×
10.05.2018
218.016.4765

Результат интеллектуальной деятельности: Способ определения параметров цели гидролокатором

Вид РИД

Изобретение

№ охранного документа
0002650835
Дата охранного документа
17.04.2018
Аннотация: Изобретение относится к области гидроакустики и может быть использовано для автоматического обнаружение цели, определения ее параметров при использовании зондирующих сигналов большой длительности на фоне реверберационных помех. Предложен способ, содержащий излучение зондирующего сигнала длительностью Т на известной частоте , прием эхосигнала в смеси с шумовой помехой гидроакустической антенной, дискретизацию электрического сигнала на выходе гидроакустической антенны, набор длительностью Т приемным устройством дискретизированных отсчетов, определение энергетического спектра с помощью процедуры быстрого преобразования Фурье БПФ, определение энергетического спектра каждого набора, производится последовательный анализ выделенных спектров, определяется коэффициент корреляции между ними, суммирование и после обработки определяются параметры обнаруженных эхосигналов. Таким образом, используя последовательные корреляционные свойства эхосигнала и отсутствия этих свойств у помехи, обнаруживает детерминированный сигнал на фоне распределенной помехи, а суммирование последовательных спектров повышает отношение сигнал/помеха. Это позволяет производить автоматическое обнаружение цели, определение ее параметров при использовании зондирующих сигналов большой длительности на фоне реверберационных помех. 1 ил.

Изобретение относится к области гидроакустики и может быть использовано для автоматического обнаружения цели, определения ее параметров при использовании зондирующих сигналов большой длительности на фоне реверберационных помех.

Известны способы измерения дистанции, основанные на приеме эхосигнала гидролокатора, изложенные, например, в книге Евтютов Е.С. и Митько В.Б. "Примеры инженерных расчетов в гидроакустике", Судостроение, 1981 г., с. 77. Способ содержит спектральный анализ этого процесса, детектирование спектральных составляющих, интегрирование огибающей и обнаружение сигнала при сравнении с порогом. В момент превышения выбранного порога определяется время задержки эхосигнала и по нему высчитывается дистанция до цели.

Аналогичный способ обнаружения эхосигнала и измерения дистанции изложен в книге B.C. Бурдика "Анализ гидроакустических систем". Судостроение, 1988 г. стр. 347 и содержит многоканальную по частоте фильтрацию, детектирование, выделение огибающей и сравнение с порогом. По каналу с максимальной амплитудой сигнала по частоте определяется смещение спектра, которое пропорционально радиальной скорости цели, а по моменту превышения выбранного порога определяется задержка эхосигнала и дистанция до цели.

При использовании цифровой техники в качестве спектрального анализа применяют процедуры быстрого преобразования Фурье (БПФ), которые обеспечивают выделение и измерение энергетического спектра шумового электрического процесса ("Применение цифровой обработки сигналов", М.: Мир, 1990 г., стр. 296). Перечисленные способы имеют точность измерения, дистанции определяемую длительностью зондирующего сигнала.

Известен способ обнаружения эхосигнала и измерения дистанции, рассмотренный в книге Л. Рабинера, Б. Гоулда «Теория и применение цифровой обработки сигналов», М.: Мир, 1978 г.

Способ содержит следующие операции: излучение зондирующего сигнала длительностью Т на известной частоте; прием эхосигнала в смеси с шумовой помехой гидроакустической антенной; дискретизацию электрического сигнала на выходе гидроакустической антенны; набор приемным устройством дискретизированных отсчетов длительностью Т; определение энергетического спектра с помощью процедуры быстрого преобразования Фурье БПФ; многократное повторение процедуры набора дискретизированных отсчетов длительностью Т через равные промежутки времени, и определение энергетического спектра каждого набора; выбор набора с максимальной энергией сигнала; принятие решение об обнаружении по набору с максимальной энергией сигнала.

