×
10.05.2018
218.016.4664

Результат интеллектуальной деятельности: ТВЕРДЫЙ ЭКСТРАГЕНТ С ВЫСОКОЙ ДИНАМИЧЕСКОЙ ОБМЕННОЙ ЕМКОСТЬЮ ДЛЯ ИЗВЛЕЧЕНИЯ СКАНДИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к составу и способу получения твердого экстрагента для извлечения скандия из сернокислых растворов. Предлагается твердый экстрагент (ТВЭКС) для извлечения скандия из скандийсодержащих растворов, содержащий стиролдивинилбензольную матрицу с ди-(2-этилгексил)фосфорной кислотой. При этом он дополнительно содержит три-н-октилфосфиноксид, трибутилфосфат, изододекан при следующем соотношении компонентов, мас.%: ди-(2-этилгексил)фосфорная кислота 32,0-37,5, три-н-октилфосфиноксид 4,2-8,0, трибутилфосфат 0,8-1,7, изододекан 16,7-20,0, стиролдивинилбензол остальное, причем соотношение между стиролом и дивинилбензолом в матрице равно 75-80 к 20-25 мас. %. Предложен также способ получения вышеуказанного ТВЭКС. Технический результат заключается в получении селективного к скандию ТВЭКС с высокой динамической обменной емкостью. 2 н.п. ф-лы, 2 пр.

Изобретение относится к составу и способу получения твердого экстрагента для извлечения скандия из сернокислых растворов в экстракционных процессах гидрометаллургического производства после извлечения урана, никеля, меди или других металлов при их добыче методом подземного выщелачивания.

В настоящее время для извлечения скандия известны фосфорсодержащие ионообменные смолы, импрегнированные сорбенты (импрегнаты) и твердые экстрагенты (ТВЭКСы). При этом ионообменные смолы, импрегнаты и ТВЭКСы имеют как присущие им достоинства, так и свои недостатки.

Известен способ получения сорбента для селективного извлечения ионов скандия с пространственно-затрудненной группой α-гидроксифосфоновой кислоты путем ацилирования сополимера стирола с дивинилбензолом в присутствии катализатора Фриделя-Крафтса с последующим фосфорилированием ацилированного сополимера треххлористым фосфором. Сорбент, полученный по заявленному способу, обладает значительно большим сродством к скандию, чем к железу (III) (RU 2531916, 26.04.2013).

Недостатком данного способа получения сорбента является его невысокая емкость при извлечении скандия, что обусловлено низкой степенью доступности функциональных групп за счет стерических затруднений, создаваемых полимерной матрицей, а также за счет значительной сорбции ионов урана и тория из сульфатных растворов, что затрудняет использование полученного по данному способу сорбента для извлечения скандия из растворов, содержащих уран и торий.

Известны полимерные импрегнированные сорбенты (импрегнаты), содержащие экстрагент и полимерную смолу, для извлечения редкоземельных металлов, в том числе скандия из растворов выщелачивания. Экстрагент может быть катионный, анионный или неионогенный. Полимерная смола может быть без функциональных групп или с сульфогруппами, карбоксильными, иминодиуксусными, фосфорнокислыми или аминогруппами. Способ получения импрегнированных сорбентов включает насыщение полимерной смолы в растворе экстрагента, отделение насыщенной экстрагентом смолы от раствора на фильтре и сушку насыщенной экстрагентом смолы для удаления остатков растворителя (WO 2017074921, 04.05.2017).

Недостатком данных импрегнированных полимерных сорбентов, полученных методом пропитки раствором экстрагента полимерных смол, является повышенная склонность к вымыванию экстрагента в мобильную фазу при эксплуатации сорбентов, что сокращает срок службы сорбента и приводит к нежелательному образованию «хвоста», загрязняющего экстрагентом исходные растворы и получаемые скандиевые концентраты.

