×
10.05.2018
218.016.4464

Результат интеллектуальной деятельности: Способ подачи газа в сверхзвуковое сопло ускорителя газовых кластерных ионов

Вид РИД

Изобретение

Аннотация: Изобретение относится к области ускорительной техники, в частности к системам подачи газа в сверхзвуковое сопло при формировании пучков ускоренных газовых кластерных ионов. Технический результат - расширение класса рабочих газов, в том числе слабо кластеризуемых, используемых в системах для формирования газовых кластерных ионных пучков. Способ предусматривает формирование газового кластерного ионного пучка в вакуумной камере при подаче рабочего газа под давлением от источника газа в сверхзвуковое сопло ускорителя газовых кластерных ионов, при этом формирование газового кластерного ионного пучка осуществляется путем импульсной подачи газа от источника, при значении давления стагнации, не превышающем 7 атм, и при длительности импульса тока кластерных ионов, на 1-2 порядка превышающей длительность подачи газа от источника. 4 ил., 1 табл.

Изобретение относится к области ускорительной техники, в частности к системам подачи газа в сверхзвуковое сопло при формировании пучков ускоренных газовых кластерных ионов. Изобретение предназначено для формирования кластерных пучков, образованных слабо кластеризующимися газами, и может быть применено в оптоэлектронике для процесса планаризации подложек и поверхности слоев, наносимых по планарной технологии, при изготовлении оптоэлектронных приборов.

В патенте US 20140123457A1 показан способ улучшения характеристик оборудования для ионно-кластерной обработки поверхности материалов за счет изменения конструкции сверхзвукового сопла и скиммера, которые устанавливаются в едином блоке и крепятся в нем жестко, соосно друг другу.

В работе JP 2012099221А приводится описание пушки для создания газового кластерного ионного пучка, способной формировать газовый кластерный ионный пучок с достаточно короткой длительностью импульса, чтобы использовать ее для получения первичных ионов в масс-спектрометрии вторичных ионов с времяпролетной масс-сепарацией. Для этого за пушкой устанавливается блок затвора для получения GCIB, испускаемого из ионизационной камеры в течение заданного времени, и блок сепарации для удаления газовых кластерных ионов, выходящих за пределы заранее заданного диапазона масс.

Наиболее близким к заявленному способу техническим решением является система формирования газовых кластерных ионных пучков, приведенная в патенте US 20110272594A1. Эта система включает в себя сопло для формирования пучка газовых кластеров, а также камеру стагнации (буферный объем), расположенную выше по потоку газа и смежную с соплом. Ниже по потоку от выпускного отверстия сопла расположен ионизатор для ионизации кластерного пучка. Система также включает в себя две линии подачи рабочего газа. Каждое из устройств подачи рабочего газа сообщается с впускным отверстием камеры стагнации и состоит из двух источников газа и клапанов, расположенных между источниками газов и камерой стагнации.

В рассматриваемых выше источниках газовых кластерных ионов рабочий газ подается в сопло непрерывно. Недостатком таких источников является невозможность их использования в случае применения слабо кластеризуемых газов.

Кластеризуемость газов описывается безразмерным параметром Хагены:

где р0 и Т0 - давление и температура стагнации, а род газа учтен в параметре конденсации k, значения которого для различных газов приведены в Таблице 1.

Следовательно, для получения газового кластерного ионного пучка в случае использования, например, гелия необходимо на входе газового потока в вакуумную систему создать давление в несколько сотен раз выше, чем в случае аргона (эксперимент показывает, что при использовании аргона как процессного газа быстродействие насоса должно быть около 1000 л/с). Понятно, что ни один существующий в настоящее время насос не сможет откачать такой поток гелия, поступающий в вакуумную камеру.

Следует отметить, что в системе, являющейся ближайшим аналогом, имеются клапаны между газовыми линиями и сверхзвуковым соплом, однако данные клапаны служат для регулирования потока рабочих газов и выбора между ними. В результате данную систему нельзя использовать для получения газового кластерного ионного пучка слабо кластеризуемых газов.

Технический результат предлагаемого изобретения направлен на расширение класса рабочих газов, в том числе слабо кластеризуемых, используемых в системах для формирования газовых кластерных ионных пучков.

