×
10.05.2018
218.016.4eb7

Результат интеллектуальной деятельности: Способ получения полимерной композиции

Вид РИД

Изобретение

№ охранного документа
0002650965
Дата охранного документа
18.04.2018
Аннотация: Изобретение относится к области получения полимерных композиций с высокими механическими и термическими характеристиками. Полимерную композицию на основе полиэтилена высокой плотности стабилизируют циклогексилфосфонатом магния в количестве 0,1-4,0 мас.% путем механического смешения их. Далее полученную смесь экструдируют трижды на одношнековом экструдере при температуре 220-230°C. Изобретение позволяет получить полимерные композиции на основе полиэтилена высокой плотности с высокими термическими и механическими свойствами. 4 табл., 3 пр.

Изобретение относится к области получения композиций полиэтилена, стабилизированного фосфорорганическим соединением.

Известны композиции полиэтилена, стабилизированные фосфорорганическими соединениями:

1. Исследование физико-механических свойств фосфорилированного полиэтилена высокой плотности. Шаов А.Х., Бесланеева А.Н., Кармоков A.M., Шетов Р.А., Маршенкулов М.А. Известия Кабардино-Балкарского госуниверситета. Том 3, №5. Нальчик 2013. УДК 541.64:661.634. с. 41-46.

2. Физико-механические свойства полиэтилена высокой плотности, фосфорилированного циклогексилфосфонатом. Бесланеева А.Н., Балкизова Л.Х., Шаов А.Х. Новые полимерные композиционные материалы (7 международная научно-практическая конференция). Нальчик, 2011. УДК 678.01:53.017:048.66.094.38. с. 36-41.

3. Study of physical and mechanical properties of compositions based on high-density polyethylene and organophosphorus compounds. A.Kh. Shaov, A.N. Beslaneeva, A.K. Mikitaev, R.A. Shetov, L.Kh. Balkizova. Materialovedenie, 2014, №9, pp. 14-19.

Также известны композиции на основе гомо- и сополимеров этилена, стабилизированные фосфорилированными производными пиразолинила [А.с. СССР 870414, 07.10.81; C08L 23/04, C08K 5/53].

Композиции по известному способу предназначены для расширения ассортимента эффективных стабилизаторов гомо- и сополимеров этилена.

Недостатками известного способа являются то, что используемые стабилизаторы не технологичны в получении и высокотоксичные; не приведены результаты термогравиметрического анализа на воздухе и в инертной среде; не приведена молекулярная масса исходного полимера и ее изменение в процессе стабилизации и испытаний.

Задачей изобретения является получение полимерной композиции на основе полиэтилена высокой плотности, стабилизированной фосфорорганическим соединением с высокими термо- и термоокислительной стойкостью, деформационно-прочностными характеристиками, а также с сохранением или повышением исходной молекулярной массы полимера.

Поставленная задача решена следующим образом.

Для получения стабилизированных композиционных материалов на основе полиэтилена высокой плотности (ПЭВП) и магниевой соли циклогексилфосфоновой кислоты (циклогексилфосфонат магния) предварительно механически смешивают порошкообразные исходные компоненты. Затем полученную смесь экструдируют трижды (для равномерного распределения стабилизатора в полимере) на лабораторном одношнековом экструдере при температуре 220-230°C.

Пример 1

Порошкообразные ПЭВП и циклогексилфосфоновую кислоту 1,0 мас. % смешивают механически. Затем полученную смесь засыпают в бункер одношнекового экструдера и проводят экструдирование при температуре 220°C (см. табл. 4).

Полученную композицию в виде прутка гранулируют с помощью электромеханического ножа. Процедуру экструдирования повторяют еще дважды при тех же режимах с целью максимально равномерного распределения циклогексилфосфоновой кислоты в полимере.

Полученную таким образом гранулированную массу направляют на исследование физико-механических свойств.

Пример 2

Порошкообразные ПЭВП и циклогексилфосфоновую кислоту 2,0 мас. % смешивают механически. Затем полученную смесь засыпают в бункер одношнекового экструдера и проводят экструдирование при температуре 225°C (см. табл. 4).

Полученную композицию в виде прутка гранулируют с помощью электромеханического ножа. Процедуру экструдирования повторяют еще дважды при тех же режимах с целью максимально равномерного распределения циклогексилфосфоновой кислоты в полимере.

Полученную таким образом гранулированную массу направляют на исследование физико-механических свойств.

