×
10.05.2018
218.016.44ab

Результат интеллектуальной деятельности: Способ визуализации обтекания модели профиля крыла при околозвуковых скоростях потока

Вид РИД

Изобретение

Аннотация: Изобретение относится к области экспериментальной аэродинамики и может быть использовано преимущественно в аэродинамических трубах больших дозвуковых скоростей для более детального изучения картины обтекания моделей крыльевых профилей. Способ включает освещение области обтекания модели профиля крыла вдоль его размаха параллельным световым пучком и регистрацию теневой картины после прохождения светового пучка через исследуемую область с помощью теневого прибора. При этом проводят дополнительную регистрацию и инверсию теневой картины при отсутствии потока; после чего на регистрируемую теневую картину при наличии потока накладывают инверсированную теневую картину при отсутствии потока. 7 ил.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано преимущественно в аэродинамических трубах больших дозвуковых скоростей для более детального изучения картины обтекания моделей крыльевых профилей, которые, как известно, оказывают существенное влияние на аэродинамическое качество летательного аппарата. Глубокое понимание особенностей обтекания профилей открывает разработчикам аэродинамических компоновок возможность создания крыльев с высокими аэродинамическими характеристиками.

Известны способы визуализации обтекания моделей профилей, основанные на введении в поток мелких частиц и регистрации их движения. Такими способами, в частности, являются: способ «лазерного ножа» (см., например, Максимов А.И. Развитие метола «лазерного ножа» для визуализации потока в сверхзвуковых аэродинамических трубах // Ученые записки ЦАГИ, №5, 1986, с. 39-50) и способ PIV (см., например, Raffel М., Wereley S.T. Particle Image Velocimetry - a practical guide 2007, -2nd edn. Springer, Berlin, 448 p.). Главные недостатки данных способов заключаются в сложности их практического использования и недостаточной четкости визуализации скачков уплотнения, возникающих при больших скоростях потока.

Наиболее широкое распространение и наибольшее практическое применение при исследовании картины обтекания моделей профилей получили различные оптические способы визуализации.

Известен оптический способ визуализации, основанный на использовании интерференции световых лучей и осуществляемый с помощью интерферометра (см., например, В.Д. Боксер и др. «Определение волнового сопротивления профиля методом интерферометрии при околозвуковом обтекании», Ученые записки ЦАГИ, Том VI, 1975, №1, с. 103-107).

При интерференционном способе визуализации имеется возможность получать количественные значения скоростей в исследуемой области обтекания, однако на регистрируемых картинах обтекания не получается хорошего качества и наглядности результатов исследований. Получаемые с помощью интерферометра фотографии картины течения всегда густо исчерчены интерференционными полосами, в результате чего нечетко визуализируются такие важные детали течения, как скачки уплотнения и отрывы потока. Этот способ является весьма трудоемким, требующим сложной и дорогой специальной оптической аппаратуры.

Прототипом предлагаемого изобретения является прямотеневой оптический способ визуализации обтекания моделей (Холдер Д., Норт Р. Теневые методы в аэродинамике, М., «Мир», 1966, стр. 72-75). Данный способ отличается простотой при использовании в аэродинамических трубах и позволяет получать отчетливые картины скачков уплотнения и вихревых зон отрыва потока при оптических исследованиях моделей профилей крыльев. В этом способе проводятся освещение модели профиля вдоль размаха параллельным пучком света и регистрация теневой картины после прохождения светового пучка через исследуемую область с помощью теневого прибора.

Недостаток данного способа заключается в том, что он не позволяет визуализировать и определять размеры области пограничного слоя у поверхности модели. Известно, что пограничный слой оказывает значительное влияние на аэродинамические характеристики. По этой причине картина обтекания профиля без визуализации пограничного слоя является существенно не полной.

Задачей и техническим результатом предлагаемого изобретения является дополнительное выявление области пограничного слоя при визуализации картины обтекания модели профиля крыла при околозвуковых скоростях потока.

