×
10.05.2018
218.016.4df2

Результат интеллектуальной деятельности: СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области поршневых гибридных энергетических машин и может быть использовано при одновременном или попеременном сжатии жидкостей и газов при большой разности давлений без их взаимного загрязнения. Способ работы машины заключается в том, что при одновременном сжатии жидкости и газа зазор между поршнем и цилиндром увеличивают или уменьшают в зависимости от того, какое рабочее тело имеет большее давление. Машина состоит из цилиндра 1, выполненного в виде усеченного конуса и размещенного в нем с зазором поршня 4, имеющего аналогичный по углу образующей конус. Поршень 4 делит цилиндр 1 на газовую 2 и жидкостную 3 смежные полости, которые снабжены всасывающими 6 и 8 и нагнетательными 7 и 9 клапанами. При возвратно-поступательном движении поршня 4 объем полостей 2 и 3 изменяется, в результате чего происходит всасывание газа и жидкости через клапаны 6 и 8 и их нагнетание через клапаны 7 и 9. При сжатии одной среды до более высокого по сравнению с другой средой давления зазор между поршнем 4 и цилиндром 1 уменьшается, не давая сжимаемой до более высокого давления среде проникать через зазор между поршнем 4 и цилиндром 1 в смежную полость в большом количестве. В другом варианте машины используются активные уплотнения на поршне 4, которые уменьшают зазор между поршнем 4 и цилиндром 1 при сжатии среды с большим давлением. Улучшается эффективность работы. 4 н. и 2 з.п. ф-лы, 6 ил.

Изобретение относится к области поршневых гибридных энергетических машин и может быть использовано при одновременном или попеременном сжатии жидкостей и газов при большой разности их давлений без их взаимного загрязнения.

Известен способ работы поршневой гибридной машины объемного действия, заключающийся в попеременном всасывании, сжатии и нагнетании газа и жидкости (см., например, патент РФ №125635 «Поршневой насос-компрессор», МПК F04B 19/06, опубл. 10.03.2013, бюл. №7).

Известен также способ работы поршневой гибридной машины объемного действия, заключающийся в попеременном всасывании, сжатии и нагнетании газа и жидкости, находящихся соответственно в надпоршневой и подпоршневой полостях цилиндра (см. патент РФ №2538371 «Способ работы насос-компрессора и устройство для его осуществления», МПК F04B 19/06, опубл. 10.01.2015, бюл. №1).

Недостатком известных способов является невозможность сжатия жидкости до давления, существенно (в 2 раза и более) превышающего давление нагнетания газа без загрязнения последнего жидкостью, а также сжатия газа до давления, существенно превышающего давление жидкости, т.к. в этом случае в жидкость попадает большое количество газа, что делает нестабильной работу питаемого ей гидравлического оборудования.

Первое обстоятельство связано с тем, что жидкость обладает на несколько порядков большей вязкостью, чем газ. При высоком давлении нагнетания жидкости она занимает не только весь объем уплотнения, но и проникает в газовую камеру над поршнем, а в процессе сжатия-нагнетания газа она не может быть вытеснена через бесконтактное уплотнение назад в подпоршневое пространство. Из-за этого жидкость постепенно скапливается над поршнем, и когда ее объем превышает объем мертвого пространства газовой полости, в конце хода нагнетания газа сначала жидкость начинает в значительном количестве выталкиваться в нагнетаемый газ, что затрудняет работу нагнетательной линии по очистке газа от примесей. И далее, по мере дальнейшего увеличения слоя жидкости над поршнем, происходит гидроудар, т.к. большой объем жидкости не может быть вытеснен через газовый нагнетательный клапан (или клапаны) в связи с его относительно малым проходным сечением.

Второе обстоятельство связано с тем, что скорость течения газа в щелевом уплотнении гораздо выше скорости течения жидкости, в связи с чем давление газа на линии раздела газа и жидкости в уплотнении практически мгновенно достигает давления в газовой камере цилиндра, и при высоком (по сравнению с жидкостью) давлении сжатия-нагнетания газа он в процессе сжатия-нагнетания вытесняет полностью жидкость из зазора и беспрепятственно попадает в жидкостную камеру подпоршневого пространства.

