×
27.09.2014
216.012.f6c9

Результат интеллектуальной деятельности: ЛАМПА ВАКУУМНАЯ УЛЬТРАФИОЛЕТОВОГО ДИАПАЗОНА СПЕКТРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к светотехнике и может быть использовано при создании и применении ультрафиолетовых вакуумных ламп, в частности для обеззараживания воды и воздуха, сортировки и анализа минералов, в лазерной технике, в оптоэлектронике. Технический результат- продление срока службы и повышение работоспособности ультрафиолетовых ламп. Лампа вакуумная ультрафиолетового диапазона спектра содержит в вакуумной колбе из прозрачного для излучения диэлектрического материала анод, катод из углеродного материала, модулятор с отверстием для формирования пучка электронов, элементы, крепящие и центрирующие катод, контактный узел, обечайку и электропроводящее вещество, нанесенное на один из концов катода. Катод выполнен в виде автокатода из наноструктурированного углерода, а в качестве элементов, крепящих и центрирующих катод, использован юстировочный диск, ориентированный соосно отверстию модулятора, в котором размещен автокатод из наноструктурированного углерода, причем автокатод с нанесенным электропроводящим веществом на один из его концов выполнен контактирующим по боковой поверхности с обечайкой, которая в свою очередь контактирует с внешней стороной автокатода и с внутренней стороной юстировочного диска, при этом контактный узел жестко соединен с контактным вводом автокатода, а анод выполнен с нанесенным слоем ультрафиолетового люминофора со спектром люминисценции в диапозоне длин волн менее 350 нм и затем нанесенным на него слоем алюминия. 1 з.п. ф-лы, 2 ил.

Изобретение относится к светотехнике и может быть использовано при создании ультрафиолетовых ламп, предназначенных для использования в различных областях, таких как обеззараживание воды и воздуха, сортировка и анализ минералов, лазерная техника, оптоэлектроника. Также ультрафиолетовая вакуумная лампа может быть использована в исследовательских и аналитических установках.

Основными требованиями, предъявляемыми к ультрафиолетовым лампам, являются: высокая эффективность, большой срок службы, максимальная безопасность при применении.

Известные конструкции ультрафиолетовых ламп обладают рядом существенных недостатков. Для современных газоразрядных ультрафиолетовых ламп на парах ртути [F.Yoshitaka; S.Kazuhiro Short-arc type mercury lamp device and ultraviolet irradiation device №Р 2008077908, 2008.04.03 A; J.Z.Betty Ultraviolet lamp for use in water purifiers, патент CN 101803117, 2010.08.11 А] до сих пор не удалось достигнуть длительности работоспособности (срок службы таких ламп составляет 8-10 тысяч часов), которая была бы сопоставима со временем работы автоэмиссионных источников излучения (50000 часов), также подобные лампы имеют длительное время зажигания и могут работать только в узком диапазоне рабочих температур. Наиболее существенными недостатками ртутных ультрафиолетовых ламп, ограничивающими их применение, являются ограничение спектральных характеристик ультрафиолетовых ламп спектрами излучения ртути, а также высокое содержание металлической ртути в свободном состоянии. В ртутных лампах низкого давления [S.Fumio; S.Yoshihisa; Т.Hiroki; I.Masanobu Ultraviolet low-pressure mercury lamp патент JP 2007311259, 2007.11.29 A] количество свободной ртути колеблется в пределах от 3 до 10 мг на лампу, а в лампах высокого давления составляет сотни миллиграмм. Так как предельная допустимая концентрация содержания ртути в атмосферном воздухе составляет 0,3 мкг/м, то очевидно, что лампы с металлической ртутью в случае разрушения создают значительную экологическую опасность.

Для целей озонирования воздуха изобретена "Ультрафиолетовая озонирующая лампа" [Александров М.С., Воронов А.М., Иванов B.C., Чистяков А.Б. Патент РФ 2075794 С1, МПК H01J 61/20, H01J 61/72, дата приоритета 06.10.1993 г.], в которой состав газовой смеси оптимизирован для обеспечения максимальной концентрации озона, генерируемого лампой.

Таким образом, к основным недостаткам газоразрядных ртутных ламп относятся: наличие экологически вредного вещества - ртути, длительное время зажигания (из-за использования газового разряда), ограничение спектра линиями излучения ртути (254, 185 нм), а также узкий диапазон рабочих температур и небольшой срок службы.