Указанный технический результат достигается тем, что осуществляется формирование газового кластерного ионного пучка в вакуумной камере при подаче рабочего газа под давлением от источника газа в сверхзвуковое сопло ускорителя газовых кластерных ионов, при этом формирование газового кластерного ионного пучка осуществляется путем импульсной подачи газа от источника, при значении давления стагнации, не превышающем 7 атм, и при длительности импульса тока кластерных ионов, на 1-2 порядка превышающей длительность подачи газа от источника.

Формирование газового кластерного ионного пучка в вакуумной камере реализуется при подаче рабочего газа под давлением от источника в сверхзвуковое сопло ускорителя газовых кластерных ионов. При истечении газа из сверхзвукового сопла в результате конденсации отдельных атомов газа (или молекул) при адиабатическом расширении газа под давлением из сопла в вакуум формируются кластеры в зоне молчания внутри бочки Маха. При пересечении потоком кластеров нормального скачка, ограничивающего бочку Маха, кластеры разрушаются ввиду резкого повышения температуры и плотности среды. Для предотвращения разрушения кластеров служит скиммер, острие которого проникает в ядро струи. На фиг. 1 показаны в качестве примера изотермы в потоке газа Ar на выходе из сопла. Если острие скиммера перестает проникать внутрь зоны молчания, в пучке частиц преобладают мономеры.

Продольный размер бочки Маха, то есть области существования кластеров, определяется выражением:

где k - коэффициент пропорциональности, d - диаметр критического сечения сопла, р0 - давление перед соплом и р1 давление в камере формирования кластеров вдали от зоны молчания.

Как видно из данной формулы, размер бочки Маха rm зависит от диаметра критического сечения сопла, обычно неизменного, и соотношения давлений на входе в сопло и в камере формирования кластеров. Давление перед соплом задается давлением газа, поступающего в систему. Максимальная величина создаваемого давления перед соплом р0 ограничена производительностью используемых вакуумных насосов, т.к. процесс формирования кластеров происходит в вакууме при давлении р1.

Использование импульсной подачи газа позволяет поднять давление перед соплом р0 (давление стагнации) до 7 атм, достаточного для образования газовых кластеров в том числе и слабо кластеризуемых газов. Полученный предел по давлению связан с возможностью по быстродействию используемых вакуумных турбомолекулярных насосов, которая составляет 500-1000 л/с.

Импульсная подача газа, позволяющая поднять давление перед соплом, реализуется за счет установки импульсного клапана между источником газа и сверхзвуковым соплом. Кроме того, между выходным отверстием импульсного клапана и критическим сечением сопла существует буферный объем. В момент открывания клапана в этот объем начинает поступать рабочий газ. После того как клапан закрывается и поступление газа в объем прекращается, давление в нем начинает понижаться за счет относительного медленного истечения через сопло.

Для определения времени вытекания газа из буферного объема, то есть продолжительности кластерного импульса, используется следующее выражение (3):

где , D - диаметр буферной зоны, l - ее длина, d - критический диаметр сопла, Т0 - начальная температура газа, γ - коэффициент теплоемкости. Таким образом, время t пропорционально корню из молярной массы газа, и более тяжелые газы вытекают из буферного объема медленнее. Следовательно, давление в нем падает медленнее, и продолжительность кластерного импульса при прочих равных параметрах для таких газов увеличивается.

Длительность подачи рабочего газа в импульсном режиме работы ускорителя газовых кластерных ионов выбирается исходя из времени, необходимого для заполнения буферного объема до давления, равного входному. Продолжительность истечения газа из буферного объема через сопло, т.е. длительность импульса тока кластерных ионов оценивается с помощью выражения (3) и зависит от используемого рабочего газа.

Длительность импульса тока кластерных ионов определяется скоростью падения давления перед соплом, при значении давления ниже критического газовые кластеры не образуются. Скорость падения давления перед соплом в общем случае зависит от величины буферного объема и создаваемого давления в нем. При давлении рабочего газа, не превышающем 7 атм, значение длительности импульса тока кластерных ионов должно на 1-2 порядка превышать длительность подачи газа от источника.

Данный способ был реализован с помощью устройства для импульсной подачи газа в сверхзвуковое сопло ускорителя газовых кластерных ионов, приведенного на фиг. 2. Устройство представляет собой: источник газа 1, импульсный клапан 2, буферный объем 3, сверхзвуковое сопло 4, скиммер 5.

