×
10.05.2018
218.016.457b

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ УСТРАНЕНИЯ ВЛИЯНИЯ ГАРМОНИЧЕСКИХ ВОЗМУЩЕНИЙ МОМЕНТА НАГРУЗКИ В ЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к разделу управления и может быть использовано при регулировании параметров сложных электромеханических систем, например электроприводов постоянного и переменного тока. Устройство для устранения влияния гармонических возмущений момента нагрузки в электромеханической системе содержит внеконтурный формирователь, подключенный к неинвертирующему входу элемента сравнения, выход которого соединен с регулятором внешнего контура, силовой преобразователь, подключенный к электродвигателю постоянного тока, соединенному со входом измерительного блока, выход которого соединен обратной связью по скорости с инвертирующим входом элемента сравнения. Устройство также содержит регулятор внутреннего контура, второй внеконтурный формирователь, второй элемент сравнения. Выход регулятора внешнего контура через второй внеконтурный формирователь подключен к неинвертирующему входу второго элемента сравнения, к инвертирующему входу которого подключен выход измерительного блока, выход второго элемента сравнения соединен со входом регулятора внутреннего контура, подключенного ко входу силового преобразователя. Регулятор внешнего контура выполнен с учетом интегральной составляющей модели возмущения, регулятор внутреннего контура выполнен с учетом колебательной составляющей модели возмущения и настроен на быстродействие в 5-7 раз выше требуемого от системы. В результате улучшается динамическая точность, сокращаются аппаратные и программные затраты при технической реализации системы. 4 ил.

Изобретение относится к разделу управления и может быть использовано при регулировании параметров сложных электромеханических систем, например электроприводов постоянного и переменного тока.

Существует ряд технических объектов, приводимых в движение средствами автоматизированного электропривода, наличие дефектов в изготовлении механической части которых (например, эксцентриситета валов рабочих органов и систем передач движения) приводит к возникновению гармонических колебаний статического момента нагрузки на валу рабочих органов. При этом частота таких колебаний жестко связана со скоростью электродвигателя, когда момент нагрузки на валу рабочего органа МН(t) можно представить в виде:

где М0 - постоянная составляющая момента; M1 - амплитуда колебаний момента; ω1 - скорость рабочего органа; t - время.

Для возмущающего воздействия (1), состоящего из постоянной и гармонической составляющих, соответствующее изображение Лапласа имеет вид

где s - комплексная переменная Лапласа; ; Ω - частота вращения электродвигателя; i - передаточное отношение редуктора.

Минимизация последствий подобных возмущений позволяет значительно улучшить показатели качества систем автоматического управления скоростными режимами технологических установок. Снижение флуктуаций момента нагрузки и, как следствие, скорости рабочих органов технологических машин оказывают существенное влияние на качество выпускаемой продукции. При этом увеличивается точность изготовления деталей при металлообработке, стабилизируются геометрические размеры длинномерных материалов при обработке изделий в поточных линиях (диаметр волокна или провода, толщина пленки и различных покрытий), нормируются их весовые показатели (плотность бумаги, ткани и др.), улучшается светопропускание оптических световодов и т.п.

Известна следящая система автоматического управления с компенсацией неизмеряемых возмущений (патент РФ №2051401, МПК6 G05B 11/01, год опубликования 1995). Следящая система содержит блок идентификации и формирования сигналов для компенсации возмущений и первый сумматор, причем выходы первого сравнивающего устройства и блока идентификации и формирования сигналов для компенсации возмущений подключены соответственно к первому и второму входам первого сумматора, выход которого связан с входом усилителя и первым входом блока идентификации и формирования сигналов для компенсации возмущений, к остальным входам которого подсоединены выходы соответственно усилителя, второго сравнивающего устройства, последовательного корректирующего устройства, усилителя мощности и датчика обратной связи.

Устройство выполняет свои основные функции, но обладает недостатком, присущим всем системам с наблюдателем Люенбергера, который является основой построения блока идентификации - низкой параметрической робастностью. Даже незначительная вариация параметров объекта управления, входящих в математическую модель, являющуюся основой блока идентификации, приводит к резкому снижению качественных показателей системы управления.

Известна самонастраивающаяся система комбинированного регулирования (патент РФ №2022313, МПК6 G05B 13/00, год опубликования 1994), содержащая регулятор, сумматоры, измеритель рассогласования, блок самонастройки, корректирующий фильтр, блоки умножения, управляемые ключи, блок памяти. Разомкнутый контур управления системы предназначен для компенсации контролируемых возмущений. Замкнутый контур регулирования формирует управление на основе результирующего отклонения выхода объекта от уставки. Блок самонастройки системы предназначен для работы в условиях редко измеряемого выхода объекта. Он повышает качество работы обоих контуров системы за счет стабилизации их коэффициентов передачи.

Система решает поставленные задачи, однако обладает рядом существенных недостатков. Во-первых, в состав устройства-аналога необходимо ввести датчик контролируемого внешнего возмущения, что в ряде случаев затруднительно (в частности, при воздействии на электромеханическую систему такого возмущения, как момент статического сопротивления на валу электродвигателя). Во-вторых, наличие в контуре обратной связи блоков, производящих сложный логический анализ информации, элементов записи и хранения, блока задержки, усложняет устройство и резко снижает его быстродействие. В-третьих, принцип работы блока самонастройки предполагает наличие временного интервала, когда управляющие и возмущающие воздействия системой игнорируются.

