×
27.03.2016
216.014.c5d2

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к авиации. Устройство для улучшения вывода самолета из штопора представляет наплыв горизонтального оперения, выполненный в форме двух несущих поверхностей, установленных симметрично относительно продольной плоскости симметрии самолета в хвостовой части фюзеляжа и пристыкованных к горизонтальному оперению вблизи его корневых хорд. Максимальная ширина каждой несущей поверхности достигается в месте сопряжения ее с горизонтальным оперением. Угол стреловидности каждой несущей поверхности от середины длины до горизонтального оперения составляет 90°÷115°. Изобретение направлено на повышение безопасности эксплуатации самолета при отклонении всех органов управления в нейтральное положение. 9 ил.
Основные результаты: Устройство для улучшения вывода самолета из штопора, содержащее наплыв в виде двух несущих поверхностей, установленных в хвостовой части фюзеляжа симметрично относительно продольной плоскости симметрии самолета и пристыкованных к горизонтальному оперению непосредственно вблизи его корневых хорд, отличающееся тем, что длина каждой несущей поверхности вдоль длины фюзеляжа лежит в пределах 1,1÷1,5 b, причем максимальная ширина достигается в месте сопряжения с горизонтальным оперением и лежит в пределах 0,1÷0,15 b, где b - корневая хорда горизонтального оперения, а угол стреловидности от середины длины каждой несущей поверхности до горизонтального оперения составляет 90°÷115°.

Изобретение относится к области авиации и может быть использовано для улучшения вывода из штопора учебно-тренировочного самолета и обеспечения возможности обучения пилотов выводу самолета из штопора различными методами.

Поиск научно-технических решений, направленных на улучшение характеристик вывода самолета из режима штопора, диктуется, прежде всего, необходимостью обеспечения безопасности эксплуатации самолетов. Известно, что по мировой статистике летных происшествий около пятидесяти процентов аварий и катастроф самолетов происходит именно на этих режимах («Аэродинамика самолетов на больших углах атаки. Библ. список», ОНТИ ЦАГИ, 1990; «Авиация общего назначения. Рекомендации для конструкторов», под ред. В.Г. Микеладзе, изд. ЦАГИ, 2001 г., стр. 213).

Проблемы улучшения характеристик вывода из штопора учебно-тренировочного самолета, кроме того, связаны с тем, что:

- с одной стороны, он может эксплуатироваться сравнительно слабоподготовленным пилотом;

- с другой стороны, на таком самолете, как правило, необходимо для обучения пилота иметь возможность демонстрировать все существующие методы вывода из штопора («Авиация общего назначения. Рекомендации для конструкторов», под ред. В.Г. Микеладзе, изд. ЦАГИ, 2001 г., стр. 276; патент РФ №2297364, 2007 г., МПК В64С 5/08, CN 201694385, 2011 г.; МПК В64С 17/00; В64С 3/00, патент US 5,575,442, 1996 г., МПК В64С 21/10; В64С 3/58).

Известно устройство в виде так называемого Λ-наплыва крыла, имеющего кромку обратной стреловидности в месте сочленения его с фюзеляжем (Ученые записки ЦАГИ, т. XXVII, №1-2, 1996 г., Вождаев Е.С., Головкин В.А., Головкин М.А., Долженко Н.Н.). Установка такого Λ-наплыва приводит к разделению вихревых жгутов, формирующихся на носовой части фюзеляжа и собственно на наплыве крыла. В результате при наличии скольжения под подветренным вихревым жгутом наплыва, распространяющимся вдоль подветренной консоли крыла, образуется меньшее разрежение и реализуется меньшая подъемная сила, приводящая к возникновению стабилизирующего момента крена, а, следовательно, улучшается характер сваливания самолета.

Недостатком такого устройства является невозможность его применения на самолете без наплыва крыла, а также неопределенность его влияния на характеристики вывода из штопора.

Наиболее близким из известных технических решений, принятым за прототип, является устройство, содержащее наплыв в виде двух треугольных несущих поверхностей, установленных в хвостовой части фюзеляжа симметрично относительно продольной плоскости симметрии самолета и пристыкованных непосредственно вблизи корневых хорд горизонтального оперения. (Электронные адреса в Интернете: ml и www.embraerdefensesystems.com/english/content/combat/tucano_three_view.asp).