Работа устройства описывается следующим образом: подача рабочего газ от источника 1 регулируется импульсным клапаном 2, при нахождении импульсного клапана в открытом состоянии рабочий газ заполняет буферный объем 3 (приблизительно равный 0,1 см3) до рабочего давления и переходит в закрытое состояние. Поскольку диаметр отверстия клапана превышает диаметр критического сечения сверхзвукового сопла 4, газ натекает достаточно быстро, и в объеме устанавливается давление, равное заданному давлению газа, не превышающему 7 атм. Оценка времени натекания газа в буферный объем дает значение 8-10 мс. После закрытия импульсного клапана 2 давление в буферном объеме 3 начинает понижаться за счет относительного медленного истечения рабочего газа через сверхзвуковое сопло 4. При истечении газа из сверхзвукового сопла в результате конденсации отдельных атомов газа (или молекул) при адиабатическом расширении газа под давлением из сопла в вакуум формируются кластеры в зоне молчания внутри бочки Маха. При пересечении потоком кластеров нормального скачка, ограничивающего бочку Маха, кластеры разрушаются ввиду резкого повышения температуры и плотности среды. Для предотвращения разрушения кластеров служит скиммер 5, острие которого проникает в ядро струи.

На фиг. 3 представлен вид импульса тока пучка, измеряемый с помощью цилиндра Фарадея. Отмечена продолжительность открытого состояния клапана (10 мс), период следования импульсов (период срабатывания импульсного клапана) - 1 с, рабочий газ - аргон при давлении 5 атм.

В момент открытия клапана наблюдается короткий импульс тока длительностью 10 мс, соответствующей времени открытого состояния клапана с интенсивностью около 400 нА, после его интенсивность уменьшается примерно в 4 раза и остается практически неизменной в течение 150 мс. Далее в момент времени, когда давление в буферном объеме падает настолько, что в соответствии с формулой (2) расстояние от среза сопла до нормального скачка становится меньше, чем расстояние от среза до скиммера, скиммер перестает проникать в бочку Маха. Кластеры разрушаются, проходя через нормальный скачок, и попадают в ионизатор уже в виде отдельных мономеров. При ионизации мономеры приобретают заряд, причем переносимый ими ток гораздо больше тока, переносимого кластерами, поскольку количество мономеров превосходит количество исходных кластеров. Этому моменту соответствует второй пик на фиг. 1 с максимумом в районе 200 мс.

Продолжительность истечения газа из буферного объема через сверхзвуковое сопло, т.е. длительность импульса тока кластерных ионов, оцениваемая с помощью выражения (3) для аргона с рабочим давлением 5 атм составляет 300 мс.

На фиг. 4 представлен вид импульса тока пучка, измеряемый с помощью цилиндра Фарадея для рабочего газа азота при давлении 5 атм, продолжительность открытого состояния клапана 20 мс. Пик с максимумом в области 150 мс соответствует мономерам N2.

Продолжительность истечения газа из буферного объема через сверхзвуковое сопло, т.е. длительность импульса тока кластерных ионов, оцениваемая с помощью выражения (3), для N2 составляет около 100 мс при рабочем давлении 5 атм.

Таким образом, предлагаемое изобретение позволяет поднять давление стагнации в ускорителе газовых кластерных ионов до величины, не превышающей 7 атм, за счет импульсной подачи рабочего газа, что в свою очередь дает возможность использовать в качестве рабочих слабо кластеризуемые газы (Не, N2 или О2).

Способ подачи газа в сверхзвуковое сопло ускорителя газовых кластерных ионов, включающий формирование газового кластерного ионного пучка в вакуумной камере при подаче рабочего газа под давлением от источника в сверхзвуковое сопло ускорителя газовых кластерных ионов, отличающийся тем, что формирование газового кластерного ионного пучка осуществляется путем импульсной подачи газа от источника, при значении давления стагнации, не превышающем 7 атм, и при длительности импульса тока кластерных ионов, на 1-2 порядка превышающей длительность подачи газа от источника.
Способ подачи газа в сверхзвуковое сопло ускорителя газовых кластерных ионов
Способ подачи газа в сверхзвуковое сопло ускорителя газовых кластерных ионов
Способ подачи газа в сверхзвуковое сопло ускорителя газовых кластерных ионов
Способ подачи газа в сверхзвуковое сопло ускорителя газовых кластерных ионов
Способ подачи газа в сверхзвуковое сопло ускорителя газовых кластерных ионов
Источник поступления информации: Роспатент