Недостатком способа является большой объем вычислительных операций для определения факта наличия эхосигнала, для чего требуется предварительное определение помехи и выбор порога, определение превышения порога на каждом интервале временного набора. После этого производится анализ амплитудных значений и определение наличия эхосигнала по результатам последовательной обработки временной реализации по всей шкале дистанции. Выбор порога, как правило, производится при определении среднего значения амплитуд всех спектральных отсчетов, в число которых входят не только отсчеты, связанные с перемещением цели, но и отсчеты, связанные с реверберацией. Это приводит к тому, что порог принятия решения завышается и снижается вероятность обнаружения дальних целей, в особенности тех, которые перемещаются с малой скоростью и находятся в реверберационных отсчетах спектра. При обычном пороговом обнаружении эхосигнала при обработке по реализациям одиночного спектра большую сложность представляет обнаружение эхосигнала на фоне реверберационной помехи, обусловленной отражением от дна или отражением от поверхности в дальних зонах освещенности. При предъявлении такой информации оператору производят нормирование к максимальной амплитуде эхосигнала в спектре. Поскольку такие эхосигналы принадлежат реверберации, то эхосигналы от реальных целей, которые имеют меньшую амплитуду, могут быть пропущены.

Задачей изобретения является обеспечение автоматического обнаружения эхосигнала от малозаметной цели на фоне реверберационной помехи и автоматическое измерение параметров обнаруженной цели.

Поставленная задача решается тем, что в способ, содержащий излучение зондирующего сигнала длительностью Т на известной частоте Fизлуч, прием эхосигнала в смеси с шумовой помехой гидроакустической антенной, дискретизацию электрического сигнала на выходе гидроакустической антенны, последовательный набор длительностью Т приемным устройством дискретизированных отсчетов, определение энергетического спектра с помощью процедуры быстрого преобразования Фурье (БПФ), определение энергетического спектра каждого набора, определение порога Апор, введены новые признаки, а именно производят последовательный анализ выделенных спектров, для чего запоминают спектры и времена их определения, определяют коэффициент корреляции КК между каждыми двумя последовательными спектрами, если коэффициент корреляции меньше 0,5, то спектр с более ранним временем реализации удаляют, снова определяют коэффициент корреляции образовавшейся пары спектров, и так до тех пор, пока коэффициент корреляции не превысит 0,5, после чего запоминают все последовательные N спектров, коэффициенты корреляции между которыми превысили 0,5 и времена их определения, суммируют амплитуды спектров и нормируют их к числу N, сравнивают амплитуды нормированных спектральных отсчетов с порогом Aпор, выбирают спектральный отсчет с максимальной амплитудой Aмакс определяют частоту этого спектрального отсчета Fизм и сравнивают с частотой излученного сигнала Fизлуч, если FизмFизлуч+ΔF, где ΔF – смещение спектра за счет собственного движения, то принимают решение, что это движущаяся цель, и по значению Fизм определяют радиальную скорость цели Vдоп, если Fизм=Fизлуч+ΔF,то определяют ширину спектра по числу отсчетов достигших уровня 0,5 Aмакс и при ширине спектра ≤1/Т принимают решение, что это обнаружена неподвижная цель с радиальной скоростью Vрад=0, а дистанцию определяют по спектру с амплитудой Aмакс и максимальным коэффициентом корреляции.

Технический результат состоит в автоматическом обнаружении эхосигнала на фоне реверберационной помехи различного происхождения и автоматического определения параметров цели, в том числе ее радиальной скорости, дистанции и ширины спектра от цели по одной посылке.

Поясним достижение заявленного технического результата.

В практике работы гидролокаторов имеют место обнаружение локальных целей на фоне нормальной помехи и на фоне распределенной помехи, характеристики которой трудно прогнозировать.