Установка перед горизонтальным оперением такого наплыва, как показывают проведенные эксперименты в вертикальной аэродинамической трубе, приводит к:

- появлению на больших углах атаки дополнительного момента на пикирование;

- увеличению демпфирования вращения;

- переводу самолета, как следствие двух указанных факторов, из режима плоского штопора, который реализуется при углах атаки α≈70°, в режим крутого штопора с углом атаки α≈50° с меньшей частотой вращения.

В результате хотя и улучшается вывод самолета из штопора, но с применением только так называемого усиленного метода пилотирования, при котором осуществляют отклонение вначале элеронов и руля направления полностью против штопора, затем через 0,5 витка - руля направления полностью вниз. Это устройство не обеспечивает вывод самолета из режима штопора другими методами, и, в частности, при отклонении всех органов управления в нейтральное положение одновременно и в правильной последовательности (одновременно руль направления и элероны в нейтральное положение, а через 0,5-1 виток - руль высоты).

Задачей данного изобретения является расширение возможностей вывода самолета из штопора, что особенно важно для учебно-тренировочного самолета, на котором, как правило, пилотов обучают всем методам вывода.

Техническим результатом является создание дополнительного демпфирования и дополнительной нормальной силы, приводящей к увеличению пикирующего момента.

Решение поставленной задачи и технический результат достигаются тем, что в устройстве для улучшения вывода самолета из штопора, содержащем наплыв в виде двух несущих поверхностей, установленных в хвостовой части фюзеляжа симметрично относительно продольной плоскости симметрии самолета и пристыкованных к горизонтальному оперению непосредственно вблизи его корневых хорд, длина каждой несущей поверхности вдоль длины фюзеляжа лежит в пределах 1,1÷1,5 b, а их максимальная ширина достигается в месте сопряжения с горизонтальным оперением и лежит в пределах 0,1÷0,15 b, где b - корневая хорда горизонтального оперения, причем угол стреловидности от середины длины каждой несущей поверхности до горизонтального оперения составляет 90°÷115°.

Такая геометрия устройства и его положение выбраны на основе экспериментальных исследований, проведенных в вертикальной аэродинамической трубе на динамически подобной модели учебно-тренировочного самолета в режимах штопора, а также расчетных оценок влияния установки устройства на характеристики модели. При полете на сверхбольших углах атаки в сечениях фюзеляжа, где установлен наплыв у горизонтального оперения, реализуется дополнительная нормальная сила, приводящая к дополнительному пикирующему моменту. В результате штопор модели происходит на меньших углах атаки по сравнению с исходным вариантом. Кроме того, в режиме штопора, когда модель вращается, на наветренной стороне в двугранном углу, образованном стыком несущей поверхности, расположенной на наветренной стороне, с фюзеляжем создается дополнительное торможение потока. В результате сопротивление вращению, т.е. демпфирование возрастает и модель совершает вращение с меньшей угловой скоростью. Выбранные форма, размеры и угол стреловидности несущих поверхностей, образующих наплыв горизонтального оперения, приводят, в отличие от прототипа, к тому, что вихревое образование, формирующееся на боковой кромке наветренной несущей поверхности, не отдаляется от вертикального оперения, а проходит в непосредственной близости от него и создает скосы, способствующие созданию дополнительного демпфирования за счет вертикального оперения и соответственно дополнительному снижению угловой скорости вращения.

Сформированная геометрия предлагаемого устройства обеспечивает достаточные величины нормальной силы, реализующейся на наплыве у горизонтального оперения, а также дополнительного демпфирования вращения, обусловленного как торможением потока в двугранном углу, образованном стыком несущей поверхности, расположенной на наветренной стороне, с фюзеляжем, так и формирующимся на боковой кромке этой несущей поверхности вихревым образованием, которое благоприятно взаимодействует с вертикальным оперением.