Показаны записи 11-20 из 38.
19.07.2018
№218.016.72b9

Способ создания сенсорного элемента на основе микрорезонатора из пористого кремния для детекции паров взрывчатых веществ

Изобретение относится к области физики. Способ включает введение в микрорезонатор из пористого кремния органических полимеров класса полифениленвиниленов, причем микрорезонатор из пористого кремния размещают на дне металлической емкости, которую заполняют раствором органического полимера с...
Тип: Изобретение
Номер охранного документа: 0002661611
Дата охранного документа: 17.07.2018
13.09.2018
№218.016.872e

Способ модификации свойств молекул образца и устройство для его осуществления

Изобретение относится к области физических исследований и управлению свойствами молекул и материалов, в частности к способу модификации свойств молекул и устройству для реализации способа, и может быть использовано для изменения физических свойства веществ, например диэлектрической...
Тип: Изобретение
Номер охранного документа: 0002666853
Дата охранного документа: 12.09.2018
19.10.2018
№218.016.93a8

Способ удаления перенапылённых углеводородных слоёв

Изобретение относится к технологии очистки вакуумных камер и других элементов в вакууме, находящихся в труднодоступных для очистки местах, от перенапыленных углеводородных слоев и может быть использовано в установках с обращенными к плазме элементами из углеродных материалов и в технологических...
Тип: Изобретение
Номер охранного документа: 0002669864
Дата охранного документа: 16.10.2018
17.11.2018
№218.016.9e63

Устройство для компрессии данных

Изобретение относится к области вычислительной техники и предназначено для использования в системах обработки информации. Технический результат – уменьшение времени передачи данных и повышение информационной вместимости без потерь информации. Устройство содержит: N входных символов D1, D2, …,...
Тип: Изобретение
Номер охранного документа: 0002672625
Дата охранного документа: 16.11.2018
17.11.2018
№218.016.9e66

Устройство для определения количества нулей и единиц по группам в двоичном числе

Изобретение относится к области вычислительной техники. Технический результат заключается в расширении арсенала средств того же назначения. Устройство для определение количества нулей или единиц по группам в двоичном числе содержит N разрядов входного двоичного числа D1, …, DN, (N+1) групп...
Тип: Изобретение
Номер охранного документа: 0002672626
Дата охранного документа: 16.11.2018
14.12.2018
№218.016.a6ee

Устройство сдвига групп данных

Изобретение относится к области вычислительной техники и может быть использовано в процессорах обработки сигналов и процессорах общего назначения, устройствах преобразования информации, кодирования и декодирования данных, устройствах криптографии. Техническим результатом является возможность...
Тип: Изобретение
Номер охранного документа: 0002674934
Дата охранного документа: 13.12.2018
01.03.2019
№219.016.c899

Устройство групповой структуры для детектирования групп нулевых и единичных бит и определение их количества

Изобретение относится к области вычислительной техники. Технический результат заключается в расширении функциональных возможностей. Устройство содержит N разрядов входного двоичного числа D1, D2, …, DN, которые разделены на L групп по М разрядов в группе (N=L*M), Z ступеней блоков элементов,...
Тип: Изобретение
Номер охранного документа: 0002680762
Дата охранного документа: 26.02.2019
01.03.2019
№219.016.c8ac

Устройство последовательного типа для детектирования групп нулевых и единичных бит и определение их количества

Изобретение относится к области вычислительной техники. Технический результат заключается в расширении арсенала средств того же назначения. Таким образом, в предлагаемом устройстве для входных последовательностей данных размерностью N, поступающих на внешний вход данных DI, на соответствующих...
Тип: Изобретение
Номер охранного документа: 0002680759
Дата охранного документа: 26.02.2019
03.04.2019
№219.016.fae5

Способ нелинейного трехмерного многораундового преобразования данных

Изобретение относится к области вычислительной техники. Техническим результатом является повышение криптостойкости и быстродействия нелинейного многораундового преобразования данных. Раскрыт способ нелинейного трехмерного многораундового преобразования данных, включающий представление входного,...
Тип: Изобретение
Номер охранного документа: 0002683689
Дата охранного документа: 01.04.2019
02.07.2019
№219.017.a347