Поставленная задача и технический результат достигаются тем, что в известном способе визуализации обтекания модели профиля крыла при околозвуковых скоростях потока в аэродинамических трубах, включающем освещение модели профиля крыла вдоль размаха параллельным пучком света и регистрацию теневой картины обтекания после прохождения светового пучка через исследуемую область, с помощью теневого прибора проводят дополнительно регистрацию и инверсию теневой картины при отсутствии потока; после этого на регистрируемую теневую картину при наличии потока накладывают инверсированную теневую картину при отсутствии потока.

В предлагаемом способе для визуализации пограничного слоя используют явление рефракции световых лучей в пограничном слое. Рефракция (искривление) световых лучей происходит под действием градиентов плотности в среде, через которую проходят световые лучи.

На фиг. 1 показана схема хода лучей света 1 в пограничном слое у поверхности модели 2 между окнами 3 рабочей части и до плоскости регистрации теневой картины 4.

На фиг. 2 показаны зависимости изменения скорости u, плотности ρ и температуры T потока по высоте y от поверхности модели.

В связи с тем, что воздух обладает вязкостью, на поверхности модели 2 происходит прилипание потока, которое приводит к образованию пограничного слоя, в котором значения скорости u, плотности ρ, и температуры T потока изменяются по высоте y от поверхности модели 2 так, как показано на фиг. 2. Вследствие рефракции параллельных лучей света в пограничном слое тень модели профиля утолщается на величину δт (фиг. 1, 2). Как показали проведенные расчетные и экспериментальные исследования, утолщение тени модели с расхождением не более 5-8% соответствует толщине пограничного слоя на исследуемой модели профиля. Однако при обычном использовании прямотеневого способа визуализации утолщение тени модели из-за своих малых размеров практически неразличимо.

В предлагаемом способе для отчетливого выявления рефракционного утолщения тени модели, которое соответствует области пограничного слоя, проводят дополнительную регистрацию и инверсию теневой картины, при отсутствии потока. После чего на регистрируемую теневую картину, при наличии потока, накладывают инверсированную теневую картину при отсутствии потока. Данный способ, по сравнению с известными способами, позволяет дополнительно визуализировать пограничный слой на модели профиля и получать более полную качественную картину обтекания модели профиля.

На фиг. 3 показана схема рабочей части аэродинамической трубы с установленной моделью профиля крыла и оптической системой визуализации обтекания.

На фиг. 4 показана теневая картина обтекания модели профиля при угле атаки α=3° и числе Маха М=0.76.

На фиг. 5 показана теневая картина модели профиля при угле атаки α=3° без потока в трубе (М=0).

На фиг. 6 показана инверсированная теневая картина модели профиля при угле атаки α=3° без потока в трубе (М=0).

На фиг. 7 показана теневая картина обтекания модели профиля при угле атаки α=3° и числе М=0.76, полученная предлагаемым способом.

Предлагаемый способ осуществляют на модели аэродинамического профиля, выполненного в виде прямоугольного крыла 2, устанавливаемого между оптическими окнами 3 на противоположных стенках рабочей части аэродинамической трубы (фиг. 3). С помощью осветителя 5 теневого прибора область обтекания модели аэродинамического профиля крыла освещают вдоль его размаха параллельным световым пучком 1. Плоскость регистрации (фокусировки) 4 теневого прибора располагают между торцом модели 2 и приемной частью 6 теневого прибора. Более точное расположение плоскости фокусировки 4 теневого прибора подбирают экспериментально из условия получения наиболее отчетливой картины скачков уплотнения и вихревых зон при обтекании модели в потоке при околозвуковых скоростях. Теневую картину обтекания модели регистрируют фотографическим или цифровым регистратором 7 в плоскости фокусировки 4 теневого прибора.