На фиг. 1, 2 изображен общий вид предлагаемого устройства для улучшения вывода самолета из штопора в различных вариантах его исполнения.

На фиг. 3 показаны механизмы образования дополнительного пикирующего момента, приводящего к уменьшению угла атаки в штопоре, а также дополнительного демпфирующего вращение момента.

На фиг. 4 показано вихревое образование, формирующееся на боковой кромке наветренной несущей поверхности, способствующее благоприятной интерференции с вертикальным оперением, что приводит к формированию дополнительного демпфирующего вращение момента.

На фиг. 5 представлены результаты испытаний в вертикальной аэродинамической трубе свободно штопорящей динамически подобной модели учебно-тренировочного самолета с предлагаемым устройством при выводе из штопора усиленным методом пилотирования.

На фиг. 6 показаны результаты испытаний той же модели при выводе из штопора отклонением всех органов управления в нейтральное положение.

На фиг. 7 представлены результаты испытаний модели без предлагаемого устройства при выводе из штопора усиленным методом пилотирования.

На фиг. 8 показаны результаты испытаний модели с устройством-прототипом при выводе из штопора усиленным методом пилотирования.

На фиг. 9 представлены результаты испытаний модели с устройством-прототипом при выводе из штопора отклонением всех органов управления в нейтральное положение.

Устройство для улучшения вывода самолета из штопора (фиг. 1, 2) содержит наплыв у горизонтального оперения при виде в плане в форме двух несущих поверхностей 1 и 2, установленных в хвостовой части фюзеляжа 3 симметрично относительно продольной плоскости симметрии 4 самолета и пристыкованных к горизонтальному оперению 5 непосредственно вблизи его корневых хорд. Длина каждой несущей поверхности вдоль длины фюзеляжа лежит в пределах 1,1÷1,5 b, где b - корневая хорда горизонтального оперения. Максимальная ширина каждой несущей поверхности достигается в месте сопряжения с горизонтальным оперением и лежит в пределах 0,1÷0,15 b, а угол стреловидности от середины длины каждой несущей поверхности до горизонтального оперения составляет 90°÷115°.

На фиг. 1а и 2а изображен вид устройства при виде сбоку.

Внешние обводы устройства при виде в плане могут иметь излом (фиг. 1б) или быть гладкими (фиг. 2б).

Рассмотрим работу устройства (фиг. 1, 2) для улучшения вывода самолета из штопора. Работа заключается в следующем. При полете самолета на больших, закритических углах атаки в режиме штопора в сечениях фюзеляжа, где установлено предлагаемое устройство, на фюзеляже и самом устройстве осуществляется дополнительный подпор - торможение потока. В результате в продольной плоскости симметрии реализуется дополнительная нормальная сила ΔN (фиг. 3а), способствующая созданию дополнительного пикирующего момента ΔMz и снижению угла атаки α самолета. В режиме штопора, т.е. при наличии угловой скорости вращения ω реализуется обтекание с суммарным вектором скорости W, равным векторной сумме скорости V и линейной скорости ωrsinα от углового вращения самолета, где r - текущее расстояние от центра масс модели до сечения А-А (фиг. 3б). В итоге в двугранном углу - стыке наветренной несущей поверхности с фюзеляжем создается дополнительное торможение потока и реализуется сила P1 и демпфирующий вращение момент Мд1 (фиг. 3а). В результате самолет совершает движение с меньшей угловой скоростью. Выбранные размеры и угол стреловидности несущих поверхностей, образующих наплыв у горизонтального оперения, приводят, в отличие от прототипа, к тому, что вихревое образование Г, формирующееся на боковой кромке наветренной несущей поверхности, не отдаляется от вертикального оперения (фиг. 4а), а проходит в непосредственной близости от него. Это вихревое образование создает индуктивные скорости υi (фиг. 4б), способствующие созданию на вертикальном оперении силы Р2 и дополнительного демпфирующего вращение момента Мд2 и соответственно снижению угловой скорости вращения ω. Сформированная геометрия предлагаемого устройства обеспечивает достаточные по величине отмеченные выше положительные эффекты от его установки.

