×
10.05.2018
218.016.4b5b

Результат интеллектуальной деятельности: СПОСОБ МОДЕЛИРОВАНИЯ ПРОЦЕССА ГАЗИФИКАЦИИ ОСТАТКОВ ЖИДКОГО КОМПОНЕНТА РАКЕТНОГО ТОПЛИВА В БАКАХ ОТРАБОТАВШЕЙ СТУПЕНИ РАКЕТЫ-НОСИТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к ракетно-космической технике. Способ и устройство моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отработавшей ступени (ОС) ракеты-носителя, основанный на введении в экспериментальную модельную установку (ЭМУ) теплоносителя (ТН), обеспечении условий взаимодействия в зоне контакта ТН с поверхностью жидкого газифицируемого компонента ракетного топлива, проведении измерений температуры, давления в различных точках ЭМУ, сброс парогазовой смеси (ПГС) в вакуумную камеру через дренажную магистраль (ДМ) и дренажный электропневмоклапан (ДЭПК), осуществлении подачи в ЭМУ теплоносителя и газа наддува до обеспечения заданных параметров парциального давления паров жидкости, соответствующего заданной секундной массе испарения жидкости при заданном начальном давлении наддува, а суммарное давление соответствует началу сброса ПГС в вакуумную камеру, осуществлении сброса ПГС из ЭМУ через ДМ и ДЭПК в вакуумную камеру на различных интервалах времени, соответствующих различным интервалам длительности работы сопел газореактивной системы ориентации и стабилизации ОС, и определении области параметров ТН, температуры ДМ, ДЭПК, длительности интервалов времени сброса ПГС, при которых появляется конденсат на внутренней поверхности ДМ, ДЭПК и его кристаллизация, осуществлении дополнительного подвода теплоты к ДМ, ДЭПК, минимальную величину которой определяют из условия предотвращения кристаллизации паров жидкости в ДМ и ДЭПК. Устройство для реализации способа включает в свой состав ЭМУ, ДМ, ДЭПК, вакуумную камеру, газоанализатор, аппаратуру регистрации появления конденсата и его кристаллизации, электрический нагреватель ДМ и ЭДПК, кроме того, ЭМУ, ДМ и ДЭПК выполнены из материала, соответствующего реальной конструкции исследуемого топливного бака ракеты-носителя. Изобретение обеспечивает возможность моделирования процесса газификации, появления конденсата и его кристаллизации при конвективном процессе подачи ТН в бак с остатками топлива. 2 н.п. ф-лы, 1 ил.

Изобретение относится к ракетно-космической технике и может быть использовано при проведении физического моделирования процессов газификации остатков жидкого топлива в баках отработавшей ступени (ОС) ракеты-носителя (РН) на основе подачи горячих газов (теплоносителя) в топливный бак после выключения маршевого двигателя, в условиях малой гравитации после выполнения РН своей миссии.

Результатом процесса газификации остатков топлива в баке, после выключения маршевого двигателя, является появление парогазовой смеси (ПГС), содержащей газ наддува, например гелий, + испарившийся компонент жидкого ракетного топлива + теплоноситель (ТН).

Известен способ моделирования процесса газификации и устройство, его реализующее, которые описаны на стр. 163-174 в кн. «Снижение техногенного воздействия ракетных средств выведения на жидких токсичных компонентах ракетного топлива на окружающую среду» (Монография) под ред. В.И. Трушлякова, Омск: Изд-во ОмГТУ, 2004. - 220 с. Однако этот способ преимущественно ориентирован на работу с высококипящими и токсичными компонентами топлива типа несимметричный диметилгидразин, азотная кислота, азотный тетраксид.