На (фиг. 4) представлен пример теневой картины обтекания модели профиля крыла относительной толщины 15% при числе Маха М=0.76 и угле атаки α=3°. На представленной теневой картине видны скачки уплотнения, возникающие в местной сверхзвуковой зоне на верхней поверхности модели профиля и волновой отрыв потока, возникающий при взаимодействии скачка уплотнения с пограничным слоем. На теневой картине, полученной стандартным способом, не видна область пограничного слоя.

Для визуализации области пограничного слоя на поверхности модели профиля проводят дополнительную регистрацию теневой картины при отсутствии потока в аэродинамической трубе. На фиг. 5 представлена теневая картина приведенной выше модели профиля при отсутствии потока в аэродинамической трубе. Далее, проводят инверсию (преобразование в негативное изображение) теневой картины модели профиля при отсутствии потока. Инверсия теневой картины может быть проведена, например, с помощью цифровой техники или негативной фотосъемки. На фиг. 6 представлена инверсированная теневая картина приведенной выше модели профиля при отсутствии потока в аэродинамической трубе. После этого на регистрируемую теневую картину обтекания потоком модели профиля накладывают инверсированную теневую картину при отсутствии потока. В результате, на получаемой предложенным способом картине обтекания визуализируется область пограничного слоя у поверхности модели. На фиг. 7 представлена теневая картина обтекания приведенной выше модели профиля, полученная предлагаемым способом. На данной картине обтекания область пограничного слоя видна. Она имеет темный цвет, обусловленный выталкиванием световых лучей из области пограничного слоя под действием градиентов плотности.

Предложенный способ визуализации обтекания модели профиля крыла позволил выявить принципиально новую особенность структуры волнового отрыва, возникающего при взаимодействии скачка уплотнения с пограничным слоем при обтекании профилей крыльев при околозвуковых скоростях. Выявленная новая особенность состоит в том, что вихревая зона волнового отрыва располагается не на поверхности профиля, как это ранее считалось, а на внешней границе пограничного слоя за скачком уплотнения. Правильное понимание структуры волнового отрыва позволяет более успешно разрабатывать мероприятия по его ослаблению и уменьшению аэродинамического сопротивления крыльев околозвуковых летательных аппаратов.

Способ визуализации обтекания модели профиля крыла при околозвуковых скоростях потока, включающий освещение области обтекания модели профиля крыла вдоль его размаха параллельным световым пучком и регистрацию теневой картины после прохождения светового пучка через исследуемую область с помощью теневого прибора, отличающийся тем, что проводят дополнительную регистрацию и инверсию теневой картины при отсутствии потока; после этого на регистрируемую теневую картину при наличии потока накладывают инверсированную теневую картину при отсутствии потока.
Способ визуализации обтекания модели профиля крыла при околозвуковых скоростях потока
Способ визуализации обтекания модели профиля крыла при околозвуковых скоростях потока
Способ визуализации обтекания модели профиля крыла при околозвуковых скоростях потока
Способ визуализации обтекания модели профиля крыла при околозвуковых скоростях потока
Источник поступления информации: Роспатент

Показаны записи 81-90 из 255.
10.09.2015
№216.013.77e0

Блок-имитатор температурных полей

Изобретение относится к экспериментальной технике и может быть использовано для теплопрочностных статических испытаний конструкций летательных аппаратов, в частности к средствам, обеспечивающим воспроизведение нестационарных температурных полей в испытываемых конструкциях воздушно-космических...
Тип: Изобретение
Номер охранного документа: 0002562277
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.78b8

Способ хранения атомарного водорода

Изобретение относится к химии и водородной энергетике и может быть использовано в транспортном машиностроении. Водород получают в генераторе 1, направляют в приёмник 2, разделяют на два потока 3 и воздействуют на них импульсным магнитным полем с амплитудой магнитной индукции В более 100 гаусс....
Тип: Изобретение
Номер охранного документа: 0002562493
Дата охранного документа: 10.09.2015
20.11.2015
№216.013.91e2