В настоящее время наиболее перспективными сорбентами для извлечения скандия из продуктивных сернокислых растворов являются твердые экстрагенты (ТВЭКСы). Проведено сравнительное изучение селективности ТВЭКСов с различными экстрагентами по отношению к скандию, содержащемуся в сернокислом растворе выщелачивания урановых руд. Исследованы характеристики таких ТВЭКСов, содержащих в качестве экстрагентов ди-2-этилгексилфосфорную кислоту, ди-(2,4,4-триметилпентил)фосфиновую кислоту, аминометилфосфоновую кислоту, полученные сополимеризацией указанных экстрагентов в смеси со стиролом и дивинилбензолом. В результате исследований сделан вывод, что ТВЭКСы на основе ди-2-этилгексилфосфорной кислоты обладают высокой селективностью и емкостью к скандию в диапазоне pH 1,1-2,0 возвратного раствора, что позволяет снизить расход реагентов на корректирование pH, обеспечить высокую степень извлечения, а также получение более чистого конечного раствора скандия, направляемого на получение товарного соединения (RU 2417267, 17.09.2009; RU 2613246, 09.06.2016; RU 2612107, 22.07.2015).

На основе анализа известного уровня техники перспективным представляется синтез сорбентов-ТВЭКСов для извлечения скандия на основе ди-2-этилгексилфосфорной кислоты, которые по комплексу показателей (цена, pH сорбции скандия, емкость и селективность) являются вполне приемлемыми для производственных нужд.

Наиболее близким по технической сущности и достигаемому результату является способ получения сорбента (ТВЭКСа) для селективного извлечения скандия, включающий получение исходной смеси компонентов, содержащей фосфорорганическое соединение (ди-2-этилгексилфосфорную кислоту), инициатор полимеризации, стирол и дивинилбензол, интенсивное перемешивание смеси и выдержку с последующим повышением температуры до 90°С и выдержкой при этой температуре при перемешивании, охлаждение реакционной смеси, фильтрацию полученного продукта, промывку и сушку (RU 2487184, 03.11.2011).

Основными недостатками известного сорбента и способа его получения являются низкая динамическая обменная емкость, связанная с образованием в процессе синтеза закрытых микропор и отсутствием макропор, что приводит к низкой кинетике сорбции, а следовательно, и динамической обменной емкости, а также дороговизна и низкая промышленная доступность краун-эфиров (дибензо-18-краун-6), что затрудняет использование сорбента и способа его получения в промышленных масштабах и делает нерентабельным промышленный процесс извлечения скандия из растворов подземного выщелачивания, например, урановых руд.

Задачей предлагаемого изобретения является разработка сорбента (ТВЭКС) с высокой динамической обменной емкостью для извлечения скандия и технологичного способа его получения. Высокая динамическая обменная емкость позволяет проводить процесс сорбции скандия при удельных нагрузках 10 и более колоночных объемов в час и уменьшить объем смолы, загружаемой в колонну, что в свою очередь приводит к увеличению удельного количества снимаемого при десорбции скандия с единицы объема смолы, что положительно сказывается на рентабельности процесса извлечения скандия из растворов подземного выщелачивания.

Поставленная задача решается описываемым способом получения твердого экстрагента (ТВЭКС) для извлечения скандия из скандийсодержащих растворов, который включает получение смеси исходных компонентов, содержащей фосфорорганическое соединение на основе ди-2-этилгексилфосфорной кислоты, стирол и дивинилбензол, диспергирование смеси в 0,7% растворе крахмала в воде при интенсивном перемешивании смеси, выдержку с последующим повышением температуры до 90°С и выдержку при этой температуре при перемешивании, охлаждение реакционной смеси, промывку продукта, при этом к смеси стирола, дивинилбензола, ди-2-этилгексилфосфорной кислоты добавляют три-н-октилфосфиноксид, трибутилфосфат, изододекан, пероксид бензоила при следующем соотношении компонентов, мас.%:

ди-(2-этилгексил)фосфорная кислота 8,74-9,93
три-н-октилфосфиноксид 1,10-2,18
трибутилфосфат 0,22-0,44
пероксид бензоила 0,22-0,25
изододекан 4,41-5,46
0,7%-ный раствор крахмала в воде 72,48-73,26
стирол 8,03-8,48
дивинилбензол 2,12-2,68

повышение температуры осуществляют со скоростью 0,5°С/мин, выдержка при 80°С составляет 5 ч, выдержка при 90°С - 2 ч.

В настоящее время из патентной и научно-технической литературы не известен твердый экстрагент для извлечения скандия из скандийсодержащих растворов с предлагаемым количественным соотношением компонентов, а также способ его получения.