Устройство для улучшения вывода самолета из штопора испытано на динамически подобных свободно штопорящих моделях самолетов в вертикальной аэродинамической трубе.

На фиг. 5, 6 показано, что в результате средний угол атаки модели самолета α(t) в свободном штопоре составляет α≈45°, частота вращения ω=6,5 1/с, т.е. ϖ≈360°/с, ψ(t), где t - время, ψ - угол поворота модели относительно вертикали, α - угол атаки, β - угол скольжения, δ - угол отклонения органов управления; здесь введены также следующие сокращения: Р.Н. - руль направления, Р.В. - руль высоты, Элерон (Пр.) - означает, что указано отклонение правого элерона. Это позволяет производить вывод учебно-тренировочного самолета из штопора усиленным методом за ~0,5 витка, т.е. значение ψ(t)≈180° после срабатывания всех рулей против штопора (фиг. 5), и в течение ~2,5 витков (фиг. 6) после срабатывания всех рулей, даже путем отклонения всех органов управления в нейтральное положение, что в конечном счете обеспечивает существенное повышение безопасности эксплуатации самолета. На фиг. 7 для сравнения приведены результаты испытаний исходной модели самолета, без предлагаемого устройства. Видно, что средний угол атаки в штопоре исходной модели составляет α≈71°, частота вращения ω=10 1/с, причем модель не выходит из штопора (не уменьшает угол атаки до приемлемых значений ~15÷20°) даже за ~5 витков в последовательности срабатывания органов, соответствующей так называемому усиленному методу вывода. На фиг. 8, 9 для сравнения с фиг. 5, 6 приведены результаты испытаний модели с устройством-прототипом. Видно, что штопор модели самолета происходит при среднем значении угла атаки α≈50°, частота вращения ω=6,8 1/с. Значение этих параметров заметно хуже, чем у модели с предлагаемым устройством. Модель с устройством-прототипом выходит из штопора усиленным методом (фиг. 8), но, как можно видеть из фиг. 9, модель не выходит из штопора после срабатывания рулей в нейтральное положение. Многочисленные эксперименты показали, что модель с устройством-прототипом выходила из штопора только с применением усиленного метода пилотирования, что для учебно-тренировочного самолета, предназначенного для обучения пилотов, недостаточно.

Эффективность предложенного устройства подтверждена математическим моделированием и испытаниями динамически подобных свободно штопорящих моделей самолетов в вертикальной аэродинамической трубе. Достигнутый при этом технический результат обеспечивает существенное повышение безопасности эксплуатации самолетов.

Устройство для улучшения вывода самолета из штопора, содержащее наплыв в виде двух несущих поверхностей, установленных в хвостовой части фюзеляжа симметрично относительно продольной плоскости симметрии самолета и пристыкованных к горизонтальному оперению непосредственно вблизи его корневых хорд, отличающееся тем, что длина каждой несущей поверхности вдоль длины фюзеляжа лежит в пределах 1,1÷1,5 b, причем максимальная ширина достигается в месте сопряжения с горизонтальным оперением и лежит в пределах 0,1÷0,15 b, где b - корневая хорда горизонтального оперения, а угол стреловидности от середины длины каждой несущей поверхности до горизонтального оперения составляет 90°÷115°.
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 277.
10.02.2013
№216.012.2454

Способ адаптации рабочей части аэродинамической трубы для получения безындукционного обтекания моделей летательных аппаратов и устройство для его осуществления

Заявленная группа изобретений относится к области экспериментальной аэродинамики и может быть использована при проведении испытаний в трансзвуковых аэродинамических трубах. Предложен новый способ адаптации рабочей части аэродинамической трубы, содержащий новую технологию получения на границах...
Тип: Изобретение
Номер охранного документа: 0002474802
Дата охранного документа: 10.02.2013
20.03.2013
№216.012.302a

Измерительное устройство

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрических мостовых датчиков с инструментальными усилителями, запитанных постоянным током. Техническим результатом изобретения является повышение точности...
Тип: Изобретение
Номер охранного документа: 0002477865
Дата охранного документа: 20.03.2013
10.05.2013
№216.012.3cfa