Наиболее близким к предлагаемому является устройство для компенсации возмущений (Гудвин Г.К. Проектирование систем управления / Гудвин Г.К., Гребе С.Ф., Сальгадо М.Э.. - М: БИНОМ. Лаборатория знаний, 2004. - 911 с., рис. 10.1), принятое за прототип. Работа устройства-прототипа заключается в том, что управление осуществляют регулятором по скорости рабочего органа, для чего предварительно по результату анализа спектрограммы скоростей электромеханической системы выделяют частоту наиболее существенного возмущения, с учетом этой частоты находят полином, формирующий математическую модель гармонического возмущения момента нагрузки, вводят этот полином сомножителем в знаменатель передаточной функции регулятора по скорости рабочего органа, а искажение передаточной функции электромеханической системы по управлению устраняют за счет воздействия внеконтурного формирователя.

При этом выходной сигнал регулятора по скорости рабочего органа будет содержать гармоническую составляющую, которая благодаря действию отрицательной обратной связи по скорости рабочего органа, замыкающей внешний контур регулирования, обеспечит противофазную компенсацию возмущения. Следует отметить, что регулятор и внеконтурный формирователь реализованы в виде материальных объектов (цифровых или аналоговых блоков), которые при наладке требуют установки внутренних параметров, соответствующих полиномам, синтезированным в процессе конструирования системы управления. Устройство, выбранное за прототип, выполняет свои основные функции, требует измерения лишь выходной координаты объекта управления - угловой скорости вала рабочего органа.

Структурная схема устройства-прототипа применительно к электромеханической системе с двигателем постоянного тока приведена на фиг. 1. В состав структурной схемы входят внеконтурный формирователь 1, представляющий собой префильтр и предназначенный для устранения искажения передаточной функции электромеханической системы по управлению; элемент сравнения 2, который формирует на своем выходе сигнал ошибки, управляющий регулятором 3. Регулятор 3 замыкает отрицательную обратную связь по скорости рабочего органа и выполнен в виде блока, передаточная функция которого представляется отношением полиномов. Кроме этого в составе системы имеется силовой преобразователь 4, который преобразует напряжение управления Uy на своем входе в напряжение U на якорной обмотке электродвигателя постоянного тока 5. Измерительный блок 6 предназначен для измерения скорости электродвигателя постоянного тока 5. Регулятор 3 и внеконтурный формирователь 1 реализованы в виде материальных объектов (цифровых или аналоговых блоков), которые при наладке требуют установки внутренних параметров, соответствующих полиномам, синтезированным в процессе конструирования системы управления.

В качестве основных параметров, влияющих на работоспособность системы, часть из которых приведена на фиг. 1, выбраны:

- напряжение, определяющее заданное значение скорости рабочего органа;

- напряжение после внеконтурного формирователя;

Uy, U - управляющее и выходное напряжение силового преобразователя;

Ia - ток якорной цепи электродвигателя постоянного тока;

Ω - угловая скорость вала электродвигателя постоянного тока;

ΩН - номинальная угловая скорость вала электродвигателя постоянного тока;

МН - момент нагрузки (статического сопротивления).

Также здесь и далее приняты следующие обозначения параметров системы:

КСП и ТСП - коэффициент передачи и постоянная времени силового преобразователя;

Ra и Та - активное сопротивление и постоянная времени якорной цепи электродвигателя постоянного тока;

С - конструктивная постоянная двигателя постоянного тока;

J - суммарный момент инерции ротора двигателя постоянного тока и рабочего органа;

i - передаточное отношение редуктора.

Система имеет полиномиальный регулятор 3, в знаменатель передаточной функции которого введена, как показано выше, модель возмущения. Попытаемся синтезировать структуру регулятора 3 для электромеханической системы, построенной с применением двигателя постоянного тока 5, управляемого от силового преобразователя 4.

Для конкретности приняты следующие значения параметров объекта: КСП=22, ТСП=0,001 с, Ra=0,177 Ом, Та=0,02 с, ΩН=157 рад/с, С=1,37 Вб, J=0,2 кг⋅м2, i=10.

Пусть требуется обеспечить пуск электромеханической системы (ЭМС) на заданный уровень скорости Ω вала двигателя постоянного тока 5, равный 15,7 рад/с, что составляет 10% от номинальной скорости при монотонном характере переходного процесса и времени нарастания переходной характеристики системы в линейной зоне ее работы не более 50 мс. После пуска системе необходимо отработать возмущающее воздействие момента нагрузки, соответствующее уравнению (1) вида

при отсутствии перерегулирования, обеспечив заданное быстродействие и нулевую статическую ошибку по скорости от действия момента нагрузки.

Согласно принципу селективной инвариантности полином, формирующий математическую модель возмущения (1), определяется в данном случае в виде

где s - комплексная переменная Лапласа, ω1=Ω/i - угловая скорость рабочего органа. Этот полином вводится сомножителем в знаменатель передаточной функции (ПФ) регулятора 3, а искажение передаточной функции ЭМС по управлению устраняется соответствующим внеконтурным формирователем 1. Регулятор 3 с такой моделью возмущения приобретает интегральную s и колебательную (s212) составляющие, которые в условиях действия отрицательной обратной связи (ОС) в совокупности обеспечивают астатизм 1-го порядка, т.е. нулевую статическую ошибку от действия постоянной составляющей момента, и противофазную компенсацию его гармонической составляющей в установившемся режиме работы. Появление дополнительных нулей ПФ системы по управляющему воздействию устраняется соответствующим внеконтурным формирователем 1 (префильтром).

