×
10.05.2018
218.016.4604

Результат интеллектуальной деятельности: Способ формирования наноструктурированного оксидного покрытия на техническом титане

Вид РИД

Изобретение

Аннотация: Изобретение относится к области медицинской техники и приборостроения, а именно к технологии формирования наноструктурированных оксидных покрытий системы Ti-Ta-(Ti,Ta)O на изделиях из технического титана, в том числе имплантируемых внутрикостных конструкциях. Способ формирования наноструктурированного танталсодержащего оксидного покрытия на поверхности изделия из технического титана включает электроискровое легирование титановой основы танталом и термомодифицирующую обработку путем индукционного нагрева в воздушной атмосфере, при этом электроискровое легирование проводят при плотности тока 250-800 кА/м, а термомодифицирующую обработку изделий осуществляют при температуре 950-1000°С в течение 0,25-0,5 минут при частоте тока на индукторе 90±10 кГц и потребляемой удельной электрической мощности 0,2-0,4 Вт/кг, после чего проводят охлаждение на воздухе. Изобретение направлено на формирование на поверхности изделий из технического титана покрытий с твердостью 10-11,5 ГПа при величине модуля упругости 400-550 ГПа, состоящих из оксидов тантала и титана, с размером структурных элементов от 30 до 120 нм. 3 пр., 1 табл., 5 ил.

Изобретение относится к области медицинской техники и приборостроения, а именно к технологии формирования наноструктурированных оксидных покрытий системы Ti-Ta-(Ti,Ta)xOy на изделиях из технического титана, в том числе имплантируемых внутрикостных конструкциях.

Считается, что взаимодействие материала поверхности имплантата и костной ткани происходит на нанометровом уровне минерализованных коллагеновых фибрилл [N. Wang, Н. Li, W. Lii, J. Li, J. Wang, Z. Zhang, et al., Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs, Biomaterials 32 (2011) 6900-6911; Mendonca G. et al. Advancing dental implant surface technology-from micron-to nanotopography // Biomaterials. - 2008. - T. 29. - №. 28. - C. 3822-3835.]. Имеются данные, также указывающие на то, что можно повысить качество биологической совместимости имплантируемых конструкций за счет использования тантала и его металлооксидных соединений, например, пентаоксида тантала Ta2O5, которые способствуют адгезии клеток соединительной и костной ткани [Pham V.Н. et al. Utility of tantalum (Та) coating to improve surface hardness in vitro bioactivity and biocompatibility of Co-Cr // Thin Solid Films. - 2013. - T. 536. - P. 269-274; Руднев В.С. и др. Формирование методом плазменно-электролитического оксидирования Та-содержащих оксидных покрытий на титане, их состав и строение //Физикохимия поверхности и защита материалов. - 2013. - Т. 49. - №6. - С. 654. - 660].

Поскольку тантал является дорогостоящим металлом, в основном используются покрытия на его основе, сформированные газотермическим напылением, электрохимическим осаждением и подвергаемые дальнейшей модификации. Известные способы формирования на техническом титане микро- и наноструктурированного металлокерамического покрытия, состоящего из смеси оксидов тантала и титана, характеризуются значительной продолжительностью процесса, его технологической сложностью или токсичностью используемых веществ, что способствует поиску новых путей решения имеющейся проблемы.

Известен способ формирования на титановых имплантатах многослойных покрытий на основе тантала и его оксидов [патент RU на изобретение №2040277 / В.Л., Ласка, В.П. Хомутов, Ю.А. Быстров, Б.А. Калиникос, А.В. Гришанов // Способ изготовления материала для имплантата с электретными свойствами для остеосинтеза. - 1995]. Имплантируемую титановую конструкцию помещают в камеру установки вакуумного испарения, нагревают до 480-520°С при экранировании от испарений мишени из тантала, проводят геттерное испарение части мишени в течение 40-50 с, затем снимают экранирование и наносят на имплантат слой тантала заданной толщины, контролируемой при скорости конденсации 1,5-1,6 мкм/мин. Потом меняют материал мишени на оксид тантала, снижают температуру поверхности имплантата до 450-480°С и наносят оксид тантала, контролируемый при скорости конденсации 1,2-1,3 мкм/мин до получения заданной толщины.