Наиболее близким по технической сущности к предлагаемому решению является «Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в условиях пониженного давления и устройство для его реализации» (патент РФ №2493414, МПК F02K 9/96, опубл. 20.09.2013), основанный на введении в экспериментальную модельную установку (ЭМУ) теплоносителя (ТН), обеспечении условий взаимодействия в зоне контакта ТН с поверхностью жидкого компонента ракетного топлива, проведении измерений температуры, давления в различных точках ЭМУ, перед подачей ТН осуществляют понижение давления в ЭМУ до 0,01 МПа через дренажный электропневмоклапан (ДЭПК), а в качестве газа наддува используют гелий с параметрами избыточного давления до 0,3 МПа со сбросом до 0,01 МПа абсолютного, в качестве ТН используют азот, массовый секундный расход которого равен производительности вакуумного насоса, а процентное содержание газифицированных продуктов определяют исключением из показаний газоанализатора состава ТН и газа наддува.

К недостаткам способа по прототипу относятся трудности его адаптации при проведении исследований процесса газификации компонентов топлива, в частности, такой важнейшей его составляющей, как конденсация паров в дренажных магистралях и дренажных клапанах при сбросе продуктов газификации. Появление конденсата в дренажной магистрали в ряде случаев сопровождается кристаллизацией и «забиванием» магистрали, что приводит к аварийной ситуации. Процесс конвективной газификации остатков топлива (подача горячих газов) происходит на этапе полета ОС РН после выполнения своей миссии для обеспечения извлечения невыработанных остатков топлива с целью предотвращения взрыва ОС после выключения маршевого двигателя путем подачи ТН в топливные баки.

Дальнейшая утилизации ПГС осуществляется, например, путем отработки импульсов маневра спуска ОС и т.д. (см. пат. РФ №2518918 РФ, МПК F02K 9/42, B64G 1/26. «Способ увода отделившейся части ступени ракеты-носителя с орбиты полезной нагрузки и устройство для его реализации»).

Техническим результатом предлагаемого технического решения является обеспечение возможности моделирования процесса газификации, в частности появление конденсата и его кристаллизации при конвективном процессе подачи ТН в бак с остатками топлива (подача ТН в баки после выключения маршевого двигателя РН).

Указанный технический результат достигается за счет того, что в способе моделирования процесса газификации остатков жидкого компонента ракетного топлива в баке ОС РН, основанном на введении в ЭМУ ТН, обеспечении условий взаимодействия в зоне контакта ТН с поверхностью жидкого газифицируемого компонента ракетного топлива, проведении измерений температуры, давления в различных точках ЭМУ, сбросе ПГС в вакуумную камеру через дренажную магистраль и дренажный ЭПК, дополнительно вводят следующие действия:

а) осуществляют подвод ТН и газа наддува в ЭМУ до обеспечения заданных параметров парциального давления паров жидкости, соответствующего заданной секундной массе испарения жидкости при заданном начальном давлении наддува, а суммарное давление соответствует началу сброса ПГС в вакуумную камеру,

б) осуществляют сброс ПГС из ЭМУ через ДМ и ДЭПК в вакуумную камеру на различных интервалах времени, соответствующих различным интервалам длительности работы сопел газореактивной системы ориентации и стабилизации ОС,

г) определяют области параметров ТН, температуры ДМ, ДЭПК, длительности интервалов времени сброса ПГС, при которых появляется конденсат на внутренней поверхности дренажной магистрали, ДЭПК и его кристаллизация,

д) осуществляют дополнительный подвод теплоты к ДМ, ДЭПК, минимальную величину, которой определяют из условия предотвращения кристаллизации паров жидкости в ДМ и ДЭПК.

В качестве прототипа устройства для реализации способа предлагается устройство по патенту РФ №2493414, МПК F02K 9/96, включающее в свой состав экспериментальную установку в виде модельного бака, содержащего поддон для жидкого компонента ракетного топлива, датчики температуры, давления, входной и выходной патрубки, вакуумную камеру для создания пониженного абсолютного давления до 0,01 МПа с управляемым ЭПК и газоанализатор для определения процентного содержания газифицированных компонентов ракетного топлива.