Уменьшение радиального зазора между поршнем и цилиндром и увеличение длины поршня с целью снижения расхода жидкости или газа через бесконтактное поршневое уплотнение приводит к увеличению массы поршня и в связи с этим - снижению частоты его возвратно-поступательного движения из-за увеличения массы неуравновешенных частей, что, в свою очередь, приводит к росту габаритов и уменьшению общей эффективности машины.

Кроме того, уменьшение радиального зазора помимо известных технологических проблем приводит к снижению массы жидкости, омывающей стенки поршня, что приводит к уменьшению отвода от него теплоты и ухудшению термодинамики цикла за счет увеличения показателя политропы процесса сжатия.

Технической задачей изобретения является расширение диапазона рабочих параметров поршневой гибридной машины объемного действия и улучшение эффективности ее работы.

Указанная задача достигается тем, что при осуществлении способа работы поршневой гибридной машины объемного действия, заключающегося в попеременном всасывании, сжатии и нагнетании газа и жидкости, находящихся соответственно в надпоршневой и подпоршневой полостях цилиндра, согласно изобретению в процессе сжатия и нагнетания зазор между поршнем и цилиндром изменяют в большую или меньшую сторону. При этом если имеется существенное превышение нагнетания газа над давлением нагнетания жидкости, зазор между поршнем и цилиндром уменьшают на ходе сжатия- нагнетания газа, а при существенном превышении давления нагнетания жидкости над давлением нагнетания газа зазор между поршнем и цилиндром уменьшают на ходе сжатия-нагнетания жидкости.

Поршневая гибридная машина объемного действия, реализующая вышеописанный способ, содержащая цилиндр, разделенный на газовую и жидкостную полости находящимся в нем с зазором поршнем, соединенным с механизмом привода, всасывающие и нагнетательные газовые и жидкостные клапаны, соединенные с линиями всасывания и нагнетания газа и жидкости, согласно изобретению цилиндр и поршень выполнены в виде усеченных конусов с одинаковыми углами между образующей конусов и осью цилиндра.

Цилиндр также может быть выполнен с прямолинейной образующей, а поршень согласно изобретению может быть снабжен кольцевой выточкой с установленным в ней наружным кольцом, выполненным из упругого материала, опирающимся внутренней поверхностью на сегменты, расположенные по окружности в упомянутой выточке, причем эти сегменты с их внутренней стороны контактируют с телами качения, распертыми конусом, соединенным с упругой мембраной, установленной на днище поршня. Или поршень может быть снабжен кольцевой выточкой с установленным в ней наружным кольцом, выполненным из упругого материала, опирающимся внутренней поверхностью на сегменты, расположенные по окружности в упомянутой выточке, причем с внутренней стороны упомянутых сегментов эта выточка соединена с подпоршневой жидкостной полостью.

Сущность изобретения поясняется чертежами.

На фиг. 1 изображены схемы двух вариантов машины с конусными поршнем и цилиндром, при этом слева от оси симметрии показан вариант машины для случая, когда давление нагнетания газа существенно ниже давления нагнетания жидкости (РНГ<<РНЖ), а справа от оси симметрии - обратный случай (РНГ>>РНЖ).

На фиг. 2 и фиг. 3 показана эта же конструкция при ходе поршня вверх (фиг. 2) и вниз (фиг. 3).

На фиг. 4 и фиг. 5 показан вариант машины, в которой зазор между поршнем и цилиндром уменьшается при сжатии газа, а на фиг. 6 - вариант машины, у которой зазор между поршнем и цилиндром уменьшается при сжатии жидкости.

Поршневая гибридная машина объемного действия (фиг. 1) содержит цилиндр 1, разделенный на газовую 2 и жидкостную 3 полости находящимся в нем с зазором поршнем 4, соединенным с механизмом привода штоком 5 (сам механизм привода условно не показан), всасывающие 6 и нагнетательные 7 газовые и всасывающие 8 и нагнетательные 9 жидкостные клапаны, соединенные с линиями всасывания 10 и нагнетания 11 газа и с линиями всасывания 12 и нагнетания 13 жидкости.

Цилиндр 1 и поршень 4 выполнены в виде усеченных конусов с одинаковыми углами α (левый от оси цилиндра 1 вариант машины) и β (правый от оси цилиндра 1 вариант машины) между образующей конусов и осью цилиндра 1.