Основным недостатком способа является технологическая сложность.

Известен также способ формирования на титановых имплантатах покрытий на основе тантала и его оксидов, и придания им электретных свойств [патент RU на изобретение №2049481 / АВ.Л., Ласка, В.П. Хомутов, Ю.А. Быстрое, Б.А. Калиникос, А.В. Гришанов // Способ изготовления имплантата с электретными свойствами для остеосинтеза. - 1995]. Имплантат помещают в камеру вакуумного испарения, очищают в тлеющем разряде током 2,9-3,0 А при напряжении 490-510 В в течение 10-15 мин, затем наносят танталовое покрытие электрической дугой при токе 188-190 А и напряжении 25-30 В, а также напряжении смещения на имплантате 148-150 В в течение 5-8 мин. Остывание изделие осуществляют в вакууме в течение 35-40 мин. Затем имплантат помещают в электролитическую ванну с 0,1% раствором ортофосфорной кислоты и проводят окисление тантала при напряжении 90-110 В и токе 20 А в течение 20-30 мин. Электретные свойства оксидной пленке тантала придают путем обработки в коронном разряде до получения поверхностного потенциала 100-130 В.

Основными недостатками способа являются технологическая сложность, длительность процессов формирования слоев тантала и последующего оксидирования, использование вредных веществ.

Наиболее близким к предлагаемому способу является способ формирования оксидных покрытий системы Ti-Ta-(Ti,Ta)xOy на поверхности технического титана [Фомин А.А. и др. Микро- и наноструктура поверхности титана, подвергнутого электроискровому легированию танталом и термомодификации токами высокой частоты // Письма в ЖТФ. - 2016. - Т. 42. - В. 18. - С. 10-16]. На титановых конструкциях, предварительно очищенных в 70% водном растворе этанола, методом электроискрового легирования при токе 0,8-1,2 А, 1,5-1,8 А, и 2,0-2,2 А формируют танталовое покрытие. Затем изделия с покрытиями подвергают термомодифицирующей обработке путем индукционного нагрева токами высокой частоты в воздушной среде до температуры 800-830°С и выдержки до 5 минут.

Основными недостатками способа являются неуказанный диапазон частоты тока при индукционном нагреве, а также широкий диапазон применяемого при электроискровом легировании тока, что в результате дает широкий разброс показателей твердости и модуля упругости, размеров структурных элементов поверхности покрытия.

Техническая проблема заключается в необходимости создания технологически простого и высокопроизводительного способа формирования наноструктурированного танталсодержащего оксидного покрытия на изделиях из технически чистого титана.

Поставленная проблема решается тем, что в способе формирования наноструктурированного танталсодержащего оксидного покрытия на техническом титане, включающем электроискровое легирование титановой основы танталом и термомодифицирующую обработку путем индукционного нагрева в воздушной атмосфере, после электроискрового легирования при плотности тока 250-800 кА/м2 проводят термомодифицирующую обработку при частоте тока на индукторе 90±10 кГц, потребляемой удельной электрической мощности 0,2-0,4 Вт/кг и температуре 950-1000°С в течение 0,25-0,5 минут, затем охлаждают на воздухе.

Техническим результатом является формирование на поверхности изделий различного назначения из технического титана, в том числе имплантируемых внутрикостных конструкций, покрытий с твердостью 10-11,5 ГПа при величине модуля упругости 400-550 ГПа, состоящих из оксидов тантала и титана, с размером структурных элементов от 30 до 120 нм, с помощью менее длительного способа.

