных по радиоканалу в условиях воздействия комплекса помех, а также может быть использовано как элемент более сложного устройства - блока логической...
Тип: Изобретение
Номер охранного документа: 0002628222
Дата охранного документа: 15.08.2017
17.02.2018
№218.016.2b75

Способ обработки и приемник сообщений циркулярных односторонних сетей передачи данных с повторениями

Изобретение относится к технике связи и может быть использовано в приемниках циркуляционных односторонних сетей передачи данных с повторениями. Техническим результатом изобретения является повышение оперативности доведения сообщений в каналах связи циркулярных односторонних сетей передачи...
Тип: Изобретение
Номер охранного документа: 0002643441
Дата охранного документа: 01.02.2018
+ добавить свой РИД