Пример 3

Порошкообразные ПЭВП и циклогексилфосфоновую кислоту 4,0 мас. % смешивают механически. Затем полученную смесь засыпают в бункер одношнекового экструдера и проводят экструдирование при температуре 230°C.

Полученную композицию в виде прутка гранулируют с помощью электромеханического ножа. Процедуру экструдирования повторяют еще дважды при тех же режимах с целью максимально равномерного распределения циклогексилфосфоновой кислоты в полимере.

Полученную таким образом гранулированную массу направляют на исследование физико-механических свойств (см. табл. 4).

Полученные образцы полимера с различным содержанием циклогексилфосфоната магния (0,1-4,0%) исследуют на определение: деформационно-прочностных свойств; термоокислительной стойкости; термостойкости; термостабильности.

Экструдированные образцы ПЭВП с содержанием циклогексилфосфоната магния в количествах 0,1; 0,3; 0,5; 1,0; 2,0; 3,0 и 4,0 массовых процентов гранулируют с помощью электромеханического ножа и из них отливают стандартные лопатки на малой инжекционно-литьевой машине RR/TSMP 2 при 220-230°C (ГОСТ 12423-66).

Затем исследуют деформационно-прочностные характеристики лопаток на разрывной машине (скорость движения зажима 10 мм/мин).

Полученные результаты приведены в таблице 1.

Примечание: Е - модуль упругости; σт - предел текучести; εт - вынужденная эластичность;

σp - разрушающее напряжение; εp - относительное удлинение при разрыве.

Из таблицы 1 видно, что наиболее оптимальной концентрацией фосфорорганического соединения в плане повышения механических свойств (прочности на разрыв и относительного удлинения при разрыве) полиэтилена является 0,1 массового процента.

Стабилизированные образцы полиэтилена высокой плотности подвергают термогравиметрическому анализу на воздухе.

Полученные результаты приведены в таблице 2.

Результаты, приведенные в таблице 2, свидетельствуют о высокой термоокислительной стойкости композиций во всем концентрационном интервале фосфорорганического соединения.

Составы на основе полиэтилена высокой плотности и циклогексилфосфоната магния подвергают термогравиметрическому анализу в среде азота (табл. 3).

Из таблицы 3 видно заметное повышение термостойкости полимерных композиций на всем концентрационном интервале циклогексилфосфоната магния.

Термостабильность полиэтилена высокой плотности и композиций на его основе изучают их выдержкой в канале вискозиметра типа ИИРТ-А при стандартной температуре для полиэтилена (190°C) с периодическим определением (через 5, 20, 40, 60, 80, 100 и 120 минут) показателя текучести расплава (ПТР) с последующим расчетом изменения среднемассовой молекулярной массы (Mw) по известным в литературе формулам: ПТР=(mcp×τ0)/τ, где τ0=600 с - стандартное время испытаний для полиэтилена; τ - время истечения расплава в эксперименте; mcp - средняя масса из трех измерений.

, где - значение показателя текучести расплава (индекса расплава) при температуре 190°C и нагрузке 2,16 кг (ГОСТ 16338-85).

Полученные результаты приведены в таблице 4.

Как видно из таблицы 4, молекулярная масса полиэтилена высокой плотности, рассчитанная по показателям текучести расплава представленных композиций, не претерпевает значительных изменений, что говорит об отсутствии заметных деструктивных процессов.

Техническим результатом является повышение: разрывной прочности полиэтилена высокой плотности на 18-33%, относительного удлинения при разрыве на 53%, предела текучести на 24-43%, термоокислительной стойкости на 6-12%, термостойкости на 2,1-3,5%.

Изобретение позволяет получить полимерные композиции на основе полиэтилена высокой плотности с высокими термическими и механическими характеристиками.