Под локальными целями понимается подводный или надводный объект искусственного происхождения ограниченного размера (корабль, подводный аппарат, буй, контейнер и т.д.), отражение от которых происходит по нормали относительно падающей волны, а сама отражающая поверхность имеет отражающие плоскости существенно больше длины волны. Однако в реальных условиях имеется помеха, обусловленная реверберацией, либо наличием отражения сигнала, излученного гидролокатором, от звукорассеивающих слоев естественного и искусственного происхождения, так называемая распределенная помеха. Распределенная помеха затрудняет обнаружение локального объекта или приводит к повышению вероятности ложной тревоги. Классификация помех по характеру их возникновения рассматривается в книге Л.В. Орлова, А.А. Шаброва Гидроакустическая аппаратура рыбопромыслового флота. Л.: Судостроение, 1987 г., стр. 51-59. Как правило, интервал стабильности распределенной помехи существенно меньше, чем интервал стабильности эхосигнала, который определяется временем отражения от нормально расположенной поверхности, т.е. длительностью зондирующего сигнала.

Реверберационная помеха формируется суммированием отражений от большого числа отражателей, которые имеют различную длительность и случайную фазу, что так же образует отражение с малым по длительности стабильным состоянием.

Сущность предлагаемого способа заключается в следующем. Эхосигнал от локальной цели формируется на основе отражения энергии падающего зондирующего сигнала на цель по нормали относительно направления прихода зондирующего сигнала гидролокатора. При этом, как правило, это цели искусственного происхождения и в зависимости от принадлежности могут иметь форму шара, эллипсоида, куба, цилиндра, конуса, плоскости или их различных сочетаний. Это приводит к тому, что при отражении формируется регулярный фронт волны, характеристика которой стабильна на некотором пространственном интервале. (Е.А. Штагер, Е.В. Чаевский. Рассеяние волн на телах сложной формы. М.: Сов.радио, 1974 г.) Поскольку локальная цель находится в дальнем поле и имеет ограниченные размеры, то эхосигнал от такой цели представляет плоскую, мало искаженную волну, определяемую длительностью отраженного эхосигнала, на протяжении которой характеристики стабильно сохраняются за время распространения сигнала.

Распределенная помеха не имеет ярко выраженных когерентных свойств. В случае реверберации (см. Ольшевский В.В. Статистические свойства морской реверберации. М.: Наука, 1966 г.) эхосигнал формируется как сумма эхосигналов от элементарных отражателей, имеющих различную длительность и различную амплитуду, что приводит к искажению фронта плоской волны. В этой ситуации последовательные временные реализации не связаны между собой и имеют малую степень связи на протяжении длительности зондирующего сигнала. Эхосигнал от такой совокупности случайно расположенных отражателей будет представлять собой случайную совокупность амплитуд, которые независимы друг от друга и поэтому последовательны временные реализации также будут не связаны. Единственным способом, который позволит отличить наличие когерентной локальной цели является корреляционная обработка временных реализаций, принимаемых последовательно по дальности длительностью Т. Фронт волны, отраженный от распределенного отражателя, определяется случайным формированием отраженного фронта волны отдельных отражателей, и при приеме на интервале большем, чем интервал корреляции помехи, не будет иметь корреляционной связи. Таким образом, для реализации предлагаемого метода обработки необходим прием эхосигнала последовательно длительностями, равными Т, и определения степени корреляционной связи между последовательными спектрами. Измерение взаимно-корреляционной функции и определение коэффициента корреляции между процессами это известные операции, которые характеризуют степень схожести двух спектров и достаточно подробно используются в современной технике (Дж. Бендат, А. Пирсол. «Измерение и анализ случайных процессов». М.: Мир, 1971, стр. 44-47, стр. 196). Наличие коэффициента корреляции больше 0,5 между двумя последовательными спектрами, разнесенными на время большее, чем интервал корреляции помехи, говорит о том, что спектры принадлежат детерминированному эхосигналу. Поскольку время появления эхосигнала неизвестно, то обработку проводят последовательно, набирая входные временные реализации длительностью равной длительности излученного зондирующего сигнала. Для дальнейшей обработки потребуется значения помехи на входе обнаружителя, для чего по первым временным реализациям, которые еще не содержат эхосигнал от цели, определяется среднее значение амплитуд спектральных составляющих, на основании которого определяется порог Апор. При наборе часть эхосигнала может оказаться в двух последовательных наборах и тогда спектры в этих наборах будут одни и те же, а коэффициент корреляции между ними будет больше 0,5. Часто при обработке используют набор временных реализаций не последовательно, а некоторым перекрытием, и тогда коэффициент корреляции больше 0,5 будет не между 2-мя последовательными спектрами, а между большим числом последовательных спектров N. Поскольку число отсчетов спектра одинаковое и расположены они в одинаковом порядке, то этим обстоятельством можно воспользоваться и просуммировать амплитуды спектральных отсчетов, что приведет к увеличению отношения сигнал/помеха. Поскольку измерение помехи и определение порога проводилось по одной реализации спектра, поэтому амплитуды всех спектральных составляющих суммарного спектра следует разделить на число спектров N. Использование корреляционной обработки последовательных спектров и получение суммарного спектра, обеспечивает увеличение отношение сигнал/помеха существенно больше, чем в одиночном спектре. Сравнение с порогом и определение амплитуды спектрального отсчета и его номера является известной операцией, которая реализована во всех современных гидролокаторах. По номеру спектрального отсчета определяется радиальная скорость цели и расположение относительно частоты излучения Fизл. Значение частоты сдвига спектральной дискреты Fизм относительно частоты зондирующего сигнала определяет радиальную скорость Vдоп обнаруженной цели (Дж. Хортон «Основы гидролокации» Судпромгиз 1961 г. стр. 405). Эти операции являются известными и определяют наличие доплеровскрой скорости Vдоп. и Vрев. реверберационной составляющей скорости. По максимальному значению амплитуды Амакс доплеровской составляющей определяется временное положение спектра и по нему определяется дистанция известным методом. Если обнаружена только реверберационная составляющая, то по ней определяется дистанция Д только в том случае, когда ширина спектра реверберационной составляющей равна ширине спектра зондирующего сигнала, определяемого его длительностью Т. Предложенная процедура позволяет по одной посылке определять реальную локальную цель и нереальный распределенный объект, измерить радиальную скорость объекта и дистанцию до него с малой вероятностью ложной тревоги.