Современные эксимерные лампы [Н.Kazuya; H.Koji, Excimer lamp, excimer lamp unit, and ultraviolet irradiation device патент WO 2010032849, 2010.03.25 A1; H.Kenichi Excimer lamp and ultraviolet irradiation device патент JР 2007095449, 2007.04.02 А] также уступают автоэмиссионным источникам излучения в долговечности (срок службы таких ламп составляет 2000 часов), быстром включении, диапазоне рабочих температур и гибкости спектральных характеристик. Помимо этого лампы с высокой удельной нагрузкой, такие как ртутные лампы высокого давления и импульсные ксеноновые лампы, требуют интенсивного теплоотвода [N.Masaki Excimer lamp and ultraviolet-rays irradiation apparatus having the same патент US 2007149086, 2007.05.01 A1], что существенно увеличивает стоимость, а также делает конструкцию аппаратов на их основе более сложной.

Известно техническое решение, представляющее собой ульрафиолетовую лампу, содержащую ультрафиолетовые светодиоды, источник электрического питания и теплоноситель для охлаждения светодиодов: М.Van Pul; H.Klinkenberg Portable ultraviolet and visible light lamp. Заявка на патент US 2010/0196622 A1, приоритет от 25 сентября 2008 г., класс МПК B05D 3/06, F21V 29/02. По эксплуатационным характеристикам, таким как длительность работоспособности, время включения и гибкость спектральных характеристик, такая лампа наиболее близка к предлагаемым ультрафиолетовым лампам в соответствии с заявляемым изобретением. Однако лампы на основе светодиодов обладают недостаточной энергетической эффективностью в областях высоких температур и требуют специальных устройств термостабилизации для поддержания их работы в широком температурном диапазоне.

Наиболее близким техническим решением к заявляемому решению является лампа вакуумная ультрафиолетового диапазона спектра, возбуждаемая однобарьерным электрическим разрядом, содержащая цилиндрическую колбу из прозрачного для излучения диэлектрического материала, газовую среду, анод, размещенный на внешней поверхности, и катод, размещенный внутри колбы, при этом катод выполнен периодически касающимся диэлектрических стенок колбы. Катод выполнен из проволоки зигзагообразной формы, или в виде пластинки, или в виде пластинки с насечкой, или в виде перфорированной пластинки [Лампа вакуумная ультрафиолетового диапазона спектра, авторов Ломаев М.И., Тарасенко В.Ф, Лисенко А.А., Скакун B.C., патент РФ 2291516 С2, дата приоритета 18.03.2005 г., МПК H01J 61/06]. Благодаря предложенной конструкции уменьшено напряжение зажигания лампы при повышенном давлении газа и снижена температура рабочего газа за счет преимущественной локализации зон энерговыделения вблизи внутренней поверхности колбы лампы. Однако это техническое решение не позволяет многократно увеличить срок службы ксеноновых ультрафиолетовых ламп и не обеспечивает мгновенное включение лампы. К недостаткам следует также отнести необходимость термостабилизации для обеспечения наибольшей энергоэффективности преобразования электрической энергии в световую.

Задачей предлагаемого изобретения является разработка ультрафиолетовой вакуумной лампы для различных применений за счет использования ультрафиолетовых люминофоров, обладающей более длительным сроком службы, не содержащей экологически вредных паров ртути, работоспособной в широком диапазоне температур и способной к мгновенному излучению света при подаче электрического напряжения.

Поставленная задача достигается тем что лампа вакуумная ультрафиолетового диапазона спектра содержит цилиндрическую колбу из прозрачного для излучения диэлектрического материала, анод, катод. Причем катод выполнен в виде автокатода из наноструктурированного углеродного материала, а на анод нанесен ультрафиолетовый люминофор со спектром люминесценции в диапазоне длин волн не менее 350 нм. Использование наноструктурированного углеродного материала в качестве автокатода (источника электронов, принцип работы которого основан на явлении автоэлектронной эмиссии, то есть на туннелировании электронов под действием приложенного электрического поля через потенциальный барьер на границе раздела "твердое тело-вакуум") обеспечивает поток свободных электронов при ускоряющем напряжении 1-5 В/мкм, которые возбуждают катодолюминесценцию люминофора (вещества, способного преобразовывать поглощаемую им энергию электронов в световое излучение) в УФ-диапазоне излучения.

Изобретение поясняется чертежом (фиг.1.) и графиками (фиг.2).