В объеме вышеуказанной совокупности признаков достигается технический результат, поскольку при проведении процесса в заявленных условиях обеспечивается образование открытых макропор за счет использования изододекана, обладающего расслаивающими свойствами для мономер-полимерной смеси при проведении полимеризации, создается необходимое внутреннее поровое пространство, три-н-октилфосфиноксид и трибутилфосфат выступают интермедиатами, увеличивающими скорость комплексообразования ди-2-этилгексилфосфорной кислоты со скандием, что в свою очередь приводит к увеличению кинетики и динамической обменной емкости ТВЭКС.

Не ограничивая себя определенной теорией, можно предположить следующее.

Изододекан является хорошим растворителем для стирола и дивинилбензола, однако, не растворяет стиролдивинилбензольный полимер, который в процессе синтеза выпадает из гомогенной смеси и приводит к агрегации раствора экстрагента в микрокапли, которые впоследствии образуют макропоры гранулы, улучшающие кинетику сорбции скандия. С другой стороны добавка три-н-октилфосфиноксида и трибутилфосфата также меняет коэффициент поверхностного натяжения на границе раздела фаз полимер-мономерная смесь, приводя к формированию более проникающей для скандийсодержащего раствора полимерной структуры по сравнению со способом, описанным в прототипе. Остатки растворителя после синтеза внутри гранул ТВЭКС положительно влияют на кинетику сорбции, благодаря снижению вязкости ди-2-этилгексилфосфорной кислоты и увеличению подвижности функциональных групп, что положительно сказывается на скорости формирования комплексных соединений с ионами скандия. Другим возможным объяснением положительного влияния на кинетику сорбции и динамическую обменную емкость добавки соединений три-н-октилфосфиноксида и трибутилфосфата является их поляризующий эффект, приводящий к снижению энергии комплексообразования скандия с ди-2-этилгексилфосфорной кислотой, что увеличивает скорость поглощения скандия ТВЭКСом.

В способе-прототипе полученный ТВЭКС является полимером с гелевой структурой матрицы, в которой отсутствует свободный внутренний объем, что снижает динамическую обменную емкость.

В отличие от прототипа ТВЭКС, полученный в соответствии с заявленным способом, имеет свободный внутренний объем. Для образования внутреннего порового пространства в реакционную массу вводят изододекан.

Все упомянутое выше принципиально отличает полученный нами ТВЭКС и способ его получения от ТВЭКСа и способа получения, известного из прототипа. Предлагаемый способ может быть осуществлен следующим образом. В емкости, снабженной холодильником и механическим перемешивающим устройством, готовят дисперсионную среду (0,7% раствор крахмала в дистиллированной воде) при интенсивном перемешивании и нагревании до 90°С с последующим охлаждением охлаждают до 55°С со скоростью 1°С/мин.

В отдельной емкости, снабженной холодильником и механическим перемешивающим устройством, готовят полимеризационную смесь путем последовательного смешивания при работающей мешалке стирола, дивинилбензола, пероксида бензоила, ди-2-этилгексилфосфорной кислоты, три-н-октилфосфиноксида, трибутилфосфата и изододекана. Содержимое колбы перемешивается до получения гомогенного прозрачного желтоватого раствора.

Суспензионную полимеризацию реакционной смеси с получением гранул твердого экстрагента проводят в емкости, где предварительно была приготовлена дисперсионная среда. Синтез осуществляется при следующем соотношении компонентов, в мас.%:

ди-(2-этилгексил)фосфорная кислота 8,74-9,93
три-н-октил фосфиноксид 1,10-2,18
трибутилфосфат 0,22-0,44
пероксид бензоила 0,22-0,25
изододекан 4,41-5,46
0,7%-ный раствор крахмала в воде 72,48-73,26
стирол 8,03-8,48
дивинилбензол 2,12-2,68

При работающей мешалке полимеризационную смесь тонкой струей вливают в дисперсионную среду при температуре 55°С. При этом смесь постепенно разбивается на капли размером 1,5-2,0 мм. Перемешивают при этой температуре в течение 10 минут. Далее смесь при работающей мешалке нагревают по следующей схеме: нагрев от 55°С до 80°С со скоростью 0,5°С/мин, выдержка при 80°С в течение 5 ч, нагрев до 90°С со скоростью 0,5°С/мин, выдержка при данной температуре в течение 2 ч.