Объектом управления в данной системе являются последовательно соединенные силовой преобразователь 4 и электродвигатель постоянного тока 5. Передаточная функция объекта управления может быть представлена в виде отношения полиномов B(s) и A(s).

Для повышения робастных свойств синтезируемых систем автоматического управления (исключения появления положительных ОС или неминимально-фазовых звеньев в составе регуляторов) пренебрежем в расчетах относительно малой постоянной времени ТСП. В результате этого ПФ объекта управления принимает вид с передаточной функцией

Для полученной ПФ объекта управления по правилам полиномиального модального управления рассчитывают регулятор, используя уравнение

где R(s) и s⋅C(s) - полиномы числителя и знаменателя ПФ регулятора, причем R(s)=G(s)⋅V(s), V(s) - вспомогательный полином, обеспечивающий техническую реализуемость регулятора, D(s) - желаемый характеристический полином (ХП) синтезируемой системы.

Для этого в соответствии с заданными требованиями динамики формируют структуру и определяют параметры регулятора 3

Использование передаточной функции объекта управления обеспечивает более полный учет его особенностей и способствует повышению помехоустойчивости и параметрической грубости системы.

Как видно из приведенного соотношения, порядок регулятора 3 с учетом внеконтурного формирователя 1 - восьмой. Это подтверждает наличие у прототипа недостатка в виде повышенной сложности при технической реализации как в цифровой, так и в аналоговой форме, что неизбежно приводит к высоким аппаратным или программным затратам.

На фиг. 2 приведены результаты проведенного компьютерного моделирования прототипа с синтезированным регулятором 3. Они представлены переходным процессом угловой скорости Ω вала электродвигателя постоянного тока 5. В процессе исследования осуществляется пуск электродвигателя постоянного тока 5 на заданную скорость Ω, равную 10% от номинальной, что при известных параметрах системы составляет 15,7 рад/с. С учетом выбранного передаточного отношения редуктора i=10 это соответствует угловой скорости рабочего органа ω1=1,57 рад/с. После завершения переходного процесса пуска к валу электродвигателя постоянного тока 5 прикладывается момент нагрузки МН выбранного вида . Здесь и далее внешнее возмущение в виде изменения момента нагрузки воздействует на вал электродвигателя в момент t=4 с. Анализ переходной характеристики указывает на удовлетворительное качество процесса пуска. Система обеспечивает заданное время нарастания переходной характеристики в линейной зоне ее работы не более 50 мс при отсутствии перерегулирования. При воздействии внешнего возмущения обеспечивается достаточное быстродействие, но наблюдается значительная динамическая ошибка 0,62 рад/с при отработке наброса момента нагрузки заданного вида.

Итак, выполняя возложенные на нее задачи, система демонстрирует недостаточную динамическую точность, обладает повышенной сложностью технической реализации регулятора. Последнее требует больших аппаратных или программных затрат при построении регулятора восьмого порядка как в аналоговой, так и в цифровой формах, снижает надежность системы, создает дополнительные проблемы при настройке системы на реальном объекте.

Технический результат предлагаемого изобретения заключается в улучшении динамической точности и сокращении аппаратных или программных затрат при технической реализации системы.

Технический результат достигается тем, что устройство для устранения влияния гармонических возмущений момента нагрузки в электромеханической системе, содержащее внеконтурный формирователь, подключенный к неинвертирующему входу элемента сравнения, выход которого соединен с регулятором внешнего контура, силовой преобразователь, подключенный к электродвигателю постоянного тока, соединенному со входом измерительного блока, выход которого соединен обратной связью по скорости с инвертирующим входом элемента сравнения, дополнительно содержит регулятор внутреннего контура, второй внеконтурный формирователь, второй элемент сравнения, при этом выход регулятора внешнего контура через второй внеконтурный формирователь подключен к неинвертирующему входу второго элемента сравнения, к инвертирующему входу которого подключен выход измерительного блока, выход второго элемента сравнения соединен со входом регулятора внутреннего контура, подключенного ко входу силового преобразователя, причем регулятор внешнего контура выполнен с учетом интегральной составляющей модели возмущения, регулятор внутреннего контура выполнен с учетом колебательной составляющей модели возмущения и настроен на быстродействие в 5-7 раз выше требуемого от системы.

На фиг. 3 изображена блок-схема заявляемого устройства, на фиг. 4 приведены результаты компьютерного моделирования работы устройства при тех же условиях и тех же режимах, которые выбраны для прототипа.

Для фиг. 3 введены следующие обозначения: первый внеконтурный формирователь 1, подключенный к неинвертирующему входу первого элемента сравнения 2, выход которого соединен со входом регулятора внешнего контура 3; силовой преобразователь 4, преобразующий свой входной сигнал Uy в напряжение U на якорной обмотке электродвигателя постоянного тока 5. Измерительный блок 6 выполнен с возможностью оценивания скорости двигателя постоянного тока 5. Для этого скорость электродвигателя постоянного тока 5 измеряется и преобразуется в напряжение UΩ, пропорциональное скорости электродвигателя постоянного тока 5. В состав блок-схемы введен второй внеконтурный формирователь 7, вход которого соединен с выходом регулятора внешнего контура 3, а выход - с неинвертирующим входом второго элемента сравнения 8. К инвертирующему входу второго элемента сравнения 8 подключен выход измерительного блока 6, а выход второго элемента сравнения 8 через регулятор внутреннего контура 9 подключен ко входу силового преобразователя 4.