Недостатком этого устройства для реализации предлагаемого способа для кондуктивного подвода тепла являются:

- отсутствие регистрирующей аппаратуры появления конденсата и его кристаллизации;

- отсутствие системы подвода тепла к ДМ и ДЭПК.

Цель предлагаемого устройства заключается в обеспечении реализации возможности моделирования процесса появления конденсата и его кристаллизации в ДМ и ДЭПК.

Технический результат устройства достигается тем, что в устройство для моделирования процесса газификации остатков жидкого КРТ в баках ОС РН, включающее в свой состав ЭМУ, содержащую поддон для жидкости, датчики температуры, давления, входной патрубок, дренажную магистраль, дренажный ЭПК, вакуумную камеру, газоанализатор для определения процентного содержания ПГС, дополнительно введена:

а) аппаратура регистрации появления конденсата и его кристаллизации;

б) электрический нагреватель ДМ и ДЭПК;

в) настройка ДЭПК (давление срабатывания) и конструктивные параметры ДМ (диаметр, длина) в ЭМУ, определяющиеся из условия подобия динамического процесса сброса ПГС в реальной конструкции ОС,

г) ЭМУ и ДМ, ДЭПК выполнены из материала, соответствующего реальной конструкции исследуемого топливного бака ракеты-носителя.

Под условием динамического подобия предполагается равенство отношений действующих сил на одноименные элементы конструкции ЭМУ и ОС, отнесенных к единице объема. Тем самым соблюдается геометрическое и динамическое подобие, при равенстве следующих безразмерных величин: чисел Рейнольдса, Фруда, Эйлера, Грасгофа и Кутателадзе (см., например, стр. 79-83 в кн. 2 «Прикладная газовая динамика» (в 2 ч. Ч.1: Учеб. руководство) Г.Н. Абрамович, М.: Наука, 1991. 600 с.).

В качестве системы регистрации появления конденсата и факта его замерзания может использоваться система на основе измерения влажности, температуры и парциального давления паров жидкости в составе ПГС, определения процентного содержания газифицированных КРТ, а также результаты скоростной видеосъемки.

В качестве нагревателя дренажной магистрали используется, например, электрический спиральный источник тепла.

Сущность предлагаемого способа и устройства для его реализации поясняется чертежом, где на фиг. 1 изображена пневматическая схема ЭМУ для исследования процесса конденсации и кристаллизации ПГС.

ЭМУ 1 с залитой модельной жидкостью 2, соединена через гермоввод 3 с системой подачи газа наддува гелия 4, системой подачи теплоносителя 5 и через ДМ 6, с нагревателем 7, ДЭПК 8 с вакуумной камерой 9 и вакуумным насосом 10. Параметры газа наддува контролируются датчиками давления и температуры 11.

С помощью систем подачи газа наддува 4, ТН 5, в ЭМУ 1 создаются модельные условия для газификации жидкости 2 (температура ТН, массовый секундный расход ТН, химический состав ТН, давление газа наддува), т.е. обеспечение заданных параметров парциального давления паров жидкости, соответствующего заданной секундной массе испарения жидкости и для последующего сброса ПГС. Параметры ТН контролируются датчиками давления и температуры 12. Массовый секундный расход при подаче ТН регистрируется расходомером 13.

С помощью вакуумного насоса 10 создают давление Рвк диапазоне (1,0-0,01) атм, контролируемое датчиками 14. Величина исходного давления Рвк варьируется в соответствии с программой экспериментов.

4. С помощью ДЭПК 8, установленного на ЭМУ 1, осуществляют сброс ПГС из ЭМУ 1 в вакуумную камеру 9 с различными интервалами длительности времени Δti, соответствующими различным интервалам длительности работы сопел газореактивной системы ориентации и стабилизации ОС.