На фиг. 1 и последующих введены следующие обозначения: РНГ - давление нагнетания газа, РНЖ - давление нагнетания жидкости, РВГ - давление всасывания газа, РВЖ - давление всасывания жидкости.

На фиг. 4 и фиг. 5 схематично показана машина с активным воздействием на зазор между поршнем 4 и цилиндром 1, которое производится за счет изменения давления в полости 2.

В этом варианте поршень 4 снабжен кольцевой выточкой 14 с установленным в ней наружным кольцом 15, выполненным из упругого материала и опирающимся внутренней поверхностью на сегменты 16, расположенные по окружности в упомянутой выточке 14, причем эти сегменты с их внутренней стороны через штыри 17 контактируют с телами качения 18, распертыми конусом 19, соединенным с упругой мембраной 20, закрепленной на днище поршня 4. Тела качения 18 распределены по окружности сепаратором, представляющим собой выступы 21 (фиг. 5) на площадке 22 опоры тел качения 18, которая расположена в полости 23(фиг. 4) поршня 4.

На фиг. 6 схематично показана машина с активным воздействием на зазор между поршнем 4 и цилиндром 1, которое производится за счет изменения давления в полости 3. Здесь так же, как и в конструкции, изображенной на фиг. 4 и фиг. 5, поршень 4 снабжен кольцевой выточкой 14 с установленным в ней наружным кольцом 15, выполненным из упругого материала, опирающимся внутренней поверхностью на сегменты 16, расположенные по окружности в выточке 14, но с внутренней стороны сегментов 16 эта выточка 14 соединена каналами 24 с подпоршневой жидкостной полостью 3.

Способ работы машины осуществляется следующим образом (фиг. 1 и фиг. 2).

1. Давление нагнетания жидкости существенно больше давления нагнетания газа (левая часть чертежей).

А. При ходе поршня 4 вверх (фиг. 2) в полости 2 осуществляется сжатие и нагнетание газа, клапан 6 закрыт, клапан 7 открывается при достижении давления газа выше давления в линии нагнетания 11.

В полости 3 в это время происходит процесс всасывания жидкости, клапан 9 закрыт, клапан 8 открывается при достижении давления жидкости в полости 3 ниже, чем давление всасывания в линии всасывания 12.

При ходе поршня 4 вверх (фиг. 2) из-за того, что образующие цилиндра 1 и поршня 4 наклонены под одинаковым углом α, зазор между поршнем 4 и цилиндром 1 увеличивается. В связи с этим газ из полости 2 под давлением сжатия-нагнетания вытесняет часть жидкости из зазора в полость 3, где жидкость находится под давлением всасывания, несмотря на то, что жидкость обладает высокой (по сравнению с газом) вязкостью, а давление сжатого газа относительно невелико.

Б. При ходе поршня 4 вниз (фиг. 3) в полости 2 происходит всасывание газа, клапан 7 закрыт, а клапан 6 открывается после того, как давление в полости 2 становится ниже давления в линии всасывания 10.

В полости 3 в это время происходит процесс сжатия-нагнетания жидкости, клапан 8 закрыт, а клапан 9 открывается при достижении давления в полости 3 выше, чем давление в линии нагнетания 13.

При ходе поршня 4 вниз зазор между ним и цилиндром 1 уменьшается, и в связи с этим жидкость из полости 3 протекает в зазор между поршнем 4 и цилиндром 1 в небольшом количестве, которого достаточно лишь для заполнения зазора.

2. Давление нагнетания газа намного выше, чем давление нагнетания жидкости (правая часть чертежей).

А. При ходе поршня 4 вверх (фиг. 2) в полости 2 происходит процесс сжатия-нагнетания газа. При этом клапан 6 закрыт, клапан 7 открывается, когда давление в полости 2 превышает давление в линии нагнетания 11.

В полости 3 происходит процесс всасывания жидкости, клапан 9 закрыт, клапан 8 открывается, когда давление в полости 3 станет ниже давления в линии всасывания жидкости 12.