Для достижения заявляемого технического результата и организации процесса управления в состав системы кроме известного внешнего контура регулирования по основной координате (в данном случае - по скорости рабочего органа или жестко связанной с ней скорости электродвигателя постоянного тока) вводят внутренний контур регулирования.

Устройство для устранения влияния гармонических возмущений момента нагрузки в электромеханической системе (фиг. 3) работает следующим образом. Устройство можно условно разделить на внешний и внутренний контуры. Первоначально для выбранной электромеханической системы производят анализ и определение частоты наиболее существенного возмущения со стороны момента нагрузки на валу рабочего органа Мн. Для этого используют спектрограмму скоростей.

Если спектрограмма была построена ранее, пользуются результатами проведенных исследований. На спектрограмме выделяют частоту наиболее существенного воздействия, которое приводит к возникновению доминирующего гармонического возмущения момента нагрузки на валу рабочего органа. По известной кинематической схеме механизма и выявленной частоте находят соответствующую угловую скорость рабочего органа ω1, которая позволяет вычислить математическую модель наиболее существенного возмущения, соответствующую уравнению (2). При этом в отличие от прототипа полином (3), формирующий составляющие математической модели возмущения (2), делится на интегральную и колебательную составляющие: s и (s212) соответственно. Колебательная составляющая вводится сомножителем в знаменатель передаточной функции регулятора внутреннего контура 9. Интегральная составляющая модели возмущения учитывается при синтезе передаточной функции регулятора внешнего контура 3.

Алгоритм синтеза параметров регулятора внешнего контура 3 и регулятора внутреннего контура 9 таков. Внешний контур регулирования построен по принципу полиномиального регулятора (ПР) по основной координате объекта управления - скорости электродвигателя постоянного тока 5 - и организован с учетом интегральной составляющей математической модели возмущения. Внутренний контур, представляющий собой также полиномиальный регулятор (ПР), синтезируется с учетом колебательной составляющей математической модели возмущения и настраивается на быстродействие, в 5-7 раз превышающее заданные динамические требования, предъявляемые ко всей системе в целом. Этим обеспечивается максимальное упрощение внешнего интегрального контура регулирования при соответствующем упрощении структуры первого внеконтурного формирователя 1 и улучшение качества отработки переменной составляющей момента нагрузки электродвигателя постоянного тока 5. Для реализации принципа селективной инвариантности такой электромеханической системы в ее внешнем и внутреннем контурах управления используются только полиномиальные регуляторы «входа-выхода».

Процедура настройки системы производится в направлении от внутреннего контура к внешнему. Синтез регулятора внутреннего контура 9 заключается в определении коэффициентов полиномов F(s) и E(s) регулятора, для чего используется следующее уравнение полиномиального синтеза

где A(s) и B(s) - характеристический полином и полином воздействия передаточной функции объекта управления (электродвигателя постоянного тока 5);

F(s) и E(s) - полиномы знаменателя и числителя передаточной функции регулятора внутреннего контура 9;

F(s)=G(s)⋅V(s);

V(s) - вспомогательный полином, обеспечивающий техническую реализуемость регулятора;

P(s) - желаемый характеристический полином синтезируемого внутреннего контура.

В нашем случае в полином знаменателя F(s) передаточной функции регулятора внутреннего контура 9 вводится колебательная составляющая математической модели возмущения

.

Для синтеза полиномиального регулятора внешнего контура 3, учитывающего интегральную составляющую модели возмущения, используется следующее полиномиальное уравнение

где P(s) и Q(s) - характеристический полином и полином воздействия передаточной функции внутреннего контура 9;

C(s) и R(s) - полиномы знаменателя и числителя передаточной функции регулятора внешнего контура 3;

D(s) - желаемый характеристический полином синтезируемой системы.

Выбранное высокое быстродействие регулятора внутреннего контура 9, содержащего колебательную составляющую модели возмущения, дает основание считать его безынерционным при синтезе регулятора внешнего контура 3, т.е. принимать: Q(s)=K, P(s)=1, что значительно упрощает регулятор внешнего контура 3.

Первый внеконтурный формирователь 1 и второй внеконтурный формирователь 7 внешнего и внутреннего контуров соответственно исключают искажение по управлению передаточных функций указанных контуров системы. Для выполнения своих функций их передаточные функции выбирают обратно пропорциональными числителям передаточных функций регуляторов внешнего контура 3 (R(s)) и внутреннего контура 9 (E(s)).

Проведем формирование элементов электромеханической системы путем синтеза регуляторов в направлении от внутреннего контура к внешнему, воспользовавшись теми же числовыми параметрами объекта управления и заданными требованиями к быстродействию системы, что и в прототипе.