Способ фрезерования на станках с чпу моделей лопаток роторов газотурбинных двигателей

Изобретение относится к машиностроению и может быть использовано в авиадвигателестроении при обработке профиля пера рабочих лопаток газотурбинных двигателей, в частности аэродинамических моделей лопаток роторов газотурбинных двигателей, имеющих малую толщину и осевые габариты 200-300 мм. Способ...
Тип: Изобретение
Номер охранного документа: 0002481177
Дата охранного документа: 10.05.2013
20.05.2013
№216.012.403b

Самолет местных воздушных линий

Изобретение относится к авиационной технике и может быть использовано при разработке самолетов местных воздушных линий пассажировместимостью 18-24 места. Самолет содержит фюзеляж, крыло, хвостовое оперение, силовую установку из двух двигателей и воздушный винт. Двигатели расположены внутри...
Тип: Изобретение
Номер охранного документа: 0002482013
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.4044

Система управления самолётом

Изобретение относится к области систем управления летательными аппаратами. Предлагаемая система улучшает характеристики продольного движения за счет введения блока оценки продольной устойчивости самолета и компенсации ее изменения по режимам полета. Ликвидируются характерные для интегральных...
Тип: Изобретение
Номер охранного документа: 0002482022
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.41f7

Способ создания потока газа в гиперзвуковой вакуумной аэродинамической трубе и аэродинамическая труба

Изобретения относятся к области промышленной аэродинамики, в частности к гиперзвуковым аэродинамическим трубам (АДТ). Предложены способ создания потока и аэродинамическая труба (АДТ) непрерывного действия, охватывающая весь гиперзвуковой диапазон скоростей с числами Маха М≥5, причем для...
Тип: Изобретение
Номер охранного документа: 0002482457
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.427e

Аэродинамический стенд для проведения фундаментальных исследований по генерации электроэнергии мгд-методами с использованием в качестве рабочего газа высокотемпературного водорода (h)

Изобретение относится к области энергетики, преимущественно к созданию аварийных энергетических установок большой мощности, работающих на принципе магнитогазодинамического преобразования энергии. Заявленное устройство включает источник высокотемпературного газа, устройство подачи присадки,...
Тип: Изобретение
Номер охранного документа: 0002482592
Дата охранного документа: 20.05.2013
10.07.2013
№216.012.53c7

Треугольное крыло для сверхзвуковых летательных аппаратов

Изобретение относится к области авиационной техники. Треугольное крыло имеет вершину и центральную хорду, расположенные в плоскости симметрии крыла, прямолинейные передние кромки, выходящие из вершины, и неплоскую срединную поверхность. Срединная поверхность выполнена из двух элементов, которые...
Тип: Изобретение
Номер охранного документа: 0002487050
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.53c8

Предкрылок крыла самолета и способ его обтекания

Группа изобретений относится к области авиации. Предкрылок крыла самолета подвижно соединен с основным крылом и содержит аэродинамически обтекаемую поверхность, включающую заднюю нижнюю кромку. Часть задней нижней кромки предкрылка выполнена по форме гладкой волнистой линии либо волнистой линии...
Тип: Изобретение
Номер охранного документа: 0002487051
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.57a0

Устройство для локального подвода энергии к потоку воздуха, обтекающего объект (варианты)

Изобретение относится к аэродинамике и к энергетическим установкам транспортных средств, в частности к устройствам для улучшения аэродинамического качества путем подвода энергии к их внешней поверхности. Устройство для локального подвода энергии к потоку воздуха, обтекающего объект, содержит...
Тип: Изобретение
Номер охранного документа: 0002488040
Дата охранного документа: 20.07.2013
Показаны записи 1-10 из 153.
10.02.2013
№216.012.2454

Способ адаптации рабочей части аэродинамической трубы для получения безындукционного обтекания моделей летательных аппаратов и устройство для его осуществления

Заявленная группа изобретений относится к области экспериментальной аэродинамики и может быть использована при проведении испытаний в трансзвуковых аэродинамических трубах. Предложен новый способ адаптации рабочей части аэродинамической трубы, содержащий новую технологию получения на границах...
Тип: Изобретение
Номер охранного документа: 0002474802
Дата охранного документа: 10.02.2013
20.03.2013
№216.012.302a