Далее реакционную массу охлаждают до температуры 40°С, выключают перемешивающее устройство и дают реакционной массе разделиться на 2 слоя: верхний слой с гранулами твердого экстрагента и нижний слой с отработанной дисперсионной средой. Нижний слой декантируют, а верхний слой с гранулами твердого экстрагента промывают от остатков крахмала деионизированной водой при перемешивании в течение 1-2 минут, затем выключают перемешивающее устройство и дают содержимому колбы расслоиться на 2 слоя. Операцию декантации нижнего слоя и промывки гранул твердого экстрагента повторяют аналогичным образом 3 раза.

Полученный твердый экстрагент рассеивают путем мокрого рассева на ситах 0,63-1,6 мм.

Полученный твердый экстрагент представляет собой гранулы белого цвета размером 0,63-1,6 мм при следующем соотношении компонентов, мас.% (в пересчете на сухой продукт):

ди-(2-этилгексил)фосфорная кислота 32,0-37,5
три-н-октилфосфиноксид 4,2-8,0
трибутилфосфат 0,8-1,7
изододекан 16,7-20,0
стиролдивинилбензол остальное

при этом соотношение между стиролом и дивинилбензолом в матрице равно 75-80 к 20-25 мас.%.

Ниже приведены конкретные примеры, не ограничивающие, а лишь иллюстрирующие возможность осуществления изобретения.

Пример.

Пример 1. В трехгорлой колбе объемом 5 л, снабженной холодильником и механическим перемешивающим устройством, погруженной в обогреваемую баню, готовят дисперсионную среду (0,7% раствор крахмала). Для этого загружают 2,59 л дистиллированной воды и нагревают до 90°С. Далее при работающей мешалке загружают 2,02 г суспензии крахмала в 300 мл воды. Перемешивают в течение 10 минут и охлаждают до 55°С со скоростью 1°С/мин.

Отдельно в трехгорлой колбе объемом 2 л, снабженной холодильником и механическим перемешивающим устройством, готовят полимеризационную смесь.

При работающей мешалке последовательно смешивают 0,3205 кг стирола (без удаления ингибитора), 0,1068 кг дивинилбензола (без удаления ингибитора), 0,0087 кг пероксида бензоила, 0,3488 кг ди-2-этилгексилфосфорной кислоты, 0,0872 кг три-н-октилфосфиноксида, 0,0087 кг трибутилфосфата и 0,218 кг изододекана. Содержимое колбы перемешивается до получения гомогенного прозрачного желтоватого раствора.

Суспензионную полимеризацию реакционной смеси с получением гранул твердого экстрагента проводят в трехгорлой колбе, объемом 5 л, где предварительно была приготовлена дисперсионная среда. Синтез осуществляется при следующем соотношении компонентов, в мас.%:

ди-(2-этилгексил)фосфорная кислота 8,74
три-н-октилфосфиноксид 2,18
трибутилфосфат 0,22
пероксид бензоила 0,22
изододекан 5,46
0,7%-ный раствор крахмала в воде 72,48
стирол 8,03
дивинилбензол 2,68

При работающей мешалке полимеризационную смесь, полученную в 2 л трехгорлой колбе, тонкой струей вливают в дисперсионную среду при температуре 55°С. При этом смесь постепенно разбивается на капли размером 1,5-2,0 мм. Перемешивают при этой температуре в течение 10 минут. Далее смесь при работающей мешалке нагревают по следующей схеме: нагрев от 55°С до 80°С со скоростью 0,5°С/мин, выдержка при 80°С в течение 5 ч, нагрев до 90°С со скоростью 0,5°С/мин, выдержка при данной температуре в течение 2 ч.

Далее реакционную массу в 5 л трехгорлой колбе охлаждают до температуры 40°С, выключают перемешивающее устройство и дают реакционной массе разделиться на 2 слоя: верхний слой с гранулами твердого экстрагента и нижний слой с отработанной дисперсионной средой. Нижний слой декантируют, а верхний слой с гранулами твердого экстрагента промывают от остатков крахмала 2,5 кг деионизированной воды при перемешивании в течение 1-2 минут, затем выключают перемешивающее устройство и дают содержимому колбы расслоиться на 2 слоя. Операцию декантации нижнего слоя и промывки гранул твердого экстрагента повторяют аналогичным образом 3 раза.