Методом модального управления по уравнению синтеза (8) рассчитывается передаточная функция регулятора внутреннего контура 9, наделяемого быстродействием, в 5 раз превышающим заданное значение быстродействия системы, и содержащим колебательную составляющую модели возмущения. При заданном быстродействии системы в 50 мс это соответствует быстродействию внутреннего контура в 10 мс. В качестве желаемого для внутреннего контура принимается характеристический полином Ньютона 5-го порядка P(s)=(s+900)5 с величиной среднегеометрического корня Ω=900 с-1, что соответствует выбранному быстродействию внутреннего контура. Полином P(s) наиболее соответствует монотонному переходному процессу, что отвечает требованиям к качеству переходных процессов в системе и удобно для дальнейшей аппроксимации внутреннего контура звеньями пониженного порядка. В этом случае уравнение (8) принимает следующий развернутый вид

.

Его решение позволяет получить передаточную функцию регулятора внутреннего контура 9 следующего вида

.

Второй внеконтурный формирователь 7 внутреннего контура по аналогии с устройством-прототипом устраняет появление дополнительных нулей передаточной функции системы по управляющему воздействию. Передаточная функция второго внеконтурного формирователя 7 выбирается с учетом передаточной функции регулятора внутреннего контура 9 и принимает вид

.

Для расчета регулятора внешнего контура с интегральной составляющей модели возмущения используется полиномиальное уравнение синтеза (9).

Высокое быстродействие внутреннего контура дает основание считать его безынерционным при синтезе регулятора внешнего контура 3, т.е. принимать: (b0 - свободный коэффициент передаточной функции объекта управления, Ω - среднегеометрический корень регулятора внутреннего контура), P(s)=1. Выбор полинома D(s) для внешнего контура производится из тех же соображений, что и полинома P(s) для внутреннего контура системы. В соответствии с заданными требованиями динамики в качестве D(s) выбирается полином Ньютона 1-го порядка D(s)=(s+20) с величиной среднегеометрического корня Ω0=20 с-1, что соответствует заданному быстродействию системы в 50 мс.

В этом случае уравнение синтеза (9) принимает наиболее простой вид

1⋅s+7,2094⋅10-11⋅r0=s+20.

Его решение позволяет получить передаточную функцию регулятора внешнего контура 3 минимального порядка следующего вида

.

Передаточная функция первого внеконтурного формирователя 1 внешнего контура также выбирается с учетом передаточной функции регулятора внешнего контура 3 и в данном случае упрощается до коэффициента усиления, т.е. принимает вид

.

Полученные значения позволяют выбрать параметры аналоговых или цифровых блоков системы при ее технической реализации.

Таким образом, порядок передаточной функции системы, организованной путем использования заявляемого устройства с учетом порядков передаточных функций первого и второго внеконтурного преобразователей - седьмой.

Применение элементов и узлов, а также их взаимосвязей, характерных для заявляемого устройства, привело к упрощению регулятора, что при его технической реализации аналоговыми или цифровыми устройствами сокращает аппаратные или программные затраты. Это неизбежно приводит к повышению надежности, а при внедрении сокращает время наладки.

Проанализируем результаты компьютерного моделирования синтезированного регулятора при тех же параметрах объекта, что и для устройства-прототипа.

Анализ фиг. 4 доказывает высокую эффективность работы системы при пуске, сопоставимую с результатами компьютерного моделирования устройства-прототипа, приведенными на фиг. 2. При приложении внешнего возмущающего момента нагрузки после 4 секунды работы на установившейся скорости в 15,7 рад/с наблюдается существенное по сравнению с прототипом снижение динамической ошибки до 0,16 рад/с, что подтверждает улучшение динамической точности заявленной системы.

Компенсация влияния возникающих колебаний момента нагрузки по рассматриваемому варианту устройства осуществляется за счет того, что при возникновении таких колебаний происходит изменение угловой скорости вала электродвигателя постоянного тока 5, которое, будучи введено в виде отрицательной обратной связи на вход регулятора внешнего контура 3 и на вход регулятора внутреннего контура 9, настроенных на гашение заданной частоты, компенсируется внешним и внутренним контурами системы автоматического управления. Внутренний контур системы, настроенный на высокое быстродействие в 5-7 раз выше заданного, обеспечивает эффективную отработку возмущения, низкий порядок регулятора. Внешний контур, использующий интегральную составляющую регулятора внешнего контура 3, способствует улучшению динамической точности.

Один из элементов устройства - первый внеконтурный формирователь 1 - не входит ни в один из контуров и исключает искажение передаточной функции системы по управлению. Он представляет собой звено с передаточной функцией 1/R(s) и предназначен для коррекции влияния управляющего воздействия на объект управления. Первый внеконтурный формирователь 1 компенсирует появление дополнительных нулей передаточной функции системы по управляющему воздействию и выбирается аналогично прототипу.

Элементы внешнего контура регулирования представлены в устройстве следующим образом:

- первый элемент сравнения 2 вырабатывает на своем выходе сигнал ошибки ΔUΩ, представляющий собой разность сигналов с выхода первого внеконтурного формирователя 1 и сигнала UΩ с выхода измерительного блока 6, преобразующего выходную координату (скорость электродвигателя постоянного тока 5) в напряжение;

- регулятор внешнего контура 3 выполнен в виде звена с передаточной функцией R(s)/sC(s). Регулятор внешнего контура 3 включает в себя интегральную составляющую модели возмущения и, так же как и внеконтурный формирователь 1, реализован в виде материального объекта (цифрового или аналогового блоков), которые при наладке требуют установки внутренних параметров, соответствующих полиномам, синтезированным в процессе конструирования системы управления.