Сжатый газ из полости 2 проникает в зазор между поршнем 4 и цилиндром 1. В связи с тем, что образующие поршня 4 и цилиндра 1 наклонены под одинаковым углом β, зазор между поршнем 4 и цилиндром 1 постоянно уменьшается, и сопротивление его растет, и газ, несмотря на его относительно высокое давление, не может полностью вытеснить жидкость из зазора в течение процесса его сжатия-нагнетания.

Б. При ходе поршня 4 вниз (фиг. 3) в полости 2 происходит процесс всасывания, клапан 7 закрыт, клапан 6 открывается, когда давление в полости 2 становится ниже, чем давление в линии всасывания 10.

В полости 3 происходит процесс нагнетания, клапан 8 закрыт, клапан 9 открывается, когда давление в полости 3 становится выше давления в линии нагнетания жидкости 13.

Жидкость из полости 3 под действием перепада давления проникает в зазор между поршнем 4 и цилиндром 1, и несмотря на сравнительно низкое давление жидкость в течение хода поршня 4 вверх успевает заполнить зазор между поршнем 4 и цилиндром 1, т.к. этот зазор постоянно увеличивается по ходу движения поршня 4 вниз.

Таким образом, описанный способ работы машины и ее конструкция, предусматривающая выполнение поршня и цилиндра в виде усеченных конусов с одинаковыми углами наклона между образующей конусов и осью цилиндра, позволяют организовать работу машины при постоянно присутствующей жидкости в зазоре между поршнем и цилиндром, которая выполняет функции охлаждения и гидрозатвора. При этом давления нагнетания газа и жидкости могут существенно отличаться друг от друга.

Работа машины, изображенной на фиг. 4 и фиг. 5, и также реализующей способ, позволяющий организовать гидрозатвор в зазоре между поршнем 4 и цилиндром 1 и охлаждение поршня 4 циркулирующей в зазоре жидкостью при давлении нагнетания газа, существенно большем, чем давление нагнетания жидкости, протекает следующим образом.

При возвратно-поступательном движении поршня 4 газ всасывается в полость 2 через линию всасывания 10 и клапан 6, сжимается в ней и нагнетается потребителю через клапан 7 и линию нагнетания 11.

Одновременно жидкость всасывается в полость 3 из линии всасывания 12 через клапан 8, сжимается в этой полости и через клапан 9 и линию нагнетания 13 поступает к потребителю.

В процессе сжатия-нагнетания жидкости в полости 3 (поршень 4 идет вниз) она поступает под действием перепада давления между полостью 3 и полостью 2, в которой идет процесс всасывания, также и в зазор между поршнем 4 и цилиндром 1, и в связи с тем, что ее давление невелико, а зазор достаточно мал (10-30 мкм), заполняет часть этого зазора по длине.

В процессе сжатия-нагнетания газа в полости 2 (в полости 3 в это время идет процесс всасывания при низком давлении) давление газа воздействует на мембрану 20, которая прогибается (вниз по чертежу) тем больше, чем больше давление в полости 2. Прогибаясь, мембрана 20 воздействует на установленный на ней конус 19, который через тела качения 18 и штыри 17 давит на сегменты 16. Под действием этого давления сегменты 16 растягивают упругое кольцо 15, которое увеличивается в диаметре, что приводит к уменьшению зазора между поршнем 4 и цилиндром 1 в зоне кольца 15. При этом общее гидравлическое сопротивление зазора между поршнем 4 и цилиндром 1 увеличивается, что приводит к существенному снижению расхода газа в зазор между поршнем 4 и цилиндром 1, газ не может выдавить всю жидкость, находящуюся в этом зазоре, и оставшуюся в нем после предыдущего хода поршня 4 вниз.

После окончания хода поршня 4 вверх и в начале его хода вниз давление в полости 2 падает до давления всасывания и мембрана 20 приходит в исходное состояние, т.е. снова становится практически плоской. При этом конус 19 поднимается вместе с мембраной 20 и перестает воздействовать (разжимать) на кольцо 15, которое под действием упругих сил возвращает себе прежний диаметральный размер, и зазор между поршнем 4 и цилиндром 1 снова становится равным разности между их радиусами.

Затем цикл работы повторяется.