На фиг. 1 представлена блок схема устройства, реализующего предлагаемый способ. Устройство содержит гидролокатор 1, последовательно соединенный со спецпроцессором 2, в состав которого входят последовательно соединенные блок 3 набора временной реализации, блок 4 БПФ определения спектров, измерения tспек и Апор, блок 5 запоминания последовательных спектров и определения коэффициентов корреляции, блок 6 суммирования последовательных спектров, блок 8 обнаружения и определения параметров эхосигналов Vдоп., Vрев, ширина спектра, дистанции Д, блок 9 принятия решения.

Выход спецпроцессора 2 через блок 10 управления и отображения соединен с гидролокатором 1.

Операции предложенного способа целесообразно рассмотреть на примере работы реализующего его устройства.

По команде блока управления 10 гидролокатор 1 излучает зондирующий сигнал известной частоты Fизл и длительности Т. Это же гидролокатор принимает отраженный эхосигнала и передает его в спецпроцессор 2, где в блоке 3 производится последовательный набор временных реализаций длительностью Т.

Гидролокатор является известным устройством, который давно используется в отечественном приборостроении (А.Н. Яковлев, Г.П. Каблов. «Гидролокаторы ближнего действия». Л.: Судостроение. 1983).

В настоящее время практически вся гидроакустическая аппаратура выполняется на спецпроцессорах, которые преобразуют акустический сигнал в цифровой вид и производят в цифровом виде формирование характеристик направленности, многоканальную обработку и обнаружение сигнала, а также измерение амплитуд эхосигналов и временных отсчетов, а также принятие решения о цели. Эти вопросы достаточно подробно рассмотрены в литературе (Ю.А. Корякин, С.А. Смирнов, Г.В. Яковлев. «Корабельная гидроакустическая техника». Санкт-Петербург. «Наука». 2004 г. Стр. 95-99, стр. 237-255).