Параметры ПГС в ЭМУ 1 контролируются датчиками давления и температуры 15, в дренажной магистрали 6 - датчиками давления и температуры 16. Регистрация появления конденсата 17 в ДМ 6, ДЭПК 8 регистрируется устройством 18 (видео- и фотокамерой). Процентный состав паров жидкости в ПГС контролируется с помощью газоанализатора 19.

5. С помощью нагревателя 7 исследуется влияние температуры ДМ, ДЭПК на появление конденсата 17 и его концентрации внутри ДМ, ДЭПК.

Сбросом газа надува из ЭМУ 1 в вакуумную камеру 9 моделируется процесс сброса ПГС из баков ОС в окружающее космическое пространство. Происходящее резкое увеличение скорости испарения жидкости 2, соответственно, увеличивает область параметров, при которых происходит процесс образования конденсата, и массовую скорость его образования, с последующей возможностью его кристаллизации в ДМ, ДЭПК.

Эффект предлагаемого способа и устройства для его осуществления заключается в возможности проведения процесса моделирования замерзания ДМ, ДЭПК, происходящих на ОС ракет-носителей при их нахождении на орбитах после выполнения своей миссии, с целью разработки технологических, схемных и проектно-конструкторских решений для предотвращения аварийных ситуаций (взрывов), например, статья Трушляков В.И., Жариков К.И. Оценка возможности разрушения топливных баков орбитальной отработанной ступени ракеты-носителя с маршевым ЖРД // Тепловые процессы в технике. 2016. Т. 8. N 6. С. 278-287.


СПОСОБ МОДЕЛИРОВАНИЯ ПРОЦЕССА ГАЗИФИКАЦИИ ОСТАТКОВ ЖИДКОГО КОМПОНЕНТА РАКЕТНОГО ТОПЛИВА В БАКАХ ОТРАБОТАВШЕЙ СТУПЕНИ РАКЕТЫ-НОСИТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 109.
19.01.2018
№218.016.0aad

Порошковая проволока

Изобретение относится к области металлургии, а именно к порошковой проволоке, которая может быть использована в энергетической, химической и нефтяной отраслях для восстановления и упрочнения посадочных поверхностей валов, запорной и дросселирующей арматуры, торцевых уплотнений контактных пар....
Тип: Изобретение
Номер охранного документа: 0002632311
Дата охранного документа: 03.10.2017
19.01.2018
№218.016.0c00

Устройство контроля веществ

Использование: для контроля веществ. Сущность изобретения заключается в том, что устройство содержит последовательно включенные аналого-запоминающий блок, первую и вторую цепи преобразования, каждая из которых содержит последовательно соединенные узлы выборки и хранения, аналого-цифровой...
Тип: Изобретение
Номер охранного документа: 0002632633
Дата охранного документа: 06.10.2017
19.01.2018
№218.016.0cfd

Способ получения повышенного выходного напряжения

Использование: в области электротехники. Технический результат - повышение значения наводимой электродвижущей силы в обмотке статора магнитоэлектрической машины. Согласно способу валом двигателя с переменной скоростью вращения приводят во вращение нерегулируемый магнитоэлектрический генератор....
Тип: Изобретение
Номер охранного документа: 0002632817
Дата охранного документа: 10.10.2017
19.01.2018
№218.016.0d31

Способ микроклонального размножения картофеля in vitro сорта картофеля "ермак"

Изобретение относится к области биотехнологии растений. Способ включает культивирование оздоровленных растений картофеля in vitro путем микрочеренкования на питательную среду, содержащую макро- и микроэлементы по прописи Мурасиге-Скуга, Fe-хелат, агар-агар, витамины по Уайту, аскорбиновую...
Тип: Изобретение
Номер охранного документа: 0002632938
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.17a4

Сырьевая смесь для газобетона

Изобретение относится к производству изделий из газобетона и может быть использовано в домостроении для изготовления строительных блоков, а также в дорожном строительстве для изготовления бордюров, ограждений и плиток. Сырьевая смесь для газобетона содержит, мас.%: портландцемент 35 - 55,...
Тип: Изобретение
Номер охранного документа: 0002635687
Дата охранного документа: 15.11.2017
20.01.2018
№218.016.1cc2