Работа машины, изображенной на фиг. 6, и также реализующей способ, позволяющий организовать гидрозатвор в зазоре между поршнем 4 и цилиндром 1 и охлаждение поршня 4 циркулирующей в зазоре жидкостью при давлении нагнетания жидкости существенно большем, чем давление нагнетания газа, протекает следующим образом.

При возвратно-поступательном движении поршня 4 газ всасывается в полость 2, сжимается в ней и нагнетается потребителю газа, и в то же время жидкость всасывается в полость 3, сжимается в ней и нагнетается потребителю жидкости.

При ходе поршня 4 вниз в полости 3 происходит сжатие жидкости до относительно высокого давления, и она помимо того, что через клапан 9 поступает потребителю жидкости, проникает в зазор между поршнем 4 и цилиндром 1 под действием перепада давления между полостями 3 и 2, т.к. в это время в полости 2 давление низкое - идет процесс всасывания газа в эту полость.

В это же время давление жидкости в полости 3 через каналы 24 поступает в выточку 14, давит на сегменты 16, которые разжимают упругое кольцо 15, из-за чего наружная поверхность кольца 15 приближается к внутренней поверхности цилиндра 1, и зазор между поршнем 4 и цилиндром 1 уменьшается в зоне кольца 15. Это приводит к увеличению общего гидравлического сопротивления зазора между поршнем 4 и цилиндром 1, что не позволяет жидкости в значительном количестве, которое существенно загрязняет сжимаемый в полости 2 газ, попасть в эту полость.

При ходе поршня 4 вверх, давление жидкости в полости 3 и, соответственно, в соединенной с ней каналами 24 выточке 14, падает до давления всасывания, упругое кольцо 15 силами упругости отжимает сегменты 16 к оси поршня 4, и зазор между поршнем 4 и цилиндром 1 увеличивается до величины разности между радиусами поршня 4 и цилиндра 2. В связи с возникшим перепадом давления между полостью 2 (в ней происходит сжатие-нагнетание газа) и полостью 3, газ выдавливает часть жидкости из зазора между поршнем 4 и цилиндром 1 назад в полость 3.

Затем цикл работы повторяется.

Предложенные способ работы поршневой гибридной машины объемного действия и устройства для его осуществления дают возможность использовать в конструкциях этой машины сравнительно большие радиальные зазоры (например, для поршня диаметром 40 мм - 30-50 мкм) и небольшую длину (например, для того же поршня - около 60-80 мм), что снижает технологические сложности изготовления машины и позволяет организовать интенсивное омывание тела поршня сжимаемой жидкостью. При этом температура поршня существенно снижается, увеличивается количество теплоты, отводимой его днищем от сжимаемого газа, что повышает эффективность работы машины по сжатию газа.

Описанные выше конструкции также позволяют работать с газом и жидкостью, имеющими большую разность давлений нагнетания. При этом попадание сжимаемой жидкости в газ и наоборот минимальны или исключены полностью, что расширяет диапазон рабочих параметров машины.

Таким образом, следует считать, что техническая задача, поставленная перед изобретением, полностью выполнена.


СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
СПОСОБ РАБОТЫ ПОРШНЕВОЙ ГИБРИДНОЙ МАШИНЫ ОБЪЕМНОГО ДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Показаны записи 71-80 из 109.
25.09.2018
№218.016.8af4

Способ изготовления усовершенствованной магнитоэлектрической машины

Изобретение относится к области электротехники, в частности к способу изготовления обмотки электрической машины. Технический результат – повышение выходного напряжения генератора. Статор изготовлен из шихтованных листов электротехнической стали. В его пазах размещают однофазные обмотки,...
Тип: Изобретение
Номер охранного документа: 0002667661
Дата охранного документа: 24.09.2018
11.10.2018
№218.016.8fe9

Полимерные композиции, содержащие нанотрубки

Изобретение относится к резиновой промышленности и может быть использовано для производства кабелей, антистатических покрытий, деталей автомобилей. Электропроводный эластомерный композиционный материал на 100 мас.ч. каучука содержит следующие ингредиенты, мас. ч.: сера 1,5-2,25; стеариновая...
Тип: Изобретение
Номер охранного документа: 0002669090
Дата охранного документа: 08.10.2018
16.10.2018
№218.016.92c1

