×
10.05.2018
218.016.4da4

Результат интеллектуальной деятельности: Электролит для электролитического осаждения меди

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гальванотехники, в частности к электрохимическому меднению металлических изделий, и может быть использовано в авиа- и судостроении, автомобилестроении, станкостроении. Электролит содержит, г/л: сульфат меди (II) пятиводный 3-35; оксиэтилидендифосфоновую кислоту 40-310; 2-амино-1-бутанол 0,1-2,0; продукт синтеза диоксида кремния и гидроксида тетраметиламмония в мольном отношении 1:(1-7) 0,05-1; вода - остальное. Техническим результатом изобретения является получение мелкокристаллических, гладких, блестящих медных покрытий на изделиях из стали, алюминиевых, цинковых и медных сплавов в расширенном диапазоне температур и плотностей тока. 4 пр.

Изобретение относится к области гальванотехники, в частности к электрохимическому меднению металлических изделий, и может быть использовано в авиа- и судостроении, автомобилестроении, станкостроении.

В патенте RU 2334831C2 (публ. 27.09.2008) предложен электролит для покрытия медью деталей из стали, меди и ее сплавов, алюминия и его сплавов, содержащий (г/л): соль меди (II) (0,05-1,0), нитрилотри(метиленфосфоновую) кислоту или ее растворимое соединение (0,1-2,0), амин (0,01-0,2). В качестве соли меди (II) используют сульфат, сульфамат, нитрат, тетрафтороборат или гексафторосиликат меди(II); растворимое соединение нитрилотри(метиленфосфоновой) кислоты представляет ее натриевую или калиевую соль; вещество класса аминов выбирают из группы, включающей моноэтаноламин, диэтаноламин, триэтаноламин, N,N-диметилэтаноламин, этилендиамин, диэтилентриамин, триэтилентетрамин. Процесс электроосаждения проводят при температурах от 15 до 70°С. Однако указанный электролит обеспечивает получение качественных покрытий только при относительно невысокой катодной плотности тока от 0,25 до 2,0 А/дм2.

Наиболее близким по технической сущности к предлагаемому изобретению является электролит американской компании EPI, поставляемый на российский рынок под торговым наименованием ЭПИ-Бесцианмедь. Электролит позволяет получать гладкие мелкокристаллические покрытия на подложках из стали, алюминия, цинковых и медных сплавов. Недостатками данного электролита являются повышенная температура (40-60°С) и невысокая плотность тока (0,5-3,0 А/дм2).

Техническим результатом изобретения является получение мелкокристаллических, гладких, блестящих медных покрытий на изделиях из стали, алюминиевых, цинковых и медных сплавов в расширенном диапазоне температур и плотностей тока.

Технический результат достигается получением покрытий из электролита для электрохимического меднения металлических изделий, содержащего сульфат меди (II) пятиводный, оксиэтилидендифосфоновую кислоту, 2-амино-1-бутанол, продукт синтеза диоксида кремния и гидроксида тетраметиламмония в мольном отношении 1:(1-7) при следующем соотношении компонентов, г/л:

сульфат меди (II) пятиводный 3-35
оксиэтилидендифосфоновая кислота 40-310
2-амино-1-бутанол 0,1-2,0
продукт синтеза диоксида кремния и
гидроксида тетраметиламмония 0,05-1
вода остальное

Электролит для электрохимического меднения металлических изделий готовят следующим образом. Отдельно готовят растворы, содержащие расчетные количества сульфата меди, оксиэтилендифосфоновой кислоты, едкого калия и 2-амино-1-бутанола. рН раствора оксиэтилендифосфоновой кислоты доводят до значения 9 раствором едкого калия. К полученному раствору при интенсивном перемешивании приливают раствор сульфата меди. Затем вводят раствор 2-амино-1-бутанола, после чего проверяют и, при необходимости, корректируют рН электролита до значения 9. Объем электролита доводят до конечного объема дистиллированной водой, после чего при интенсивном перемешивании вводят кремнийорганическое соединение.

Предварительно синтезируют кремнийорганическое соединение из диоксида кремния и гидроксида тетраметиламмония в мольном отношении 1:1-1:7. Необходимое количество диоксида кремния и гидроксида тетраметиламмония растворяют в 20 граммах воды при интенсивном перемешивании и нагреве до 40°С. Процесс синтеза ведут до тех пор, пока раствор не приобретет вид суспензии, что занимает примерно 2 часа.