Изобретение поясняется фигурами, на которых представлены: процесс электроискрового легирования титана танталом (Фиг. 1); процесс термомодифицирующей обработки (Фиг. 2); микро- и наноразмерная морфология поверхности оксидного покрытия, полученного электроискровым легированием танталом при плотности тока 300±30 кА/м2 и последующей термической модификацией путем индукционного нагрева до температуры 960±10°С, выдержки в течение 0,25 минут при частоте тока на индукторе 90±10 кГц (Фиг. 3а и 3б соответственно); результаты проверки биосовместимости in vitro технического титана и оксидных покрытий, сформированных согласно предложенному способу (Фиг. 4а, 4б и 4в, 4г соответственно); микро- и наноразмерная морфология поверхности оксидного покрытия, полученного электроискровым легированием танталом при плотности тока 770±30 кА/м2 и последующей термической модификацией путем индукционного нагрева до температуры 1000°С, выдержки в течение 0,5 минут при частоте тока на индукторе 90±10 кГц (Фиг. 5а, 5б соответственно);

На Фиг. 1 позициями 1-4 обозначены:

1 - изделие из технического титана;

2 - танталовый электрод-инструмент;

3 - токовый подвод;

4 - частица тантала.

На Фиг. 2 позициями 5-8 обозначены:

5 - покрытие;

6 - керамическая камера;

7 - водоохлаждаемый индуктор;

8 - источник питания.

Предлагаемый способ осуществляют следующим образом.

К изделию из технического титана 1 подключают катод, затем подводят танталовый электрод-инструмент 2 с токовым подводом 3 (Фиг. 1). Электроды инструмент и изделие подключают к источнику питания из расчета, что плотность тока на танталовом электроде составляет величину 250-800 кА/м2. В результате происходит пробой межэлектродного промежутка, возникает искровой разряд и происходит нагрев контактирующих поверхностей до высоких температур. В результате на поверхность изделия 1 переносится тантал, образующий закристаллизовавшуюся частицу 4 (Фиг. 1). В процессе последующей обработки из частиц перенесенного материала 4 (Фиг. 1) формируют танталовое покрытие. После процесса электроискрового легирования изделие из технического титана 1 промывают в дистиллированной воде и сушат на воздухе, затем помещают в керамическую камеру 6 (повторяющую форму изделия), на внешней поверхности которой размещен водоохлаждаемый индуктор 7, подключенный к источнику питания 8 (Фиг. 2). После чего изделие подвергают индукционному нагреву при частоте тока на индукторе 90±10 кГц и удельной потребляемой электрической мощности 0,2-0,4 Вт/кг до температуры 950-1000°С, последующей выдержке в течение 0,25-0,5 минут и охлаждению на воздухе (Фиг. 2). В результате на поверхности изделия образуется оксидное покрытие 5 (Фиг. 2) с микро- и наноструктурой поверхности (Фиг. 3а и 3б).

Технологические режимы электроискрового легирования и последующей термической модификации были определены путем проведения экспериментальных исследований. Приведенные предельные значения технологических режимов обеспечивают формирование на техническом титане оксидного покрытия системы Ti-Ta-(Ti,Ta)xOy с микро- и наноструктурой поверхности.

Предельные значения плотности тока при электроискровой обработке обусловлены тем, что величина плотности тока влияет на производительность обработки, а также на микрорельеф и твердость формируемых покрытий. Так при плотности тока менее 250 кА/м2 снижается производительность процесса. При плотности тока более 800 кА/м2 средняя величина пор формируемого после термомодификации покрытия увеличивается, а твердость снижается.

При подаче на индуктор тока частотой менее 80 кГц снижается электрический коэффициент полезного действия устройства индукционного нагрева и самого процесса обработки. При подаче на индуктор тока частотой более 100 кГц не происходит улучшение эффективности процесса обработки и наблюдается снижение коэффициента мощности.

Предельные значения потребляемой удельной электрической мощности (0,2-0,4 Вт/кг) обусловлены тем, что при величине удельной электрической мощности менее 0,2 Вт/кг будет затруднен нагрев малогабаритных титановых изделий до заданной температуры из-за потерь на излучение. При величине удельной электрической мощности более 0,4 Вт/кг увеличивается вероятность перегрева титана и, как следствие, появление трещин поверхностного слоя.