Для организации процесса управления в состав системы кроме известного внешнего контура регулирования по основной координате (в данном случае - по скорости рабочего органа или жестко связанной с ней скорости электродвигателя постоянного тока 5) вводят внутренний контур регулирования.

На входе во второй контур регулирования установлен второй внеконтурный формирователь 7, который исключает искажение передаточной функции системы по управлению. Он представляет собой звено с передаточной функцией 1/E(s) и предназначен для коррекции влияния управляющего воздействия Uи с выхода регулятора внешнего контура 3 на объект управления. Второй внеконтурный формирователь 7 компенсирует появление дополнительных нулей передаточной функции системы по управляющему воздействию. Передаточная функция 1/E(s) второго внеконтурного формирователя 7 выбирается с учетом передаточной функции регулятора внутреннего контура 9, как указано выше.

Синтез параметров элементов внутреннего контура производят по методике, приведенной ранее, причем при синтезе учитывают колебательную составляющую модели возмущения и задают быстродействие внутреннего контура в 5-7 раз выше требуемого быстродействия системы. Элементы внутреннего контура выполняют следующие функции:

- второй элемент сравнения 8 вырабатывает на своем выходе напряжение, представляющее собой разность напряжений Uр с выхода второго внеконтурного формирователя 7 и UΩ, поступающее с выхода измерительного блока 6 и сформированное измерительным блоком 6, исходя из текущего значения скорости Ω электродвигателя постоянного тока 5;

- регулятор внутреннего контура 9 выполнен в виде звена с передаточной функцией E(s)/F(s). Регулятор внутреннего контура 9 включает в себя колебательную составляющую модели возмущения и, так же как и второй внеконтурный формирователь 7, реализован в виде материального объекта (цифрового или аналогового блоков), которые при наладке требуют установки внутренних параметров, соответствующих полиномам, синтезированным в процессе конструирования системы управления. На выходе регулятора внутреннего контура 9 формируется напряжение Uy, необходимое для организации работы внутреннего контура регулирования;

- силовой преобразователь 4 под управлением напряжения Uy формирует на своем выходе напряжение U, поступающее на якорную обмотку электродвигателя постоянного тока 5, являющегося в данной системе элементом объекта управления;

- измерительный блок 6 предназначен для обеспечения информацией о скорости вращения электродвигателя постоянного тока 5 таких узлов устройства, на которых определяется разность задающего и измеренного сигналов, как первый элемент сравнения 2 и второй элемент сравнения 8.

Допустим, угловая скорость рабочего органа ω1 электромеханической системы равна той, которая вызывает наиболее значимые гармонические колебания момента нагрузки на валу. Этот режим может быть достигнут путем подачи на вход устройства управляющего сигнала , соответствующего ω1. В начальный момент пуска электродвигатель постоянного тока 5 и жестко связанный с ним рабочий орган начинают изменять свои скорости с нуля. В процессе пуска обратная связь по скорости обеспечивает требуемое быстродействие, исключая перерегулирование при выходе на заданную скорость. После достижения установившегося процесса на вал электродвигателя постоянного тока 5 начинает воздействовать постоянная и гармоническая составляющая момента нагрузки, частота которой жестко связана со скоростью вала электродвигателя постоянного тока 5. Синтезированная двухконтурная система регулирования настроена на данный вид возмущения, стабилизация угловой скорости вала электродвигателя постоянного тока 5 происходит раздельно по контурам. За счет регулятора внешнего контура 3, передаточная функция которого выбрана с учетом интегральной составляющей модели возмущения, изменения скорости вращения электродвигателя постоянного тока 5 отрабатываются с высокой степенью точности. Для этого измеренное значение скорости с выхода измерительного блока 6 подается на инвертирующий вход первого элемента сравнения 2, обеспечивая организацию стабилизирующей отрицательной обратной связи по основному параметру регулирования.

Внутренний контур отрабатывает переменную составляющую приложенного момента нагрузки и делает это с высоким быстродействием, предусмотренным при его синтезе. Настроенный на колебательную составляющую возмущения регулятор внутреннего контура 9 эффективно гасит возникающие гармонические колебания момента нагрузки, что происходит за счет действия отрицательной обратной связи по скорости через измерительный блока 6, который отвечает за оценку текущего значения скорости электродвигателя постоянного тока 5.

Предлагаемое техническое решение позволяет улучшить динамическую точность и сократить аппаратные или программные затраты при технической реализации системы.