Нижний предел интервала концентрации меди (II) в электролите выбран в соответствии с требуемой скоростью электроосаждения меди. Верхний предел интервала концентраций меди (II) в электролите ограничивается растворимостью комплексной соли меди (II) в электролите. Нижний предел концентрации оксиэтилидендифосфоновой кислоты обусловлен необходимостью формирования прочного комплекса с медью (II). Верхний предел интервала концентраций оксиэтилидендифосфоновой кислоты ограничивается ее растворимостью в электролите.

Нижний предел концентрации 2-амино-1-бутанола и кремнийорганического соединения соответствует той концентрации, при которой достигается минимально значимый эффект от их введения в электролит - увеличивается допустимая рабочая плотность тока.

Значение рН электролита меднения должно находиться в пределах от 8,5 до 10,0. Понижение рН можно осуществлять добавками 3%-ного раствора серной кислоты, повышение - добавками 3%-ного раствора едкого калия.

Условия электроосаждения меди из предлагаемого электролита: температура электролита от 20 до 70°С, катодная плотность тока от 0,25 до 5 А/дм2, перемешивание барботированием.

В качестве анодов используют медь марки М0 и M1. Аноды растворяются равномерно без анодного шлама и нерастворимых осадков. Приготовленные электролиты стабильны в работе и не требуют предварительной проработки.

Пример 1

Был приготовлен электролит меднения, содержащий 35 г/л пятиводного сульфата меди (II), оксиэтилидендифосфоновую кислоту 240 г/л, 2-амино-1-бутанол 0,5 г/л, кремнийорганическое соединение, синтезированное из диоксида кремния и гидроксида тетраметиламмония при мольном отношении 1:3, в количестве 0,1 г/л; рН полученного раствора 9,0. Электроосаждение меди проводили в течение 10 минут на пластину из углеродистой стали марки Ст.3 толщиной 1 мм в ячейке Хулла емкостью 267 мл и углом катода по отношению к аноду 51°, помещенной в водяной термостат, при силе тока 1 А и температуре 30°С, аноды - медь марки M1. Температуру измеряли и поддерживали с точностью ±1°С. Значение рН измеряли с помощью рН-метра. В результате получено блестящее, гладкое, мелкокристаллическое покрытие при плотностях тока 0,5-5 А/дм2. Покрытие не отслаивается от основы при изгибе под углом 90° и более, а также после нагревания до 150°С и последующего резкого охлаждения в холодной воде.

Пример 2

Был приготовлен электролит меднения, содержащий 35 г/л пятиводного сульфата меди (II), оксиэтилидендифосфоновую кислоту 240 г/л, 2-амино-1-бутанол 0,5 г/л, кремнийорганическое соединение, синтезированное из диоксида кремния и гидроксида тетраметиламмония при мольном отношении 1:3, в количестве 0,1 г/л; рН полученного раствора 9,0. Электролиз проводили при плотности тока 1 А/дм2 в течение 50 мин. Температура электролита составляла 30°С. Расчетная толщина покрытия составила 10 мкм. Образцом служил полый цилиндр из цинкового сплава ЦАМ 4-1. Полученное покрытие было гладким, мелкокристаллическим, блестящим по всей поверхности образца, в том числе и на внутренней стороне поверхности цилиндра. Адгезию покрытия определяли нагревом до 150°С и последующим резким охлаждением в холодной воде. Отслоение покрытия не наблюдалось.

Пример 3

Был приготовлен электролит меднения, содержащий 35 г/л пятиводного сульфата меди (II), оксиэтилидендифосфоновую кислоту 240 г/л, 2-амино-1-бутанол 0,5 г/л, кремнийорганическое соединение, синтезированное из диоксида кремния и гидроксида тетраметиламмония при мольном отношении 1:3, в количестве 0,1 г/л; рН полученного раствора 9,0. Электролиз проводили при плотности тока 1 А/дм2 в течение 50 мин. Температура электролита составляла 30°С. Расчетная толщина покрытия составила 10 мкм. Образцом служил полый цилиндр из латуни Л63. Полученное покрытие было гладким, мелкокристаллическим, блестящим по всей поверхности образца, в том числе и на внутренней стороне поверхности цилиндра. Адгезию покрытия определяли нагревом до 150°С и последующим резким охлаждением в холодной воде. Отслоение покрытия не наблюдалось.