При значениях температуры нагрева менее 950°С и продолжительности процесса термомодифицирующей обработки менее 0,25 минут образуется оксидное покрытие, не обладающее наноструктурированной морфологией поверхности. При значениях температуры нагрева более 1000°С и продолжительности термообработки более 0,5 минуты образуются оксидные покрытия с размером оксидных кристаллов до 1 мкм.

Примеры выполнения способа.

Пример 1. Стоматологический цилиндрический имплантат с диаметром 3,7 мм и длиной 10 мм, изготовленный из технического титана марки ВТ 1-00 подвергают электроискровому легированию танталом при плотности тока 300±30 кА/м2. Затем промывают в дистиллированной воде и сушат на воздухе. После чего имплантат размещают в кварцевой камере с внутренним диаметром 5 мм и длиной 20 мм и подвергают индукционному нагреву до температуры 960±10°С и выдерживают в течение 0,25 минут при частоте тока на индукторе 90±10 кГц. После проведения процесса термомодифицирующей обработки имплантат охлаждают на воздухе до комнатной температуры. В результате на поверхности имплантата из технического титана образуется покрытие системы Ti-Ta-(Ti,Ta)xOy, толщиной 1-3 мкм, твердостью Н=10,0±0,5 ГПа, модулем упругости 518±10 ГПа.

Структурное состояние покрытий изучалось методом растровой электронной микроскопии (РЭМ) на электронном микроскопе «MIRA II LMU». Микроструктура поверхности повторяет рельеф танталового покрытия до термомодифицирующей обработки (Фиг. 3а). Наноструктура поверхности характеризуется наличием структурных элементов размером 30-80 нм (Фиг. 3б).

Проверка биосовместимости образцов из технического титана ВТ 1-00 с покрытиями проводилась в условиях in vitro. В качестве контрольных образцов использовались пластинки из титана, подвергнутые воздушно-абразивной обработке. Для исследования были использованы дермальные фибробласты человека, выделенные методом миграции из фрагментов нормальной кожи. Продолжительность культивирования составила 7 суток, что считается достаточным для протекания стадий адгезии и начала пролиферации. Далее образцы покрытий с клетками подвергались фиксирующей обработке формальдегидом и последующему изучению с применением РЭМ. Проверка биосовместимости in vitro оксидных покрытий, сформированных по предложенному способу, показала, что клетки фибробластов более стабильно закрепляются на поверхности покрытия (Фиг. 4в, 4г), чем на поверхности контрольных образцов из технического титана (Фиг. 4а, 4б), что свидетельствует о высоком уровне биосовместимости оксидных покрытий, полученных по предложенному способу.

Пример 2. Винтовую внутрикостную поверхность стержневого фиксатора для наружного чрескостного остеосинтеза диаметром 4 мм и длиной 50 мм, изготовленного из технического титана марки ВТ 1-0, подвергают электроискровому легированию танталом при плотности тока 500±30 кА/м2. Затем промывают в дистиллированной воде и сушат на воздухе. После чего имплантат размещают в кварцевой камере оксидирования с внутренним диаметром 6 мм и длиной 60 мм. Имплантат подвергают индукционному нагреву до температуры 970±10°С и выдерживают в течение 0,3 минут при частоте тока на индукторе 90±10 кГц. После проведения процесса термомодифицирующий обработки, фиксатор охлаждают на воздухе до комнатной температуры. В результате на поверхности имплантата из технического титана образуется покрытие системы Ti-Ta-(Ti,Ta)xOy, толщиной 2-4 мкм, твердостью Н=10,4±0,5 ГПа, модулем упругости 525±10 ГПа с микро- и наноструктурой поверхности аналогичной получаемой согласно примеру 1. Морфология поверхности характеризуется наличием оксидных кристаллов размером 40-90 нм. Проверка биосовместимости in vitro показала результаты аналогичные проведенным в примере 1.