Устройство для устранения влияния гармонических возмущений момента нагрузки в электромеханической системе, содержащее внеконтурный формирователь, подключенный к неинвертирующему входу элемента сравнения, выход которого соединен с регулятором внешнего контура, силовой преобразователь, подключенный к электродвигателю постоянного тока, соединенному с входом измерительного блока, выход которого соединен обратной связью по скорости с инвертирующим входом элемента сравнения, отличающееся тем, что дополнительно содержит регулятор внутреннего контура, второй внеконтурный формирователь, второй элемент сравнения, при этом выход регулятора внешнего контура через второй внеконтурный формирователь подключен к неинвертирующему входу второго элемента сравнения, к инвертирующему входу которого подключен выход измерительного блока, выход второго элемента сравнения соединен со входом регулятора внутреннего контура, подключенного ко входу силового преобразователя, причем регулятор внешнего контура выполнен с учетом интегральной составляющей модели возмущения, регулятор внутреннего контура выполнен с учетом колебательной составляющей модели возмущения и настроен на быстродействие в 5-7 раз выше требуемого от системы.
УСТРОЙСТВО ДЛЯ УСТРАНЕНИЯ ВЛИЯНИЯ ГАРМОНИЧЕСКИХ ВОЗМУЩЕНИЙ МОМЕНТА НАГРУЗКИ В ЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЕ
УСТРОЙСТВО ДЛЯ УСТРАНЕНИЯ ВЛИЯНИЯ ГАРМОНИЧЕСКИХ ВОЗМУЩЕНИЙ МОМЕНТА НАГРУЗКИ В ЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЕ
УСТРОЙСТВО ДЛЯ УСТРАНЕНИЯ ВЛИЯНИЯ ГАРМОНИЧЕСКИХ ВОЗМУЩЕНИЙ МОМЕНТА НАГРУЗКИ В ЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЕ
УСТРОЙСТВО ДЛЯ УСТРАНЕНИЯ ВЛИЯНИЯ ГАРМОНИЧЕСКИХ ВОЗМУЩЕНИЙ МОМЕНТА НАГРУЗКИ В ЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЕ
УСТРОЙСТВО ДЛЯ УСТРАНЕНИЯ ВЛИЯНИЯ ГАРМОНИЧЕСКИХ ВОЗМУЩЕНИЙ МОМЕНТА НАГРУЗКИ В ЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЕ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 38.
25.08.2017
№217.015.c3b6

Переносная установка-модуль для термической переработки твердых бытовых отходов на полигоне

Изобретение относится к устройствам для термической переработки твердых бытовых отходов (ТБО) и может быть использовано в народнохозяйственном комплексе для обезвреживания и уничтожения отходов с одновременным получением газообразного топлива. Техническим результатом является повышение качества...
Тип: Изобретение
Номер охранного документа: 0002617230
Дата охранного документа: 24.04.2017
26.08.2017
№217.015.df06

Способ определения скольжения ротора асинхронного электродвигателя

Изобретение относится к области эксплуатации асинхронных электродвигателей и может быть использовано для определения величины скольжения ротора электродвигателя. Сущность изобретения заключается в том, что способ определения скольжения ротора асинхронного электродвигателя содержит этап, на...
Тип: Изобретение
Номер охранного документа: 0002624986
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.e599

Устройство стабилизации плотности намотки гибкого материала

Изобретение относится к области текстильной промышленности и может быть использовано в производстве рулонных материалов. Устройство стабилизации плотности намотки гибкого материала содержит приводной двигатель с усилителем мощности, датчик числа оборотов рулона, импульсный датчик длины...
Тип: Изобретение
Номер охранного документа: 0002626736
Дата охранного документа: 31.07.2017
26.08.2017
№217.015.e5b4

Устройство для регулирования натяжения ленточного материала

Изобретение относится к области текстильной промышленности и может быть применено в оборудовании для намотки ткани. Устройство для регулирования натяжения ленточного материала содержит импульсный датчик радиуса рулона, приводной электродвигатель с усилителем мощности, датчик числа оборотов...
Тип: Изобретение
Номер охранного документа: 0002626735
Дата охранного документа: 31.07.2017
29.12.2017
№217.015.f197

Способ оценки комфортности микроклимата в помещениях жилых, общественных и административных зданий

Изобретение относится к системам контроля эффективности работы систем отопления, вентиляции и кондиционирования жилых, общественных и административных зданий и может быть использовано при проектировании, реконструкции и оптимизации режимов работы указанных систем, а также при разработке и...
Тип: Изобретение
Номер охранного документа: 0002636807
Дата охранного документа: 28.11.2017
04.04.2018
№218.016.314e

Установка для термического разложения несортированных твердых органических отходов

Изобретение относится к устройствам для термической переработки твердых органических отходов, в том числе бытовых, без предварительной сортировки и может быть использовано в народнохозяйственном комплексе для обезвреживания и уничтожения отходов. Установка для термического разложения...
Тип: Изобретение
Номер охранного документа: 0002645029
Дата охранного документа: 15.02.2018
10.05.2018
№218.016.406f

Способ устранения влияния гармонических возмущений момента нагрузки в электромеханической системе

Изобретение относится к разделу управления и может быть использовано при регулировании параметров сложных электромеханических систем, например электроприводов постоянного и переменного тока. В способе устранения влияния гармонических возмущений момента нагрузки в электромеханической системе...
Тип: Изобретение
Номер охранного документа: 0002648930
Дата охранного документа: 28.03.2018
10.05.2018
№218.016.422a

Система регулирования подачи топлива в топку барабанного пылеугольного котла

Изобретение относится к тепловой энергетике. Система регулирования подачи топлива в топку барабанного пылеугольного котла, содержащая топливоподающее устройство с исполнительным механизмом и регулятором, к первому входу которого подключен задатчик нагрузки, а к второму входу датчик расхода...
Тип: Изобретение
Номер охранного документа: 0002649378
Дата охранного документа: 02.04.2018
10.05.2018
№218.016.47a0

Способ обнаружения обрывов стержней короткозамкнутых обмоток роторов асинхронных электродвигателей