Способ повышения точности тактовой и цикловой синхронизации в системах связи

Изобретение относится к радиосвязи и может быть применено в системах связи с использованием абсолютного точного времени. Технический результат - повышение точности тактовой и цикловой синхронизации. В данном способе длительность элементов сообщения во много раз превосходит время...
Тип: Изобретение
Номер охранного документа: 0002669707
Дата охранного документа: 15.10.2018
21.11.2018
№218.016.9f18

Способ минимизации зон отчуждения отделяемых частей ракеты-носителя

Изобретение относится к ракетно-космической технике и может быть использовано для сокращения районов падения отделяющихся частей ступеней ракет-носителей. Технический результат - снижение площадей зон отчуждения из-за отделяемых частей за счет обеспечения их полного сгорания на атмосферном...
Тип: Изобретение
Номер охранного документа: 0002672683
Дата охранного документа: 19.11.2018
29.12.2018
№218.016.ad0a

Порошковая проволока

Изобретение может быть использовано при восстановлении и упрочнении деталей, работающих в условиях трения и ударных нагрузок, в частности шнеков, скребков, лопастей, плунжеров Проволока состоит из стальной оболочки и порошкообразной шихты, содержащей компоненты в следующем соотношении, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002676383
Дата охранного документа: 28.12.2018
13.01.2019
№219.016.aef2

Фундамент резервуара с улучшенными теплоизоляционными свойствами

Изобретение относится к области строительства и может быть использовано для устройства фундаментов резервуаров для хранения нефти и продуктов ее переработки в условиях сезоннопромерзающих и вечномерзлых грунтов Крайнего Севера. Фундамент резервуара представляет собой подготовленный грунт в виде...
Тип: Изобретение
Номер охранного документа: 0002676778
Дата охранного документа: 11.01.2019
18.01.2019
№219.016.b119

Способ защиты синхронного двигателя переменного тока от витковых замыканий

Использование: в области электроэнергетики для защиты синхронного двигателя переменного тока от витковых замыканий в обмотках статора и ротора. Технический результат заключается в предотвращении повреждений от вибрации и, как следствие, в уменьшении времени и стоимости послеаварийного ремонта...
Тип: Изобретение
Номер охранного документа: 0002677225
Дата охранного документа: 16.01.2019
24.01.2019
№219.016.b338

Способ моделирования процесса тепло- и массообмена при испарении жидкости и устройство для его реализации

Группа изобретений относится к ракетно-космической технике и может быть использована при проведении экспериментальных исследований при физическом моделировании процессов испарения остатков жидкого топлива в баках отделяющихся частей ступеней ракет-носителей. Раскрыт способ моделирования...
Тип: Изобретение
Номер охранного документа: 0002677868
Дата охранного документа: 22.01.2019
09.02.2019
№219.016.b860

Порошковая проволока

Изобретение может быть использовано при нанесении наплавкой покрытий на деталях, работающих на истирание в условиях воздействия абразивного потока с большими контактными нагрузками, в частности для восстановления и упрочнения транспортирующих шнеков экструдеров. Порошковая проволока состоит из...
Тип: Изобретение
Номер охранного документа: 0002679372
Дата охранного документа: 07.02.2019
09.02.2019
№219.016.b89c

Порошковая проволока

Изобретение может быть использовано для восстановления и упрочнения деталей ходовой части гусеничных машин, крановых колес, сцепок вагонов. Порошковая проволока состоит из стальной оболочки и порошкообразной шихты и содержит компоненты в следующем соотношении, мас.%: марганец металлический 3-5,...
Тип: Изобретение
Номер охранного документа: 0002679373
Дата охранного документа: 07.02.2019
Показаны записи 71-80 из 90.
10.05.2018
№218.016.3d25

Ротационная гибридная машина объемного действия

Изобретение относится к гибридным машинам объемного действия. Машина содержит цилиндр (1), ротор (5) с двумя пластинами (7), делящими цилиндр (1) на две полости - компрессорную (9) с всасывающим окном (11) и нагнетательным клапаном (12) и насосную (10) с всасывающим клапаном (13) и...
Тип: Изобретение
Номер охранного документа: 0002648139
Дата охранного документа: 22.03.2018
25.06.2018
№218.016.65af