На фиг.1 изображена ультрафиолетовая лампа, содержащая вакуумную колбу 1 из прозрачного для излучения диэлектрического материала, анод 2 с нанесенным на него ультрафиолетовым люминофором 3 и слоем алюминия 4, необходимым для увеличения интенсивности излучения, модулятор 5, контактный вывод 6, автокатод 7, выполненный из наноструктурированного углеродного материала. Автокатод размещен в отверстии юстировочного диска 8, контактный узел 9 автокатода выполнен из электропроводного вещества, в частности аквадага, нанесенного на один конец автокатода и контактирующей с ним по боковой поверхности обечайки, с которой жестко соединен контактный вывод 10 автокатода.

На фиг.2а и 2б показаны примеры спектральных характеристик ультрафиолетовых ламп с люминофорами КЛ-УФ-315 (катодолюминофор ультрафиолетовый 315 нм) и КЛ-УФ-300 (катодолюминофор ультрафиолетовый 300 нм), соответственно.

Использование автокатода, выполненного из наноструктурированного углеродного материала, позволяет снизить пороговую напряженность электрического поля для тока эмиссии (1-5 В/мкм) и увеличить срок службы (50000 часов), что обеспечивает длительный срок службы лампы в целом. Время включения вакуумной ультрафиолетовой лампы составляет не более 10-8 с, что обеспечивает мгновенную готовность лампы к работе. Спектр излучения люминесценции ультрафиолетовой лампы зависит от химического состава люминофора, поэтому, изменяя состав люминофора, выбирают спектр излучения в УФ-диапазоне, наиболее подходящий для конкретного применения, например КЛ-УФ-315 и КЛ-УФ-300 в диапазоне длин волн менее 350 нм. Слой алюминия, нанесенный поверх люминофора, служит для увеличения интенсивности излучения, т.к. излучение от зерен люминофора распространяется на 360º, а слой алюминия служит зеркалом, отражающим свет во внешнюю часть лампы.

Электроны испускаются с поверхности автокатода под действием поля модулятора, ускоряются анодным напряжением и, достигнув анода, возбуждают в слое люминофора излучение, спектральные характеристики которого зависят от химического состава используемого люминофора.

Ультрафиолетовая лампа представляет собой цилиндрическую вакуумную колбу из прозрачного для излучения диэлектрического материала с автокатодом, выполненным из наноструктурированного углеродного материала, модулятором с отверстием для формирования пучка электронов, люминесцирующим экраном, анодом и контактными выводами. Для обеспечения соосности автокатод размещен в отверстии юстировочного диска, ориентированного соосно отверстию модулятора. Для увеличения контактирующей поверхности вывод автокатода может быть выполнен из электропроводного вещества, в частности аквадага, нанесенного на конец автокатода, и контактирующей с ним по боковой поверхности обечайки, с которой жестко соединен контактный вывод. Люминесцирующий экран автоэмиссионной ультрафиолетовой лампы покрыт слоем ультрафиолетового люминофора и алюминием, служащим для увеличения световой отдачи люминофора.

Технический результат, а именно эффективное преобразование электрической энергии в УФ-излучение, обеспечивается использованием специальных материалов автокатода и люминофора, способных в сочетании давать эффективное излучение в ультрафиолетовом диапазоне спектра. Лампа обладает высокой энергетической эффективностью (не менее 15%), длительной работоспособностью (50000 часов), мгновенной готовностью к работе, высокой устойчивостью к механическим вибрациям и колебаниям напряжения в сети и отличается отсутствием экологически вредных компонентов.

Таким образом, благодаря конструкции автокатода на основе углеродного наноструктурированного материала и материалам люминофоров, излучающих в ультрафиолетовом диапазоне спектра, предлагаемая вакуумная ультрафиолетовая лампа обладает рядом преимуществ по сравнению с газоразрядными ультрафиолетовыми лампами на парах ртути и ксеноне.

Предлагаемая вакуумная ультрафиолетовая лампа исключает описанные выше недостатки, характерные для ртутных ламп: предлагаемый источник излучения не содержит экологически вредных, а также токсичных веществ; обладает низкой инерционностью (мгновенная готовность к работе, время зажигания 10-8 сек), служит около 50000 часов при температурах от -150 до +150ºС. Также следует отметить, что благодаря изменению химического состава люминофора, возможным становится изменение спектра излучения лампы для конкретных применений.

Преимуществами предлагаемой ультрафиолетовой лампы являются высокая эффективность, долговечность, мгновенная готовность к работе, возможность изменения спектрального состава излучения для конкретных применений, отсутствие экологически вредного вещества - ртути.