Устройство для измерения параметров потока

Изобретение относится к измерительной технике для измерения параметров потока, в частности полного давления, давления скоростного напора, статического давления, пульсации и/или звукового давления, измерения величины и направления скорости в пространственных потоках. Устройство содержит датчики...
Тип: Изобретение
Номер охранного документа: 0002568962
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.92f1

Способ снижения вертикальных и угловых перегрузок транспортного средства при движении по поверхности и транспортное средство, реализующее этот способ

Группа изобретений относится к способу снижения динамической нагруженности транспортного средства. Транспортное средство содержит корпус, амортизационное устройство, систему управления жесткостью и демпфированием амортизационного устройства, систему управления, логико-вычислительную подсистему,...
Тип: Изобретение
Номер охранного документа: 0002569235
Дата охранного документа: 20.11.2015
27.12.2015
№216.013.9df7

Устройство и способ для измерения быстропеременного давления

Изобретения относятся к измерительной технике, в частности к средствам и методам для измерения давления. В устройстве используются пленочные емкостные датчики, позволяющие измерять пульсации давления, возникающие от нагрузки вибрации, также устройство содержит державку, демпфер, снижающий...
Тип: Изобретение
Номер охранного документа: 0002572069
Дата охранного документа: 27.12.2015
10.02.2016
№216.014.c3d2

Способ определения остаточных напряжений в композиционных материалах

Изобретение относится к области экспериментальной механики и предназначено для определения остаточных напряжений, возникающих при изготовлении тонкостенных конструкций летательных аппаратов из композиционных материалов. Технический результат от реализации данного изобретения заключается в...
Тип: Изобретение
Номер охранного документа: 0002574231
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c513

Способ управления упругими изгибными и крутильными деформациями несущей поверхности и устройство для его реализации

Изобретение относится к области авиации, в частности к конструкциям и способам изменения аэродинамических характеристик несущих поверхностей летательных аппаратов. Способ управления упругими изгибными и крутильными деформациями несущей поверхности включает операцию деформирования кессона...
Тип: Изобретение
Номер охранного документа: 0002574491
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c5d2

Устройство для улучшения вывода самолета из штопора

Изобретение относится к авиации. Устройство для улучшения вывода самолета из штопора представляет наплыв горизонтального оперения, выполненный в форме двух несущих поверхностей, установленных симметрично относительно продольной плоскости симметрии самолета в хвостовой части фюзеляжа и...
Тип: Изобретение
Номер охранного документа: 0002578838
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c8c0

Динамически подобная аэродинамическая модель несущей поверхности летательного аппарата

Изобретение относится к области экспериментальных исследований динамических явлений аэроупругости летательных аппаратов в аэродинамических трубах. Динамически подобная аэродинамическая модель несущей поверхности содержит силовую упругую балку-лонжерон, дренированные блоки, установленные по...
Тип: Изобретение
Номер охранного документа: 0002578915
Дата охранного документа: 27.03.2016
20.06.2016
№217.015.0363

Регулятор давления воздуха в форкамере аэродинамической трубы с форсированным выходом на заданный режим

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам. Устройство содержит задающее устройство, исполнительный механизм, датчики температуры, давления, положения, регулятор давления. Регулятор давления выполнен в виде последовательно включенных...
Тип: Изобретение
Номер охранного документа: 0002587518
Дата охранного документа: 20.06.2016
Показаны записи 11-11 из 11.
22.04.2023
№223.018.5152

Сверхзвуковой самолет

Изобретение относится к авиационной технике, в частности, к конструкциям самолетов со сверхзвуковой скоростью полета. Сверхзвуковой самолет включает крыло, на участках нижней поверхности которого, обтекаемых потоком со сверхзвуковой скоростью, выполнены протяженные углубления или выпуклости,...
Тип: Изобретение
Номер охранного документа: 0002794307
Дата охранного документа: 14.04.2023
+ добавить свой РИД