Из блока 3 последовательные временные реализации поступают в блок 4, где производится определение энергетического спектра с использованием процедуры быстрого преобразования Фурье. Эта известная процедура, которая используется во всех современных систем обработки гидроакустической информации (см. там же). В этом же блоке могут быть реализованы процедуры измерения помехи, измерения времени поступления временных наборов и выбора порога Aпор. Последовательно выделенные спектры поступают в блок 5, где они запоминаются, и между соседними последовательными спектрами определяется коэффициент корреляции. Если коэффициент корреляции превысил значение 0,5, то эти спектры выделяются из всей последовательности и передаются в блок 6 суммирования последовательных спектров вместе со значениями коэффициентов корреляции, временами поступления временных наборов и параметрами помехи и Aпор. В блоке 7 производится обработка суммарного спектра отдельно по доплеровским каналам и по реверберационным каналам. Обнаруживаются спектральные отсчеты, которые превысили порог Aпор в доплеровских каналах и в реверберационных, определяются амплитуды максимальных отсчетов, определяется радиальная скорость и ширина спектра. Измеренные параметры эхосигнала передаются в блок 8 для принятия решения и определения дистанции.

Использование цифровой техники позволяет оперативно обрабатывать информацию любой сложности на основе разработанных алгоритмов. Эти вопросы достаточно подробно рассмотрены в книге «Применение цифровой обработки сигналов», под.ред. Оппенгейма, М.: Мир, 1980 г.

Таким образом, используя последовательные корреляционные свойства эхосигнала и отсутствие этих свойств у помехи, позволяет обнаруживать детерминированный сигнал на фоне распределенной помехи, а суммирование последовательных спектров повышает отношение сигнал/помеха, что позволяет считать задачу обнаружения эхосигнала и измерения параметров на фоне распределенной помехи решенной.

Способ определения параметров цели гидролокатором, содержащий излучение зондирующего сигнала длительностью Т на известной частоте F, прием эхосигнала в смеси с шумовой помехой гидроакустической антенной, дискретизацию электрического сигнала на выходе гидроакустической антенны, последовательный набор длительностью Т приемным устройством дискретизированных отсчетов, определение энергетического спектра с помощью процедуры быстрого преобразования Фурье (БПФ), определение энергетического спектра каждого набора, определение порога А, введены новые признаки, а именно производят последовательный анализ выделенных спектров, для чего запоминают спектры и времена их определения, определяют коэффициент корреляции КК между каждыми двумя последовательными спектрами, если коэффициент корреляции меньше 0,5, то спектр с более ранним временем реализации удаляют, снова определяют коэффициент корреляции образовавшейся пары спектров, и так до тех пор, пока коэффициент корреляции не превысит 0,5, после чего запоминают все последовательные N спектров, коэффициенты корреляции между которыми превысили 0,5 и времена их определения, суммируют амплитуды спектров и нормируют их к числу N, сравнивают амплитуды нормированных спектральных отсчетов с порогом А, выбирают спектральный отсчет с максимальной амплитудой А определяют частоту этого спектрального отсчета F и сравнивают с частотой излученного сигнала F, если F≠F+ΔF, где ΔF - смещение спектра за счет собственного движения, то принимают решение, что это движущаяся цель, и по значению F определяют радиальную скорость цели V, если F=F+ΔF, то определяют ширину спектра по числу отсчетов, достигших уровня 0,5 А, и при ширине спектра ≤1/Т принимают решение, что это обнаружена неподвижная цель с радиальной скоростью V=0, а дистанцию определяют по спектру с амплитудой А и максимальным коэффициентом корреляции.
Способ определения параметров цели гидролокатором
Способ определения параметров цели гидролокатором
Источник поступления информации: Роспатент

Показаны записи 41-50 из 97.
03.10.2018
№218.016.8d23

Устройство и способ контроля и регулировки плавучести гидрофонного модуля сейсмокосы

Изобретение относится к технике сейсмокос, применяемых в морской геофизике и может найти применение в гидроакустике при изготовлении в гибких протяженных буксируемых антенн. В проедложенном способе и устройстве гидрофонную секцию буксируемого стримера погружают в заполненную водой скважину в...
Тип: Изобретение
Номер охранного документа: 0002668363
Дата охранного документа: 28.09.2018
26.02.2019
№219.016.c825