Полученный твердый экстрагент рассеивают путем мокрого рассева на ситах 0,63-1,6 мм. Выход твердого экстрагента составляет 1,1 кг.

Полученный твердый экстрагент представляет собой гранулы белого цвета размером 0,63-1,6 мм при следующем соотношении компонентов, мас.% (в пересчете на сухой продукт):

ди-(2-этилгексил)фосфорная кислота 32,0
три-н-октилфосфиноксид 8,0
трибутилфосфат 0,8
изододекан 20,0
стиролдивинилбензол 39,2

при этом соотношение между звеньями стирола и дивинилбензола в матрице равно 75:25.

Пример 2. В трехгорлой колбе объемом 5 л, снабженной холодильником и механическим перемешивающим устройством, погруженной в обогреваемую баню, готовят дисперсионную среду (0,7% раствор крахмала). Для этого загружают 2,59 л дистиллированной воды и нагревают до 90°С. Далее при работающей мешалке загружают 2,02 г суспензии крахмала в 300 мл воды. Перемешивают в течение 10 минут и охлаждают до 55°С со скоростью 1°С/мин.

Отдельно в трехгорлой колбе объемом 2 л, снабженной холодильником и механическим перемешивающим устройством, готовят полимеризационную смесь. При работающей мешалке последовательно смешивают 0,3348 кг стирола (без удаления ингибитора), 0,0837 кг дивинилбензола (без удаления ингибитора), 0,0099 кг пероксида бензоила, 0,3924 кг ди-2-этилгексилфосфорной кислоты, 0,0436 кг три-н-октилфосфиноксида, 0,0174 кг трибутилфосфата и 0,1744 кг изододекана. Содержимое колбы перемешивается до получения гомогенного прозрачного желтоватого раствора.

Суспензионную полимеризацию реакционной смеси с получением гранул твердого экстрагента проводят в трехгорлой колбе, объемом 5 л, где предварительно была приготовлена дисперсионная среда. Синтез осуществляется при следующем соотношении компонентов, в мас.%:

ди-(2-этилгексил)фосфорная кислота 9,93
три-н-октилфосфиноксид 1,10
трибутилфосфат 0,44
пероксид бензоила 0,25
изододекан 4,41
0,7%-ный раствор крахмала в воде 73,26
стирол 8,48
дивинилбензол 2,12

При работающей мешалке полимеризационную смесь, полученную в 2 л трехгорлой колбе, тонкой струей вливают в дисперсионную среду при температуре 55°С. При этом смесь постепенно разбивается на капли размером 1,5-2,0 мм. Перемешивают при этой температуре в течение 10 минут. Далее смесь при работающей мешалке нагревают по следующей схеме: нагрев от 55°С до 80°С со скоростью 0,5°С/мин, выдержка при 80°С в течение 5 ч, нагрев до 90°С со скоростью 0,5°С/мин, выдержка при данной температуре в течение 2 ч.

Далее реакционную массу в 5 л трехгорлой колбе охлаждают до температуры 40°С, выключают перемешивающее устройство и дают реакционной массе разделиться на 2 слоя: верхний слой с гранулами твердого экстрагента и нижний слой с отработанной дисперсионной средой. Нижний слой декантируют, а верхний слой с гранулами твердого экстрагента промывают от остатков крахмала 2,5 кг деионизированной воды при перемешивании в течение 1-2 минут, затем выключают перемешивающее устройство и дают содержимому колбы расслоиться на 2 слоя. Операцию декантации нижнего слоя и промывки гранул твердого экстрагента повторяют аналогичным образом 3 раза.

Полученный твердый экстрагент рассеивают путем мокрого рассева на ситах 0,63-1,6 мм. Выход твердого экстрагента составляет 1,0 кг.

Полученный твердый экстрагент представляет собой гранулы белого цвета размером 0,63-1,6 мм при следующем соотношении компонентов, мас.% (в пересчете на сухой продукт):

ди-(2-этилгексил)фосфорная кислота 37,5
три-н-октилфосфиноксид 4,2
трибутилфосфат 1,7
изододекан 16,7
стиролдивинилбензол 39,9

при этом соотношение между звеньями стирола и дивинилбензола в матрице равно 80:20.