Способ ремонта вмятин на сосудах

Изобретение относится к области ремонта сосудов, работающих под давлением и содержащих на корпусе дефекты в виде вмятин, и может быть использовано в химической, нефтехимической, нефтеперерабатывающей промышленности. Способ ремонта вмятин на корпусе сосудов включает изготовление заплаты, по...
Тип: Изобретение
Номер охранного документа: 0002640512
Дата охранного документа: 09.01.2018
20.01.2018
№218.016.1d4e

Поршневая двухступенчатая машина с внутренней системой жидкостного охлаждения

Изобретение относится к энергетическим машинам и может быть использовано при создании высокоэкономичных автономно работающих двухступенчатых компрессоров и гибридных машин - насос-компрессоров с жидкостным охлаждением компрессорных полостей первой и второй ступени. Поршневая двухступенчатая...
Тип: Изобретение
Номер охранного документа: 0002640658
Дата охранного документа: 11.01.2018
20.01.2018
№218.016.1d80

Поршневой двухцилиндровый компрессор с жидкостным рубашечным охлаждением

Изобретение относится к области энергетических машин и касается поршневых машин и систем их охлаждения, и может быть использовано при создании поршневых компрессоров с повышенной экономичностью за счет организации автономной энергосберегающей системы охлаждения цилиндропоршневой группы....
Тип: Изобретение
Номер охранного документа: 0002640970
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1ddb

Роторно-поршневая гибридная машина объемного действия

Изобретение относится к области энергетических машин объемного действия и может быть использовано при создании высокоэффективных источников энергии для одновременного питания пневматического и гидравлического оборудования. Машина состоит и корпуса 1 с цилиндрами 2, 3, с роторами 10, 11 с...
Тип: Изобретение
Номер охранного документа: 0002640886
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1de0

Способ работы поршневого компрессора с автономным жидкостным охлаждением и устройство для его осуществления

Изобретение относится к области энергетики и может быть использовано при создании экономичных поршневых компрессоров малой и средней производительности с автономным жидкостным охлаждением. Способ работы компрессора заключается в том, что величину дополнительного объема, напрямую соединенного с...
Тип: Изобретение
Номер охранного документа: 0002640899
Дата охранного документа: 12.01.2018
Показаны записи 31-40 из 49.
29.05.2018
№218.016.55b6

Способ газификации невырабатываемых остатков жидкого кислорода и керосина в баках ступени ракеты-носителя и устройство для его реализации

Группа изобретений относится к ракетно-космической технике. Способ газификации невырабатываемых остатков жидкого кислорода и керосина в баках ступени ракеты-носителя после выключения маршевого жидкостного ракетного двигателя основан на подаче теплоты в баки с остатками компонентов топлива в...
Тип: Изобретение
Номер охранного документа: 0002654235
Дата охранного документа: 17.05.2018
12.07.2018
№218.016.6fbf

Способ газификации остатков жидкого компонента топлива в баке отработавшей ступени ракеты-носителя и устройство для его реализации

Группа изобретений относится к ракетно-космической технике. Способ газификации остатков жидкого компонента топлива (КТ) в баке отработавшей ступени ракеты-носителя (РН) основан на подаче горячих газов (теплоносителя) в топливный бак и сбросе продуктов газификации (ПГ) по достижении заданного...
Тип: Изобретение
Номер охранного документа: 0002661047
Дата охранного документа: 11.07.2018
21.11.2018
№218.016.9f18

Способ минимизации зон отчуждения отделяемых частей ракеты-носителя

Изобретение относится к ракетно-космической технике и может быть использовано для сокращения районов падения отделяющихся частей ступеней ракет-носителей. Технический результат - снижение площадей зон отчуждения из-за отделяемых частей за счет обеспечения их полного сгорания на атмосферном...
Тип: Изобретение
Номер охранного документа: 0002672683
Дата охранного документа: 19.11.2018
29.12.2018
№218.016.ad23