Гидроакустическая станция для обнаружения малоразмерных объектов

Изобретение относится к области гидроакустики и может быть использовано для обнаружения малоразмерных целей, в том числе в акваториях, нуждающихся в охране от несанкционированного проникновения. Заявленная гидроакустическая станция состоит из бортовой и погружаемой частей, соединенных...
Тип: Изобретение
Номер охранного документа: 0002680673
Дата охранного документа: 25.02.2019
02.03.2019
№219.016.d1b6

Способ пассивного определения координат источников гидроакустического излучения

Изобретение относится к области гидроакустики и может быть использовано в пассивной гидролокации, а также в атмосферной акустике и пассивной радиолокации. Предложен способ пассивного определения координат источников гидроакустического излучения, содержащий прием сигналов М≥3 антеннами,...
Тип: Изобретение
Номер охранного документа: 0002680860
Дата охранного документа: 28.02.2019
11.04.2019
№219.017.0b20

Способ отождествления объектов, обнаруженных несколькими системами

Изобретение относится к области гидроакустики и предназначено для отождествления объектов, обнаруженных несколькими гидроакустическими системами, находящимися на общем носителе. Изобретение может быть также использовано для отождествления объектов, обнаруженных разнородными системами...
Тип: Изобретение
Номер охранного документа: 0002684440
Дата охранного документа: 09.04.2019
11.04.2019
№219.017.0b3a

Способ панорамной классификации шумящих объектов

Изобретение относится к области гидроакустики и предназначено для одновременного распознавания всех объектов, наблюдаемых в секторном обзоре шумопеленгования. Заявленный способ панорамной классификации шумящих объектов включает прием гидроакустического шумового сигнала многоэлементной антенной,...
Тип: Изобретение
Номер охранного документа: 0002684439
Дата охранного документа: 09.04.2019
24.05.2019
№219.017.5ed9

Устройство измерения коэффициента корреляции

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, использующим тональные и сложные (с внутриимпульсной модуляцией) зондирующие сигналы. Техническим результатом изобретения является повышение точности оценки...
Тип: Изобретение
Номер охранного документа: 0002688600
Дата охранного документа: 21.05.2019
01.06.2019
№219.017.71d8

Способ классификации морских объектов в типовой шумопеленгаторной станции

Изобретение относится к области гидроакустики и предназначено для классификации морских объектов, обнаруженных по их шумовому полю. Способ применим для типовой шумопеленгаторной станции, осуществляющей прием шумового сигнала объекта гидроакустической антенной, определение направления на объект...
Тип: Изобретение
Номер охранного документа: 0002689968
Дата охранного документа: 29.05.2019
01.06.2019
№219.017.727d

Устройство для измерения характеристики направленности гидроакустической антенны

Изобретение относится к области измерений характеристик гидроакустических антенн. Предложенное устройство для измерения характеристики направленности гидроакустической антенны содержит излучающий и приемный тракты, в котором излучающий тракт содержит последовательно соединенные задающий...
Тип: Изобретение
Номер охранного документа: 0002690054
Дата охранного документа: 30.05.2019
28.06.2019
№219.017.9972

Ключевой регулятор напряжения

Изобретение относится к области преобразовательной техники, а именно к вторичным источникам электропитания с регулируемым выходным напряжением для энергоемкой аппаратуры, в том числе импульсных режимов работы с емкостным накопителем энергии. Техническим результатом является повышение КПД....
Тип: Изобретение
Номер охранного документа: 0002692699
Дата охранного документа: 26.06.2019
02.07.2019
№219.017.a2ac

Способ определения параметров движения шумящего объекта

Изобретение относится к области гидроакустики и предназначено для определения совокупности координат и параметров движения шумящего объекта, под которыми понимается расстояние до шумящего объекта, скорость движения объекта и курс движения объекта. При реализации способа принимают шумовой сигнал...
Тип: Изобретение
Номер охранного документа: 0002692837
Дата охранного документа: 28.06.2019
Показаны записи 41-50 из 71.
26.08.2017
№217.015.ddcd