Пример 3. На пластине-заготовке устройства для накопления заряда и энергии электрического поля из диска технического титана ВТ 1-0 диаметром 14 мм и высотой 2 мм методом электроискрового легирования танталом при плотности тока 770±30 кА/м2 формируют микропористое металлическое покрытие. Затем промывают в дистиллированной воде и сушат на воздухе. После чего заготовку вертикально посредством оснастки размещают в кварцевой камере оксидирования с внутренним диаметром 14 мм и длиной 40 мм и подвергают индукционному нагреву до температуры 1000°С и выдерживают в течение 0,5 минуты при частоте тока на индукторе 90±10 кГц. После проведения процесса термомодификации заготовку охлаждают на воздухе до комнатной температуры. На поверхности основы из технического титана образуется покрытие толщиной до 7 мкм, твердостью Н=11,3±0,5 ГПа, модулем упругости 552±10 ГПа с микро- и наноструктурой поверхности, характеризуемой наличием структурных элементов размером 40-120 нм (Фиг. 5а и 5б).

Для подтверждения формирования на поверхности технического титана наноструктурированных оксидных покрытий в результате обработки, описанной в предложенном способе, были проведены исследования морфологии, а также измерения твердости и модуля упругости.

Исследовались образцы из титанового сплава ВТ 1-0 с оксидными покрытиями, сформированными по способу, описанному в примерах 1, 2 и 3. Твердость и модуль упругости оксидных покрытий оценивались методом наноиндентирования, с использованием тестера механических свойств NANOVEA Ergonomic Workstation при нагрузке 100 мН (ГОСТ 8.748-2011, ISO 145771-2002).

Результаты растровой электронной микроскопии показали, что микроструктура поверхности представляет собой рельеф исходной титановой основы после проведения электроискрового легирования танталом (Фиг. 3а, 5а). Исследование в нанометровом масштабе выявило структуру поверхности покрытия, представленную структурными элементами с размером от 40 до 120 нм (Фиг. 3б, 5б).

Результаты измерения твердости и модуля упругости представлены в таблице. В результате процесса термомодификации формируются покрытия с высокими показателями твердости.

Примечание: «*» - контрольный образец.

Из полученных результатов следует, что предложенный способ позволяет формировать наноструктурированные танталсодержащие оксидные покрытия системы Ti-Ta-(Ti,Ta)xOy на изделиях из технического титана.

Способ формирования наноструктурированного танталсодержащего оксидного покрытия на поверхности изделия из технического титана, включающий электроискровое легирование титановой основы танталом и термомодифицирующую обработку путем индукционного нагрева в воздушной атмосфере, отличающийся тем, что электроискровое легирование проводят при плотности тока 250-800 кА/м, а термомодифицирующую обработку изделий осуществляют при температуре 950-1000°С в течение 0,25-0,5 минут при частоте тока на индукторе 90±10 кГц и потребляемой удельной электрической мощности 0,2-0,4 Вт/кг, после чего проводят охлаждение на воздухе.
Способ формирования наноструктурированного оксидного покрытия на техническом титане
Способ формирования наноструктурированного оксидного покрытия на техническом титане
Способ формирования наноструктурированного оксидного покрытия на техническом титане
Способ формирования наноструктурированного оксидного покрытия на техническом титане
Способ формирования наноструктурированного оксидного покрытия на техническом титане
Источник поступления информации: Роспатент

Показаны записи 11-20 из 164.
20.04.2016
№216.015.3621

Фотокаталитическое покрытие

Изобретение относится к химической промышленности, а именно к пленкам и покрытиям, фотокаталитически активным в видимой области спектра солнечного излучения. Описано Фотокаталитическое покрытие в виде композиционного материала. Композиционный материал состоит из двух слоев, нанесенных на...
Тип: Изобретение
Номер охранного документа: 0002581359
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.364e