Способ работы поршневой гибридной энергетической машины и устройство для его осуществления

Изобретение относится к области энергетики и касается гибридных поршневых машин, предназначенных для попеременного сжатия жидкости и газа. Машина состоит из поршня 1 с механизмом привода 2 кривошипно-шатунного типа, приводимого в движение валом 3. Цилиндр 4 имеет самодействующие обратные...
Тип: Изобретение
Номер охранного документа: 0002658715
Дата охранного документа: 22.06.2018
12.07.2018
№218.016.705d

Поршневая гибридная энергетическая машина со ступенчатым уплотнением

Изобретение относится к области энергетики, гидравлических и пневматических устройств, в частности для сжатия и перемещения газов и жидкостей. Машина содержит цилиндр 1 и размещенный в нем с радиальным зазором δ в верхней части дифференциальный поршень 2 со штоком 3 с образованием верхней...
Тип: Изобретение
Номер охранного документа: 0002660982
Дата охранного документа: 11.07.2018
09.08.2018
№218.016.79dd

Диафрагма для вулканизации резинотехнических изделий и способ ее изготовления

Изобретение относится к диафрагме для вулканизации резинотехнических изделий. Техническим результатом является повышение качества вулканизованных резинотехнических изделий и снижение трудоемкости. Технический результат достигается диафрагмой для вулканизации резинотехнических изделий, которая...
Тип: Изобретение
Номер охранного документа: 0002663058
Дата охранного документа: 01.08.2018
17.08.2018
№218.016.7ca3

Рукав-компенсатор угловой

Изобретение относится к трубопроводным системам различного назначения, в частности к гибким рукавам-компенсаторам, предназначенным для использования в гидравлических системах для транспортирования по трубопроводам жидких сред в условиях избыточного давления и вакуума. Рукав-компенсатор угловой...
Тип: Изобретение
Номер охранного документа: 0002663968
Дата охранного документа: 13.08.2018
23.10.2018
№218.016.9506

Узел сварного соединения трубопровода

Изобретение относится к конструкции сварных соединений трубопроводов агрессивных сред. Узел сварного соединения трубопровода содержит сварной шов, выполненный ручной и/или автоматической сваркой и имеющий площадь нормального сечения больше площади нормального сечения труб, металлические трубы с...
Тип: Изобретение
Номер охранного документа: 0002670284
Дата охранного документа: 22.10.2018
10.01.2019
№219.016.ae37

Внутренняя вставка для герметизации сварного соединения трубопровода

Изобретение относится к внутренней вставке для герметизации сварного соединения трубопровода в виде соединенных сварным швом металлических труб с нанесенным на их внутреннюю поверхность защитным покрытием. Вставка содержит термоизоляционный материал, герметизирующий материал, стальные выступы и...
Тип: Изобретение
Номер охранного документа: 0002676548
Дата охранного документа: 09.01.2019
10.04.2019
№219.017.09cb

Способ разборки резьбового соединения

Изобретение относится к общему машиностроению и может быть использовано при разборке резьбовых соединений с большим моментом затяжки и направлено на повышение возможного усилия поворота ключа. Способ разборки резьбового соединения заключается в накладывании на или в многогранник головки болта...
Тип: Изобретение
Номер охранного документа: 0002466010
Дата охранного документа: 10.11.2012
01.05.2019
№219.017.47c7

Гибридная машина объемного действия с тронковым поршнем

Изобретение относится к поршневым энергетическим машинам объемного действия и может быть использовано при создании компактных агрегатов, подающих потребителю одновременно или попеременно сжатый воздух и жидкость под давлением. Машина содержит картер 1 с кривошипно-шатунным механизмом привода 2,...
Тип: Изобретение
Номер охранного документа: 0002686536
Дата охранного документа: 29.04.2019
03.09.2019
№219.017.c6aa

Резинокордный элемент

Изобретение относится к производству резинокордных компенсационных элементов трубопроводов для перекачки жидких сред под высоким давлением и может быть использовано при производстве гибких рукавов, а также в производстве пневматических резинокордных упругих элементов систем амортизации и...
Тип: Изобретение
Номер охранного документа: 0002698989
Дата охранного документа: 02.09.2019
+ добавить свой РИД