Исследование свойств полученного ТВЭКС на динамическую обменную емкость по скандию представлено ниже.

Определение динамической обменной емкости по скандию.

Испытания сорбентов, полученных по примерам 1 и 2, проводили в динамических условиях сорбции скандия из сульфатного раствора, моделирующего раствор подземного выщелачивания урановой руды. Состав сульфатного раствора мг/л: Na - 1568,2; K - 122,4; В - 22,1; Са - 487,4; Mg - 412,5; Al - 1191,2; Mo - 1,2; Fe - 1110,2; V - 21,0; Sc - 0,7; Y - 7,3; La - 3,8; Ce - 9,8; Pr - 1,5; Nd - 6,7; Sm - 1,5; Eu - 0,4; Gd - 1,6; Tb - 0,2; Dy - 1,2; Ho - 0,2; Er - 0,6; Tm - 0,1; Yb - 0,5; Lu - 0,1; U - 1,4; Th - 1,7; P - 4,9; H2SO4 – 7500; pH=1,3-1,4.

Для проведения испытаний использовалась лабораторная установка, состоящая из перистальтического насоса, емкости с исходным раствором, вместимостью не менее 5 дм3, стеклянной колонки с внутренним диаметром 7±1 мм и высотой 120±5 мм, в нижнюю часть которой впаяна стеклянная пластина из пористого стекла, не пропускающая зерен ТВЭКС и обладающая малым сопротивлением фильтрации, и емкости-приемника.

Испытания проводили по следующей методике.

ТВЭКС отмеряют мерным цилиндром, объемом 10 см3, несколько раз уплотняя его, постукивая дном цилиндра о деревянную поверхность, и добиваются объема сорбента в мерном цилиндре 2,7 см3. Количественно переносят ТВЭКС в колонку (соотношение диаметра колонки к высоте слоя загрузки ТВЭКС 1:10) с помощью подкисленной до pH=1,8 серной кислотой дистиллированной воды. Запирают слой ТВЭКСа, предотвращая его всплытие при проведении эксперимента, уплотняя сверху слой фторопластовой стружкой. Следят за тем, чтобы между гранул не попали пузырьки воздуха. Сливают избыток раствора из колонки, оставляя над слоем сорбента объем раствора 10-15 мм.

Подключают шланг для подачи раствора к верхней части колонки. Включают насос, установив расход рабочего раствора для насыщения, равный 10 колоночным объемам в час (27 мл/ч). Включают подачу рабочего раствора. Каждые 2 часа отбирают порции фильтрата, измеряя их объем с точностью до 0,1 см3. От каждой порции фильтрата, а также исходного раствора, отбирают пробы и контролируют в ходе проведения эксперимента появление скандия в фильтратах. Завершают эксперимент при появлении проскока по скандию в фильтрате, равного 10% от исходной концентрации скандия.

По результатам анализов проб рассчитывают значение динамической обменной емкости по скандию ДОЕ(Sc) (в мг/см3) по формуле:

где V1 - общий объем рабочего скандийсодержащего раствора, пропущенный через колонну с сорбентом до достижения в фильтрате 10% от исходной концентрации скандия в растворе, дм3;

С(Sc)исх - концентрация скандия в исходном рабочем растворе, мг/дм3;

VC - объем сорбента в колонке, см3.

По результатам испытаний ДOE(Sc) для ТВЭКСов из примеров 1 и 2 составила 2,0 и 1,8 мг/см3, соответственно, что в 2,6-2,8 раза больше ДОЕ(Sc) для ТВЭКС по прототипу (0,7 мг/см3).

Таким образом, проведенные нами исследования показали, что ТВЭКС, полученный в соответствии с заявленным способом, обеспечивает повышенную динамическую обменную емкость при извлечении скандия из сульфатных растворов. Помимо этого, способ получения ТВЭКС характеризуется технологичностью, а сам ТВЭКС промышленной применимостью для извлечения скандия из растворов подземного выщелачивания урановых руд.