Антисептическое средство

Изобретение относится к медицине и представляет собой антисептическое средство, включающее полиазолидинаммоний, модифицированный гидрат-ионами йода в количестве 15-25 мас.%, перекись водорода в количестве 1-10 мас.% и дистиллированную воду - остальное. Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002581826
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.374c

Способ упрочнения изделий из титана и его сплавов

Изобретение относится к области гальванотехники и может быть использовано в приборостроении и медицине. Способ упрочнения изделий из титана и его сплавов с максимальным линейным размером от 0,8 до 1,4 мм включает упрочнение изделий в процессе формирования оксидного покрытия методом...
Тип: Изобретение
Номер охранного документа: 0002581688
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.375c

Способ поверхностного упрочнения и стабилизации маложестких изделий

Изобретение относится к машиностроению и может быть использовано для поверхностного упрочнения и стабилизации торсионных валов при обработке источниками с высокой концентрацией энергии. Способ поверхностного упрочнения торсионных валов включает изменение уровня лазерного теплового воздействия...
Тип: Изобретение
Номер охранного документа: 0002581691
Дата охранного документа: 20.04.2016
10.05.2016
№216.015.3ced

Способ обработки кольцевой детали непрерывной обкаткой тремя валками

Изобретение относится к обработке кольцевой детали обкаткой. Устанавливают деталь между тремя валками, с помощью которых обеспечивают деформацию детали и ее непрерывную обкатку между ними. Максимальную величину деформации детали определяют из равенства: где D - диаметр наружной поверхности...
Тип: Изобретение
Номер охранного документа: 0002583520
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3dbf

Способ стабилизации параметров колец шарикоподшипников

Изобретение относится к обработке дорожек качения колец шарикоподшипников. Осуществляют вращение кольца шарикоподшипника и прижатие к дорожке его качения шарикового раскатного инструмента. Ось шарикового раскатного инструмента совмещают с осью вращения кольца шарикоподшипника. Используют...
Тип: Изобретение
Номер охранного документа: 0002583510
Дата охранного документа: 10.05.2016
27.08.2016
№216.015.50f1

Состав для получения стоматологической лечебно-профилактической пленки

Изобретение относится к технологии получения пленок на основе гидроксилсодержащих полимеров для медицины, в частности к составам для получения пленок, и может быть использовано в стоматологии для лечения заболеваний пародонта. Предлагаемый состав для получения стоматологической...
Тип: Изобретение
Номер охранного документа: 0002595804
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.670e

Смесь для изготовления пенобетона

Изобретение относится к промышленности строительных материалов, а именно для изготовления пенобетона, также может использоваться для производства теплоизоляционных материалов непосредственно на строительной площадке. Сырьевая смесь для изготовления пенобетона включает, мас.%: портландцемент...
Тип: Изобретение
Номер охранного документа: 0002591996
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.68cc

Способ и устройство для охлаждения стекловаренной печи

Изобретение относится к области производства листового стекла в регенеративных стекловаренных печах непрерывного действия, а именно к технике принудительного охлаждения огнеупорной кладки варочного бассейна стекловаренных печей. Техническим результатом настоящего изобретения является повышение...
Тип: Изобретение
Номер охранного документа: 0002591995
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.7390

Способ изготовления внутрикостных стоматологических имплантатов с биоактивным покрытием

Изобретение относится к медицине, а именно к ортопедической стоматологии и травматологии, и может быть использовано для изготовления внутрикостных эндопротезов на титановой основе. Изобретение относится к способу изготовления внутрикостного стоматологического имплантата. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002597750
Дата охранного документа: 20.09.2016
Показаны записи 11-20 из 27.
20.04.2016
№216.015.34bc

Способ обработки поверхности изделий на основе пиролитического углерода

Изобретение относится к области изготовления изделий медицинского назначения на основе пиролитического углерода и может быть использовано для протезов клапана сердца. Технический результат изобретения - повышение качества изделий путем снижения шероховатости и поверхностной пористости....
Тип: Изобретение
Номер охранного документа: 0002581177
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.35c5