Изобретение относится к области контроля технического состояния асинхронных электродвигателей и может быть использовано для обнаружения обрывов стержней обмоток роторов. Сущность: регистрируют радиальную составляющую индукции внешнего магнитного поля датчиком, установленным на корпусе...
Тип: Изобретение
Номер охранного документа: 0002650821
Дата охранного документа: 17.04.2018
18.05.2018
№218.016.507d

Способ получения магнитной жидкости

Изобретение относится к области коллоидной химии и может быть использовано для получения магнитных жидкостей на полиметилсилоксановой основе, применяемых в магнитожидкостных герметизирующих устройствах. Способ получения магнитной жидкости включает получение высокодисперсных частиц магнетита...
Тип: Изобретение
Номер охранного документа: 0002653022
Дата охранного документа: 04.05.2018
Показаны записи 1-10 из 13.
10.06.2013
№216.012.49c5

Способ определения степени агрегации клеток крови

Изобретение относится к медицине и биологии и может быть использовано для оценки изменений агрегатного состояния клеток крови. Сущность способа: получают препарат клеток крови и определяют степень агрегации клеток крови в зависимости от оптических свойств препарата, производится микросъемка...
Тип: Изобретение
Номер охранного документа: 0002484465
Дата охранного документа: 10.06.2013
10.08.2013
№216.012.5e70

Электропривод постоянного тока для управления объектом с упругими связями

Изобретение относится к разделу управления и может быть использовано для регулирования скорости электромеханического объекта, представляющего собой электродвигатель постоянного тока и упругосвязанный с ним исполнительный механизм. Технический результат заключается в увеличении быстродействия и...
Тип: Изобретение
Номер охранного документа: 0002489797
Дата охранного документа: 10.08.2013
20.10.2013
№216.012.7594

Покрышка пневматической шины

Изобретение относится к области автомобильной промышленности, в частности в конструкции легковых и легкогрузовых радиальных шин. Покрышка содержит протектор, брокер, состоящий из металлокордных и текстильных слоев, каркас, боковины, бортовые кольца. Диаметр маталлокорда составляет 0,57-0,63 мм....
Тип: Изобретение
Номер охранного документа: 0002495760
Дата охранного документа: 20.10.2013
20.10.2013
№216.012.7595

Покрышка пневматической шины

Изобретение относится к области автомобильной промышленности, в частности к конструкции легковых и легкогрузовых радиальных шин. Покрышка содержит протектор, брекер, состоящий из металлокордных и текстильных слоев, каркас, боковины, бортовые кольца. Диаметр металлокорда составляет 0,55-0,95 мм....
Тип: Изобретение
Номер охранного документа: 0002495761
Дата охранного документа: 20.10.2013
20.10.2015
№216.013.845f

Способ адаптивной компенсации влияния гармонических колебаний момента нагрузки в электромеханической системе и устройство для его осуществления

Группа изобретений относится к области управления. Технический результат - увеличение точности процесса регулирования. Для этого предложены способ адаптивной компенсации влияния гармонических колебаний момента нагрузки в электромеханической системе и устройство для его осуществления. Способ...
Тип: Изобретение
Номер охранного документа: 0002565490
Дата охранного документа: 20.10.2015
10.03.2016
№216.014.bfdd

Способ автоматической компенсации влияния гармонических колебаний момента нагрузки в электромеханической системе и устройство для его осуществления

Изобретение - способ автоматической компенсации влияния гармонических колебаний момента нагрузки в электромеханической системе и устройство для его осуществления относятся к электроавтоматике и могут найти применение при создании автоматизированных электроприводов постоянного и переменного...
Тип: Изобретение
Номер охранного документа: 0002576594
Дата охранного документа: 10.03.2016
25.08.2017
№217.015.a611

Способ компенсации влияния гармонических колебаний момента нагрузки в электромеханической системе и устройство для его осуществления

Изобретение относится к области электротехники и может быть использовано при регулировании параметров сложных электромеханических систем, например электроприводов постоянного и переменного тока. Технический результат: улучшение динамической точности и сокращение аппаратных или программных...
Тип: Изобретение
Номер охранного документа: 0002608081
Дата охранного документа: 13.01.2017
10.05.2018
№218.016.406f

Способ устранения влияния гармонических возмущений момента нагрузки в электромеханической системе

Изобретение относится к разделу управления и может быть использовано при регулировании параметров сложных электромеханических систем, например электроприводов постоянного и переменного тока. В способе устранения влияния гармонических возмущений момента нагрузки в электромеханической системе...
Тип: Изобретение
Номер охранного документа: 0002648930
Дата охранного документа: 28.03.2018
01.07.2018
№218.016.696a

Устройство для управления электромеханической системой

Изобретение относится к системе управления автоматизированных электроприводов. Устройство для управления электромеханической системой содержит первый элемент сравнения, регулятор, второй элемент сравнения, силовой преобразователь, измерительный блок, безынерционное звено обратной связи по...
Тип: Изобретение
Номер охранного документа: 0002659370
Дата охранного документа: 29.06.2018
19.04.2019
№219.017.2f2c

Покрышка пневматической шины

Изобретение относится к области автомобильных шин, в частности к конструкции грузовых радиальных шин с максимально допустимой нагрузкой 2500 кГс. Покрышка пневматической шины радиальной конструкции содержит протектор, брекер, боковины, каркас, состоящий из наружной и внутренней групп слоев...
Тип: Изобретение
Номер охранного документа: 0002359841
Дата охранного документа: 27.06.2009
+ добавить свой РИД