ЛАМПА ВАКУУМНАЯ УЛЬТРАФИОЛЕТОВОГО ДИАПАЗОНА СПЕКТРА
ЛАМПА ВАКУУМНАЯ УЛЬТРАФИОЛЕТОВОГО ДИАПАЗОНА СПЕКТРА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 35.
27.01.2013
№216.012.213d

Нанокомпозитный термоэлектрик и способ его получения

Изобретение относится к области наноструктурированных и нанокомпозитных материалов. Одним из основных применений изобретения являются термоэлектрики с улучшенной добротностью. Задачей изобретения является модификация электрических свойств материалов за счет изменения концентрации носителей...
Тип: Изобретение
Номер охранного документа: 0002474010
Дата охранного документа: 27.01.2013
10.06.2013
№216.012.4764

Способ полировки алмазных пластин

Изобретение относится к обработке поликристаллических алмазных пластин и изделий из них и может быть использовано для производства элементов микроэлектроники, оптики инфракрасного, видимого и рентгеновского диапазонов. Осуществляют безабразивную полировку поверхности алмазных...
Тип: Изобретение
Номер охранного документа: 0002483856
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4c09

Способ получения углерод-азотного материала

Изобретение может быть использовано для изготовления демпфирующих элементов, амортизаторов, пар трения и износостойких деталей микромеханизмов. В рабочий объем помещают исходный углеродный материал, закачивают и удаляют азот до полного вытеснения воздуха. Затем на первом этапе закачивают азот...
Тип: Изобретение
Номер охранного документа: 0002485047
Дата охранного документа: 20.06.2013
27.07.2013
№216.012.5afb

Способ изготовления диода шоттки

Изобретение относится к изготовлению полупроводниковых диодов с барьером Шоттки на основе синтетического алмаза, широко применяющихся в сильнотоковой высоковольтной и твердотельной высокочастотной электронике. Изобретение позволяет создать высокоэффективный диод с барьером Шоттки на основе...
Тип: Изобретение
Номер охранного документа: 0002488912
Дата охранного документа: 27.07.2013
10.09.2013
№216.012.66e4

Способ получения сверхтвердого композиционного материала

Изобретение относится к получению сверхтвердого композиционного материала на основе углерода, который может быть использован для изготовления инструментов для горнодобывающей, камнеобрабатывающей и металлообрабатывающей промышленности. Способ включает воздействие высокого давления и температуры...
Тип: Изобретение
Номер охранного документа: 0002491987
Дата охранного документа: 10.09.2013
20.01.2014
№216.012.98f7

Автоэмиссионный катод

Изобретение относится к устройствам вакуумной электроники, в частности к источникам для получения электронного потока - автоэмиттерам (холодным эмиттерам) электронов, материалам и способам их изготовления. Подобные катоды могут использоваться в качестве источников электронов в различных...
Тип: Изобретение
Номер охранного документа: 0002504858
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9c66

Система электрического освещения (варианты)

Изобретение относится к области преобразования солнечной энергии в электрическую и последующего использования электрической энергии для освещения улиц, зданий и подземных сооружений. Техническим результатом изобретения является снижение стоимости системы электрического освещения, снижение...
Тип: Изобретение
Номер охранного документа: 0002505744
Дата охранного документа: 27.01.2014
10.04.2014
№216.012.b5c6

Способ формирования эффективного внутреннего геттера в монокристаллических бездислокационных пластинах кремния

Изобретение относится к технологии производства бездислокационных пластин полупроводникового кремния, вырезаемых из монокристаллов, выращенных методом Чохральского, и применяемых для изготовления интегральных схем и дискретных электронных приборов. Изобретение обеспечивает формирование...
Тип: Изобретение
Номер охранного документа: 0002512258
Дата охранного документа: 10.04.2014
20.07.2014
№216.012.e15b

Способ получения сверхтвердого композиционного материала

Изобретение может быть использовано при изготовлении инструментов для горнодобывающей, камнеобрабатывающей и металлообрабатывающей промышленности. Готовят исходную композицию, состоящую из следующих компонентов, мас.%: фуллерены С-60 или С-70 - 30-50; теплопроводящий компонент - 10-60;...
Тип: Изобретение
Номер охранного документа: 0002523477
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e161

Способ упрочнения углеродного волокна

Изобретение относится к технологии получения углеродных волокнистых композиционных материалов, в частности к способу упрочнения углеродного волокна, и имеет широкий спектр применения от спортивного инвентаря до деталей самолетов. Способ включает пропитку углеродного волокна раствором С или...
Тип: Изобретение
Номер охранного документа: 0002523483
Дата охранного документа: 20.07.2014
Показаны записи 1-10 из 28.
27.01.2013
№216.012.213d