Способ очистки орбит от объектов космического мусора

Изобретение относится к методам и средствам очистки орбит от космического мусора, главным образом отработанных ступеней (ОС) ракет-носителей. Способ включает выведение в область очистки космического аппарата-буксира (КАБ) (1) и автономного стыковочного модуля (АСМ) (2) на тросе (4). АСМ (2)...
Тип: Изобретение
Номер охранного документа: 0002676368
Дата охранного документа: 28.12.2018
24.01.2019
№219.016.b338

Способ моделирования процесса тепло- и массообмена при испарении жидкости и устройство для его реализации

Группа изобретений относится к ракетно-космической технике и может быть использована при проведении экспериментальных исследований при физическом моделировании процессов испарения остатков жидкого топлива в баках отделяющихся частей ступеней ракет-носителей. Раскрыт способ моделирования...
Тип: Изобретение
Номер охранного документа: 0002677868
Дата охранного документа: 22.01.2019
10.04.2019
№219.017.0744

Способ управления ракетами космического назначения

Изобретение относится к ракетно-космической технике и может быть использовано при расчете энергетически оптимальных программ управления выведением первых ступеней ракет космического назначения (РКН) исходя из снижения влияния ограничений, обусловленных обеспечением падения отделяющихся частей...
Тип: Изобретение
Номер охранного документа: 0002456217
Дата охранного документа: 20.07.2012
29.05.2019
№219.017.69f7

Способ увода космического мусора с орбит полезных нагрузок на основе использования отделившейся части ракеты-носителя, разгонного блока и устройство для его реализации

Изобретение относится к области космической техники и может быть использовано для очистки околоземного космического пространства от прекративших активное существование космических аппаратов, их обломков, отделившихся частей (ОЧ) последних ступеней ракет-носителей (РН) и разгонных блоков (РБ)....
Тип: Изобретение
Номер охранного документа: 0002462399
Дата охранного документа: 27.09.2012
04.06.2019
№219.017.72e2

Способ проведения лётно-конструкторских испытаний бортовой системы испарения остатков жидкого топлива в баке отработавшей ступени ракеты-носителя

Изобретение относится к автономной бортовой системе спуска (АБСС) отработавшей ступени (ОС) ракеты-носителя (РН) с маршевыми ЖРД. Способ включает испытания входящей в состав АБСС системы испарения остатков жидкого топлива в баке ОС в процессе пуска РН, исключая другие элементы АБСС. Перед...
Тип: Изобретение
Номер охранного документа: 0002690304
Дата охранного документа: 31.05.2019
19.06.2019
№219.017.8a54

Способ увода отделившейся части ракеты-носителя с орбиты полезной нагрузки и двигательная установка для его осуществления

Изобретение относится к ракетно-космической технике. Способ увода на орбиту утилизации отделяющейся части ракеты-носителя (ОЧРН). ОЧРН придают вращение вокруг продольной оси до достижения стабилизации ее углового положения в пространстве, затем газифицируют остатки жидких невыработанных...
Тип: Изобретение
Номер охранного документа: 0002406856
Дата охранного документа: 20.12.2010
22.06.2019
№219.017.8e9c

Способ минимизации зон отчуждения для отделяемых частей ракет-носителей

Изобретение относится к конструкции и эксплуатации ракет-носителей (РН) и их отделяемых частей (ОЧ): отработавших ступеней, переходных отсеков, створок головных обтекателей и т.п. Способ включает этап предполетной подготовки РН, на котором рассчитывают параметры движения ОЧ, определяя участки...
Тип: Изобретение
Номер охранного документа: 0002692207
Дата охранного документа: 21.06.2019
+ добавить свой РИД