Способ классификации целей, адаптированный к гидроакустическим условиям

Изобретение относится к области гидроакустики и может быть использовано для построения систем автоматической и автоматизированной классификации морских объектов, применительно к гидролокационным станциям ближнего действия. Технический результат - обеспечение классификации объекта, обнаруженного...
Тип: Изобретение
Номер охранного документа: 0002624826
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.df36

Способ определения глубины погружения объекта

Изобретение относится к области гидроакустики и может быть использовано для построения систем автоматической и автоматизированной классификации морских объектов, применительно к гидролокационным станциям ближнего действия. Технический результат - обеспечение классификации объекта, обнаруженного...
Тип: Изобретение
Номер охранного документа: 0002625041
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.e1bf

Способ измерения скорости звука по трассе

Изобретение относится к гидроакустике, в частности к средствам измерения скорости звука. Способ измерения скорости звука по трассе заключается в излучении зондирующего сигнала неподвижным источником через постоянные промежутки времени Т, сохраняя длительность сигнала постоянной. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002625716
Дата охранного документа: 18.07.2017
26.08.2017
№217.015.e400

Система автоматического обнаружения и классификации гидролокатора ближнего действия

Настоящее изобретение относится к области гидроакустики и может быть использовано для автоматического обнаружения и классификации реальных объектов гидролокационными системами освещения ближней обстановки на фоне реверберационной помехи. Система автоматического обнаружения и классификации...
Тип: Изобретение
Номер охранного документа: 0002626295
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.eaa5

Способ обнаружения объекта и измерения его параметров

Изобретение относится к области гидроакустики и может быть использовано для построения систем автоматического обнаружения эхосигналов, принятых гидролокатором на фоне шумовой и реверберационной помехи и измерения параметров, объекта. Способ измерения дистанции содержит излучение зондирующего...
Тип: Изобретение
Номер охранного документа: 0002627977
Дата охранного документа: 14.08.2017
19.01.2018
№218.016.06d7

Способ определения скорости звука

Настоящее изобретение относится к области гидроакустики и предназначено для определения скорости звука по трассе распространения сигналов, что необходимо для повышения эффективности работы гидролокаторов освещения подводной обстановки, а также для проведения исследований и измерительных работ...
Тип: Изобретение
Номер охранного документа: 0002631234
Дата охранного документа: 19.09.2017
19.01.2018
№218.016.070b

Способ измерения гидролокатором параметров вытекающего газа из трубы подводного газопровода

Изобретение относится к области гидролокации и предназначено для обнаружения газовой пелены, определения глубины местоположения начала утечек газа трубопроводов гидроакустическими средствами. Технический результат - обеспечение обнаружения и классификации источника утечки газа подводного...
Тип: Изобретение
Номер охранного документа: 0002631228
Дата охранного документа: 19.09.2017
20.01.2018
№218.016.143c

Способ определения маневра шумящего объекта

Настоящее изобретение относится к области гидроакустики и может быть использовано при решении задач обработки сигнала шумоизлучения объекта в гидроакустических системах и определения параметров движения обнаруженного объекта. Используя последовательную корреляционную обработку спектров можно...
Тип: Изобретение
Номер охранного документа: 0002634786
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1460

Способ обнаружения локального объекта на фоне распределенной помехи

Изобретение относится к области гидроакустики и может быть использовано для построения систем обнаружения локального объекта в условиях наличия распределенных помех различного происхождения. Предложен способ обнаружения локального объекта на фоне распределенной помехи, который основан на...
Тип: Изобретение
Номер охранного документа: 0002634787
Дата охранного документа: 03.11.2017
10.05.2018
№218.016.43c1

Гидроакустический способ управления торпедой

Гидроакустический способ управления торпедой, содержащий выпуск торпеды, которая излучает зондирующие сигналы через фиксированные промежутки времени, прием эхосигналов гидролокатором освещения ближней обстановки, выделение классификационных признаков, определение класса объекта, формирование...
Тип: Изобретение
Номер охранного документа: 0002649675
Дата охранного документа: 04.04.2018
+ добавить свой РИД