Источник поступления информации: Роспатент

Показаны записи 31-40 из 213.
25.08.2017
№217.015.b12d

Способ очистки загрязненного сырья для разделительного производства

Изобретение относится к способам очистки загрязненного вредными изотопами сырья для использования его в дальнейшем для получении восстановленного урана для ядерного топлива. Способ очистки загрязненного сырья для разделительного производства от вредных изотопов заключается в снижении...
Тип: Изобретение
Номер охранного документа: 0002613157
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b13a

Быстровозводимое каркасное здание

Изобретение относится к области строительства, в частности к быстровозводимым каркасным зданиям. Технический результат изобретения заключается в повышении прочности конструкции. Быстровозводимое каркасное здание содержит фундамент, стены, межэтажные перекрытия. Стены здания состоят из двух...
Тип: Изобретение
Номер охранного документа: 0002613060
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b162

Способ получения концентрата скандия из скандийсодержащего раствора

Изобретение относится к химии и металлургии, конкретно к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания. В способе извлечения скандия из скандийсодержащего продуктивного раствора используют ионит...
Тип: Изобретение
Номер охранного документа: 0002613238
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b171

Литая латунь

Изобретение относится к области металлургии, в частности к составу многокомпонентных деформируемых медных сплавов, содержащих Zn, Mn, Al, Si, Ni, Cr и предназначенных для получения литых заготовок, подвергающихся пластической обработке для изготовления деталей, работающих в условиях повышенного...
Тип: Изобретение
Номер охранного документа: 0002613234
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b181

Навигационная система зондирования атмосферы

Изобретение относится к радиотехнике и может быть использовано в системах радиозондирования атмосферы на основе использования сигналов глобальных навигационных спутниковых систем (ГНСС). Достигаемый технический результат - повышение точности и надежности определения пространственных координат...
Тип: Изобретение
Номер охранного документа: 0002613153
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b207

Порошковая проволока для нанесения покрытий, стойких к абразивному износу и высокотемпературной коррозии

Изобретение относится к области металлургии, а именно к порошковым проволокам для нанесения покрытий, и может быть использовано для защиты поверхности деталей, работающих в условиях воздействия частиц абразива и высоких температур. Порошковая проволока состоит из стальной оболочки и сердечника,...
Тип: Изобретение
Номер охранного документа: 0002613118
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b44e

Способ неразрушающего контроля термодеформационной обработки полуфабрикатов из двухфазных титановых сплавов на перегрев методом рентгеноструктурного анализа

Использование: для неразрушающего контроля термодеформационной обработки полуфабрикатов из двухфазных титановых сплавов на перегрев. Сущность изобретения заключается в том, что выбирают место контроля и строят градуировочную кривую для каждого вида полуфабрикатов, получают дифракционный спектр...
Тип: Изобретение
Номер охранного документа: 0002614023
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b452

Способ количественного определения триазавирина методом вольтамперометрии (варианты)

Изобретение относится к области аналитической химии, в частности к вольтамперометрическому способу определения лекарственного препарата триазавирина. Способ может быть использован для количественного определения указанного соединения в порошке и его лекарственных формах. Изобретение может быть...
Тип: Изобретение
Номер охранного документа: 0002614022
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b568

Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Устройство содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смеситель опорного 4 и сигнального 5 каналов, циркулятор...
Тип: Изобретение
Номер охранного документа: 0002614181
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b57e

Способ определения статического давления в некалиброванной камере высокого давления

Изобретение относится к измерительной технике и может быть использовано для определения величин давления (в том числе высоких и сверхвысоких) и интервалов давлений в камерах синтеза материалов, а также при проведении исследований конденсированных фаз в условиях высоких давлений. Для...
Тип: Изобретение
Номер охранного документа: 0002614197
Дата охранного документа: 23.03.2017
Показаны записи 31-40 из 45.
02.10.2019
№219.017.cd9d

Способ синтеза слоистых гидроксинитратов гадолиния

Изобретение относится к технологии получения ориентированных кристаллов слоистых гидроксисолей на основе гадолиния, которые могут быть использованы в производстве катализаторов, адсорбентов и анионно-обменных материалов, а также для формирования функциональных покрытий при создании различных...
Тип: Изобретение
Номер охранного документа: 0002700509
Дата охранного документа: 17.09.2019
01.11.2019
№219.017.dc3c