Нанокомпозитный термоэлектрик и способ его получения

Изобретение относится к области наноструктурированных и нанокомпозитных материалов. Одним из основных применений изобретения являются термоэлектрики с улучшенной добротностью. Задачей изобретения является модификация электрических свойств материалов за счет изменения концентрации носителей...
Тип: Изобретение
Номер охранного документа: 0002474010
Дата охранного документа: 27.01.2013
20.06.2013
№216.012.4c09

Способ получения углерод-азотного материала

Изобретение может быть использовано для изготовления демпфирующих элементов, амортизаторов, пар трения и износостойких деталей микромеханизмов. В рабочий объем помещают исходный углеродный материал, закачивают и удаляют азот до полного вытеснения воздуха. Затем на первом этапе закачивают азот...
Тип: Изобретение
Номер охранного документа: 0002485047
Дата охранного документа: 20.06.2013
10.09.2013
№216.012.66e4

Способ получения сверхтвердого композиционного материала

Изобретение относится к получению сверхтвердого композиционного материала на основе углерода, который может быть использован для изготовления инструментов для горнодобывающей, камнеобрабатывающей и металлообрабатывающей промышленности. Способ включает воздействие высокого давления и температуры...
Тип: Изобретение
Номер охранного документа: 0002491987
Дата охранного документа: 10.09.2013
10.04.2014
№216.012.b5c6

Способ формирования эффективного внутреннего геттера в монокристаллических бездислокационных пластинах кремния

Изобретение относится к технологии производства бездислокационных пластин полупроводникового кремния, вырезаемых из монокристаллов, выращенных методом Чохральского, и применяемых для изготовления интегральных схем и дискретных электронных приборов. Изобретение обеспечивает формирование...
Тип: Изобретение
Номер охранного документа: 0002512258
Дата охранного документа: 10.04.2014
20.07.2014
№216.012.e15b

Способ получения сверхтвердого композиционного материала

Изобретение может быть использовано при изготовлении инструментов для горнодобывающей, камнеобрабатывающей и металлообрабатывающей промышленности. Готовят исходную композицию, состоящую из следующих компонентов, мас.%: фуллерены С-60 или С-70 - 30-50; теплопроводящий компонент - 10-60;...
Тип: Изобретение
Номер охранного документа: 0002523477
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e161

Способ упрочнения углеродного волокна

Изобретение относится к технологии получения углеродных волокнистых композиционных материалов, в частности к способу упрочнения углеродного волокна, и имеет широкий спектр применения от спортивного инвентаря до деталей самолетов. Способ включает пропитку углеродного волокна раствором С или...
Тип: Изобретение
Номер охранного документа: 0002523483
Дата охранного документа: 20.07.2014
10.09.2014
№216.012.f3f9

Способ получения термоэлектрического материала

Изобретение относится к области получения термоэлектрических материалов, применяемых для изготовления термостатирующих и охлаждающих устройств, систем кондиционирования и в других областях техники. Сущность: способ включает механоактивационную обработку в планетарной шаровой мельнице твердых...
Тип: Изобретение
Номер охранного документа: 0002528280
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f433

Наноструктурный термоэлектрический материал

Изобретение относится к наноструктурному термоэлектрическому материалу. Материал содержит теллурид сурьмы в виде тройного твердого раствора состава ВiSbТе, где х имеет значения от 0,4 до 0,5, и дисперсный наполнитель, выполненый из ультрадисперсного алмаза со средним размером частиц от 3 до 5...
Тип: Изобретение
Номер охранного документа: 0002528338
Дата охранного документа: 10.09.2014
10.01.2015
№216.013.17ab

Способ получения материала на основе углеродных нанотрубок

Изобретение может быть использовано при изготовлении изделий, работающих в агрессивных средах и повышенной температуре, таких как мембраны, фильтры, покрытия. Материал на основе углеродных нанотрубок получают газофазным осаждением в вертикальном CVD-реакторе 1, который предварительно...
Тип: Изобретение
Номер охранного документа: 0002537487
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.17af

Способ получения легированного алмаза

Изобретение относится к технологическим процессам получения легированных алмазов, которые могут быть использованы в электронике и приборостроении, а также в качестве ювелирного камня. Легированный алмаз получают методом химического осаждения из газовой фазы (ХОГФ) на подложку в реакционной...
Тип: Изобретение
Номер охранного документа: 0002537491
Дата охранного документа: 10.01.2015
+ добавить свой РИД