Измерительное устройство

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрических мостовых датчиков с инструментальными усилителями, запитанных постоянным током. Техническим результатом изобретения является повышение точности...
Тип: Изобретение
Номер охранного документа: 0002477865
Дата охранного документа: 20.03.2013
10.05.2013
№216.012.3cfa

Способ фрезерования на станках с чпу моделей лопаток роторов газотурбинных двигателей

Изобретение относится к машиностроению и может быть использовано в авиадвигателестроении при обработке профиля пера рабочих лопаток газотурбинных двигателей, в частности аэродинамических моделей лопаток роторов газотурбинных двигателей, имеющих малую толщину и осевые габариты 200-300 мм. Способ...
Тип: Изобретение
Номер охранного документа: 0002481177
Дата охранного документа: 10.05.2013
20.05.2013
№216.012.403b

Самолет местных воздушных линий

Изобретение относится к авиационной технике и может быть использовано при разработке самолетов местных воздушных линий пассажировместимостью 18-24 места. Самолет содержит фюзеляж, крыло, хвостовое оперение, силовую установку из двух двигателей и воздушный винт. Двигатели расположены внутри...
Тип: Изобретение
Номер охранного документа: 0002482013
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.4044

Система управления самолётом

Изобретение относится к области систем управления летательными аппаратами. Предлагаемая система улучшает характеристики продольного движения за счет введения блока оценки продольной устойчивости самолета и компенсации ее изменения по режимам полета. Ликвидируются характерные для интегральных...
Тип: Изобретение
Номер охранного документа: 0002482022
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.41f7

Способ создания потока газа в гиперзвуковой вакуумной аэродинамической трубе и аэродинамическая труба

Изобретения относятся к области промышленной аэродинамики, в частности к гиперзвуковым аэродинамическим трубам (АДТ). Предложены способ создания потока и аэродинамическая труба (АДТ) непрерывного действия, охватывающая весь гиперзвуковой диапазон скоростей с числами Маха М≥5, причем для...
Тип: Изобретение
Номер охранного документа: 0002482457
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.427e

Аэродинамический стенд для проведения фундаментальных исследований по генерации электроэнергии мгд-методами с использованием в качестве рабочего газа высокотемпературного водорода (h)

Изобретение относится к области энергетики, преимущественно к созданию аварийных энергетических установок большой мощности, работающих на принципе магнитогазодинамического преобразования энергии. Заявленное устройство включает источник высокотемпературного газа, устройство подачи присадки,...
Тип: Изобретение
Номер охранного документа: 0002482592
Дата охранного документа: 20.05.2013
10.07.2013
№216.012.53c7

Треугольное крыло для сверхзвуковых летательных аппаратов

Изобретение относится к области авиационной техники. Треугольное крыло имеет вершину и центральную хорду, расположенные в плоскости симметрии крыла, прямолинейные передние кромки, выходящие из вершины, и неплоскую срединную поверхность. Срединная поверхность выполнена из двух элементов, которые...
Тип: Изобретение
Номер охранного документа: 0002487050
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.53c8

Предкрылок крыла самолета и способ его обтекания

Группа изобретений относится к области авиации. Предкрылок крыла самолета подвижно соединен с основным крылом и содержит аэродинамически обтекаемую поверхность, включающую заднюю нижнюю кромку. Часть задней нижней кромки предкрылка выполнена по форме гладкой волнистой линии либо волнистой линии...
Тип: Изобретение
Номер охранного документа: 0002487051
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.57a0

Устройство для локального подвода энергии к потоку воздуха, обтекающего объект (варианты)

Изобретение относится к аэродинамике и к энергетическим установкам транспортных средств, в частности к устройствам для улучшения аэродинамического качества путем подвода энергии к их внешней поверхности. Устройство для локального подвода энергии к потоку воздуха, обтекающего объект, содержит...
Тип: Изобретение
Номер охранного документа: 0002488040
Дата охранного документа: 20.07.2013
+ добавить свой РИД