Способ получения лигатуры "алюминий-скандий" (варианты)

Изобретение относится к металлургическим технологиям в области редких и цветных металлов и может быть использовано для получения лигатуры алюминия со скандием. Алюминотермическое восстановление фторида скандия осуществляют путем расплавления в температурном интервале 740-780°С шихты в виде...
Тип: Изобретение
Номер охранного документа: 0002704681
Дата охранного документа: 30.10.2019
18.12.2019
№219.017.ee7a

Способ синтеза оксида титана

Изобретение может быть использовано при получении пигментного оксида титана для пищевой и косметической промышленности. Способ синтеза оксида титана с фазовой модификацией анатаз включает приготовление водного раствора хлорида титанила и гидролиз указанного раствора при добавлении аммиака с...
Тип: Изобретение
Номер охранного документа: 0002709093
Дата охранного документа: 13.12.2019
19.12.2019
№219.017.ef23

Способ переработки гидролизной серной кислоты

Изобретение относится к неорганической химии и может быть использовано в бумажной, лакокрасочной, пищевой и строительной промышленности. Для переработки гидролизной серной кислоты осуществляют экстракцию из нее скандия на экстрагенте, состоящем из смеси Ди2ЭГФК и ТБФ. Промывают насыщенный...
Тип: Изобретение
Номер охранного документа: 0002709369
Дата охранного документа: 17.12.2019
24.12.2019
№219.017.f1b5

Способ получения композиций на основе оксидов циркония и церия

Изобретение может быть использовано при получении трехмаршрутных катализаторов для очистки выхлопных газов. Способ получения композиций на основе оксидов циркония и церия, применяемых в составе трехмаршрутных катализаторов, включает приготовление раствора, содержащего нитраты циркония, церия,...
Тип: Изобретение
Номер охранного документа: 0002709862
Дата охранного документа: 23.12.2019
18.03.2020
№220.018.0c9f

Способ переработки гидролизной кислоты

Изобретение относится к переработке отходов производства диоксида титана - гидролизной серной кислоты сульфатным способом с получением продуктов, используемых в химической, металлургической, электронной промышленности. Способ переработки гидролизной кислоты включает последовательное извлечение...
Тип: Изобретение
Номер охранного документа: 0002716693
Дата охранного документа: 13.03.2020
21.03.2020
№220.018.0e40

Способ получения гранулированных частиц гидроксиапатита

Изобретение относится к способам получения гранулированных частиц гидроксиапатита. Способ получения гранулированных частиц гидроксиапатита включает приготовление прекурсоров в виде растворов, содержащих ионы кальция, ионы аммония и фосфат-ионы, формирование осадка гидроксиапатита из растворов...
Тип: Изобретение
Номер охранного документа: 0002717275
Дата охранного документа: 19.03.2020
12.04.2023
№223.018.443e

Способ получения радионуклидного генератора актиния-228

Изобретение относится к способу получения радионуклидного генератора актиния-228. В качестве сорбента актиния-228 используют твердый экстрагент, содержащий в качестве активного компонента моно-2-этилгексиловый эфир 2-этилгексилфосфоновой кислоты, а в качестве элюента используют раствор...
Тип: Изобретение
Номер охранного документа: 0002736600
Дата охранного документа: 19.11.2020
12.04.2023
№223.018.4513

Установка для извлечения меди из кислых растворов

Изобретение относится к установкам по очистке промышленных стоков, в частности к установкам по извлечению меди из кислых оборотных травильных растворов Установка для извлечения содержит ионообменные колонны, заполненные сорбентом, реактор приготовления раствора десорбции, пропускаемого через...
Тип: Изобретение
Номер охранного документа: 0002763907
Дата охранного документа: 11.01.2022
12.04.2023
№223.018.4533

Способ извлечения меди из кислых растворов

Изобретение относится к технической химии, а именно к способу извлечения меди из кислых оборотных травильных растворов, образующихся в производстве плоского проката. Извлечение меди из кислых растворов проводят сорбцией с образованием обезмеженного раствора и насыщенного сорбента. В качестве...
Тип: Изобретение
Номер охранного документа: 0002759979
Дата охранного документа: 19.11.2021
+ добавить свой РИД