Пример 4

Был приготовлен электролит меднения, содержащий 35 г/л пятиводного сульфата меди (II), оксиэтилидендифосфоновую кислоту 240 г/л, 2-амино-1-бутанол 0,5 г/л, кремнийорганическое соединение, синтезированное из диоксида кремния и гидроксида тетраметиламмония при мольном отношении 1:3, в количестве 0,1 г/л; рН полученного раствора 9,0. Электролиз проводили при плотности тока 1 А/дм2 в течение 50 мин. Температура электролита составляла 30°С. Расчетная толщина покрытия составила 10 мкм. Образцом служил фрагмент алюминиевого профиля (АМг2). Полученное покрытие было гладким, мелкокристаллическим, блестящим по всей поверхности образца. Адгезию покрытия определяли нагревом до 150°С и последующим резким охлаждением в холодной воде. Отслоение покрытия не наблюдалось.

Как видно из приведенных примеров, предлагаемый электролит позволяет получать мелкокристаллические, блестящие, гладкие медные покрытия. Электролит стабилен в работе, обладает высокой рассеивающей способностью (32%), что позволяет использовать его при покрытии деталей сложного профиля. Электролит пригоден для непосредственного меднения стали без подслоя и без применения дополнительных технологических приемов (загрузка деталей под током, толчок тока). Электролит позволяет проводить процесс при температуре от 20 до 70°С при катодной плотности тока от 0,25 до 5 А/дм2. Покрытия не отслаиваются от основы при изгибе под углом 90° и более, а также после нагревания до 150°С и последующего резкого охлаждения в холодной воде.

Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
04.04.2018
№218.016.2f9f

Способ электроосаждения защитных кадмиевых покрытий (варианты)

Изобретение относится к области гальванотехники, в частности к электроосаждению защитных кадмиевых покрытий на стальные изделия, в том числе сложнопрофилированные, в стационарных и вращающихся установках и может быть использовано в машиностроении, авиа- и кораблестроении и других отраслях...
Тип: Изобретение
Номер охранного документа: 0002644639
Дата охранного документа: 13.02.2018
Показаны записи 11-14 из 14.
04.04.2018
№218.016.2f9f

Способ электроосаждения защитных кадмиевых покрытий (варианты)

Изобретение относится к области гальванотехники, в частности к электроосаждению защитных кадмиевых покрытий на стальные изделия, в том числе сложнопрофилированные, в стационарных и вращающихся установках и может быть использовано в машиностроении, авиа- и кораблестроении и других отраслях...
Тип: Изобретение
Номер охранного документа: 0002644639
Дата охранного документа: 13.02.2018
19.01.2019
№219.016.b1ea

Композиция для бесхроматной пассивации оцинкованной стальной поверхности

Изобретение относится к обработке защитных металлических покрытий и может быть использовано для увеличения коррозионной стойкости оцинкованной поверхности в автомобильной, судостроительной, сельскохозяйственной, нефтехимической и других отраслях промышленности. Композиция для бесхроматной...
Тип: Изобретение
Номер охранного документа: 0002677579
Дата охранного документа: 17.01.2019
20.06.2019
№219.017.8ced

Способ регенерации хроматных растворов пассивирования

Изобретение относится к электрохимической регенерации хроматных растворов, применяемых для пассивирования кадмиевых покрытий. Способ включает обработку регенерируемого раствора в анодной камере с анодом из платинированного металла трехкамерного электролизера, состоящего из анодной камеры,...
Тип: Изобретение
Номер охранного документа: 0002691791
Дата охранного документа: 18.06.2019
21.04.2023
№223.018.4f89

Высокостабильный раствор химического меднения отверстий печатных плат

Изобретение относится к технологии формирования токопроводящего слоя на диэлектрической поверхности в отверстиях печатных плат и может быть использовано для изготовления многослойных печатных плат в электронной промышленности. Высокостабильный раствор химического меднения отверстий печатных...
Тип: Изобретение
Номер охранного документа: 0002792978
Дата охранного документа: 28.03.2023
+ добавить свой РИД