Способ нанесения биокерамического покрытия на имплантаты

Изобретение относится к медицине. Описан способ нанесения биокерамического покрытия на имплантатах из биосовместимых металлов и сплавов путем смешивания порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении...
Тип: Изобретение
Номер охранного документа: 0002581824
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.374c

Способ упрочнения изделий из титана и его сплавов

Изобретение относится к области гальванотехники и может быть использовано в приборостроении и медицине. Способ упрочнения изделий из титана и его сплавов с максимальным линейным размером от 0,8 до 1,4 мм включает упрочнение изделий в процессе формирования оксидного покрытия методом...
Тип: Изобретение
Номер охранного документа: 0002581688
Дата охранного документа: 20.04.2016
27.08.2016
№216.015.50f1

Состав для получения стоматологической лечебно-профилактической пленки

Изобретение относится к технологии получения пленок на основе гидроксилсодержащих полимеров для медицины, в частности к составам для получения пленок, и может быть использовано в стоматологии для лечения заболеваний пародонта. Предлагаемый состав для получения стоматологической...
Тип: Изобретение
Номер охранного документа: 0002595804
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.841c

Способ получения износостойких покрытий на изделиях из алюминия и его сплавов

Изобретение относится к области получения износостойких и коррозионно-стойких покрытий на изделиях из алюминия и его сплавов. Способ характеризуется тем, что изделие подвергают микродуговому оксидированию в анодно-катодном режиме при плотности тока 7-7,5 А/дм и соотношении анодного и катодного...
Тип: Изобретение
Номер охранного документа: 0002602903
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8b15

Способ формирования наноструктурированного биоинертного покрытия на титановых имплантатах

Изобретение относится к области медицинской техники, а именно к технологии формирования биоинертных наноструктурированных оксидных покрытий на внутрикостных частях титановых имплантатов. Способ включает воздушно-абразивную обработку, травление в растворе кислот и газотермическое оксидирование....
Тип: Изобретение
Номер охранного документа: 0002604085
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.a42d

Способ формирования керамического покрытия на основе диоксида циркония на изделии из титанового сплава

Изобретение относится к области получения керамических покрытий методами электроплазменного напыления на изделиях из титановых сплавов и может быть использовано в приборостроении и машиностроении, в частности в деталях компрессоров и турбин газотурбинных двигателей, в имплантируемых медицинских...
Тип: Изобретение
Номер охранного документа: 0002607390
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.aa48

Способ формирования оксидных покрытий на изделиях из титановых сплавов

Изобретение относится к технологии формирования оксидных покрытий на титановых изделиях технического и медицинского назначения, например элементах пар трения и метизных изделиях. Титановое изделие подвергают индукционному нагреву в воздушной атмосфере до температуры 700-800°С при частоте тока...
Тип: Изобретение
Номер охранного документа: 0002611617
Дата охранного документа: 28.02.2017
26.08.2017
№217.015.da72

Способ химико-термической индукционной обработки малогабаритных изделий из альфа-титановых сплавов

Изобретение относится к металлургии, а именно к химико-термической обработке и упрочнению малогабаритных изделий конструкционного и медицинского назначения, например метизных изделий и стоматологических имплантатов, изготовленных из альфа-сплавов титана. Способ химико-термической индукционной...
Тип: Изобретение
Номер охранного документа: 0002623979
Дата охранного документа: 29.06.2017
10.05.2018
№218.016.392d

Способ формирования оксидных покрытий на изделиях из циркониевых сплавов

Изобретение относится к области машино- и приборостроения, а именно к технологии формирования оксидных покрытий на циркониевых изделиях технического или медицинского назначения, например элементах пар трения, датчиках, тепловыделяющих элементах и внутрикостных имплантируемых конструкциях....
Тип: Изобретение
Номер охранного документа: 0002647048
Дата охранного документа: 13.03.2018
+ добавить свой РИД