Способ получения полимерной композиции на основе полиэтилена высокой плотности (ПЭВП), стабилизированной фосфорорганическим соединением - магниевой солью циклогексилфосфоновой кислоты в количестве от 0,1 до 4,0 мас.%, в котором исходные копоненты механически смешивают, а затем полученную смесь экструдируют трижды на одношнековом экструдере при температуре 220-230°C.
Источник поступления информации: Роспатент

Показаны записи 81-90 из 100.
15.03.2019
№219.016.e14c

Электроизоляционная композиция

Изобретение относится к кабельной технике, а именно полимерным композициям на основе поливинилхлорида (ПВХ) с пониженной горючестью, выделением дыма в условиях тления и горения и хлористого водорода при горении, предназначенным для изоляции, внутренних и наружных оболочек проводов и кабелей....
Тип: Изобретение
Номер охранного документа: 0002469055
Дата охранного документа: 10.12.2012
30.03.2019
№219.016.f922

Ароматические полиэфиры

Настоящее изобретение относится к ароматическим полиэфирам. Описаны ароматические полиэфиры формулы: где n=1-99, m=1-99, z=1-15. Технический результат – получение ароматических полиэфиров, характеризующихся повышенными показателями огне-, термо-, теплостойкости, а также механических...
Тип: Изобретение
Номер охранного документа: 0002683268
Дата охранного документа: 27.03.2019
30.03.2019
№219.016.f925

Огнестойкий ароматический полиэфир

Изобретение относится к галогенсодержащим ароматическим полиэфиркетонам. Описан огнестойкий ароматический полиэфир формулы:
Тип: Изобретение
Номер охранного документа: 0002683270
Дата охранного документа: 27.03.2019
10.04.2019
№219.016.fef2

Одностадийный способ получения ароматического полиэфира

Настоящее изобретение относится к одностадийному способу получения ароматических полиэфиров реакцией нуклеофильного замещения, включающему взаимодействие 0,056-0,063 моль 4,4'-дихлордифенилсульфона, 90 мл диметилсульфоксида, 0,0024 моль катализатора оксида алюминия, 0,087 моль щелочного агента...
Тип: Изобретение
Номер охранного документа: 0002684328
Дата охранного документа: 08.04.2019
10.04.2019
№219.016.ff03

Способ получения ароматических полиэфиров

Изобретение относится к области получения ароматических полиэфиров. Описан способ получения ароматических полиэфиров реакцией нуклеофильного замещения, включающий взаимодействие 0,0404 моль 4,4'-дихлордифенилсульфона и 0,0404 моль ароматических диоксисоединений в присутствии 0,044 моль...
Тип: Изобретение
Номер охранного документа: 0002684327
Дата охранного документа: 08.04.2019
27.04.2019
№219.017.3cec

Композиционный материал на основе полифениленсульфона

Изобретение относится к применению композиционного материала в качестве суперконструкционного полимерного материала для аддитивных 3D-технологий методом послойного наплавления (FDM). Композиционный материал содержит следующие компоненты, мас.%: 85-95 полифениленсульфона (ПФС) и 5-15 талька....
Тип: Изобретение
Номер охранного документа: 0002686329
Дата охранного документа: 25.04.2019
24.05.2019
№219.017.5d96

Способ получения полиэфирсульфонов

Изобретение относится к области получения полиэфирсульфонов, применяемых в качестве суперконструкционных полимерных материалов для 3D печати. Способ получения полиэфирсульфонов заключается в том, что проводят реакцию нуклеофильного замещения нуклеофильного агента дигалоидароматическим...
Тип: Изобретение
Номер охранного документа: 0002688942
Дата охранного документа: 23.05.2019
24.05.2019
№219.017.5dc8

Ароматический огнестойкий полиэфирэфиркетон и способ его получения

Настоящее изобретение относится к огнестойким ароматическим полиэфирэфиркетонам. Описан ароматический огнестойкий полиэфирэфиркетон, характеризующийся строением:
Тип: Изобретение
Номер охранного документа: 0002688943
Дата охранного документа: 23.05.2019
29.05.2019
№219.017.631b

Композиционный материал на основе полифениленсульфона и способ его получения

Изобретение относится к способу получения композиционного материала на основе полифениленсульфона, применяемого в качестве суперконструкционного полимерного материала для аддитивных 3D технологий. Способ получения композиционного материала заключается в том, что предварительно сухую смесь 75-85...
Тип: Изобретение
Номер охранного документа: 0002688140
Дата охранного документа: 20.05.2019
29.05.2019
№219.017.6388

Ароматические сополиэфирсульфонкетоны и способ их получения

Изобретение относится к способу получения ароматических сополиэфирсульфонкетонов (СПЭСК), которые могут быть использованы в качестве термо- и теплостойких конструкционных полимерных материалов. Первый вариант способа получения сополиэфирсульфонкетона заключается в том, что проводят реакцию...
Тип: Изобретение
Номер охранного документа: 0002688142
Дата охранного документа: 20.05.2019
+ добавить свой РИД