Способ коллоидного синтеза квантовых точек структуры ядро/многослойная оболочка

Использование: для коллоидного синтеза фотолюминесцентных полупроводниковых наночастиц (квантовых точек) структуры ядро/многослойная оболочка. Сущность изобретения заключается в том, что способ коллоидного синтеза квантовых точек структуры ядро/многослойная оболочка включает следующие этапы:...
Тип: Изобретение
Номер охранного документа: 0002692929
Дата охранного документа: 28.06.2019
Показаны записи 11-20 из 21.
20.01.2018
№218.016.0ee3

Способ синтеза нанопроволок нитрида алюминия

Изобретение относится к технологии получения нанопроволок AlN для микроэлектроники и может быть использовано для улучшения рассеивания тепла гетероструктурами, для создания светильников, индикаторов и плоских экранов, работающих на матрице из нанопроволок и т.д. Проводят импульсное лазерное...
Тип: Изобретение
Номер охранного документа: 0002633160
Дата охранного документа: 11.10.2017
04.04.2018
№218.016.35a2

Способ финишной планаризации поверхности оптической стеклокерамики

Изобретение относится к способу финишной планаризации поверхности оптической стеклокерамики. Обработку поверхности оптической стеклокерамики проводят в две стадии. На первой стадии осуществляется обработка поверхности оптической стеклокерамики пучками ускоренных кластерных ионов аргона. Далее...
Тип: Изобретение
Номер охранного документа: 0002646262
Дата охранного документа: 02.03.2018
29.08.2018
№218.016.811a

Устройство для моделирования фазоповоротного устройства в энергетических системах

Изобретение относится к области обработки данных, а именно к моделирующим устройствам, и может быть использовано при моделировании фазоповоротного устройства и его конструктивных элементов в составе энергетических систем. Техническим результатом является обеспечение в реальном времени...
Тип: Изобретение
Номер охранного документа: 0002665266
Дата охранного документа: 28.08.2018
02.02.2019
№219.016.b645

Устройство для манипулирования микро- и нанообъектами с функцией хранения

Изобретение относится к области механики, микросистемной техники и наномеханики, в частности к технике устройств на основе материалов с эффектом памяти формы (ЭПФ), и может найти применение в области радиоэлектроники, машиностроения, биотехнологии, электронной микроскопии, медицины. Устройство...
Тип: Изобретение
Номер охранного документа: 0002678699
Дата охранного документа: 31.01.2019
24.05.2019
№219.017.5dae

Способ модификации наноструктур материалов электронной техники газовыми кластерными ионами

Использование: для модификации наноструктур материалов. Сущность изобретения заключается в том, что способ модификации наноструктур материалов электронной техники газовыми кластерными ионами, включающий удаление из пучка кластерных ионов любого нежелательного ионизирующего излучения, при этом...
Тип: Изобретение
Номер охранного документа: 0002688865
Дата охранного документа: 22.05.2019
10.07.2019
№219.017.a9d0

Устройство для моделирования передачи постоянного тока в энергетической системе

Изобретение относится к области обработки данных и может быть использовано для моделирования передачи постоянного тока в энергетической системе. Техническим результатом является обеспечение воспроизведения в реальном времени непрерывного спектра нормальных и анормальных процессов передачи...
Тип: Изобретение
Номер охранного документа: 0002694014
Дата охранного документа: 08.07.2019
23.07.2019
№219.017.b716

Способ планаризации поверхности наноструктур материалов электронной техники пучком газовых кластерных ионов

Использование: для планаризации поверхности наноструктур материалов. Сущность изобретения заключается в том, что способ планаризации поверхности наноструктур материалов электронной техники осуществляют пучком газовых кластерных ионов, а в качестве рабочего газа пучка газовых кластерных ионов...
Тип: Изобретение
Номер охранного документа: 0002695028
Дата охранного документа: 18.07.2019
24.10.2019
№219.017.dabb

Способ формирования слоя пористого кремния на кристаллической подложке

Изобретение относится к полупроводниковой технологии, а именно к процессам электрохимического формирования пористого кремния, перспективного структурированного материала. Техническим результатом изобретения является устранение недостатков традиционных электролитических способов, а именно...
Тип: Изобретение
Номер охранного документа: 0002703909
Дата охранного документа: 23.10.2019
08.02.2020
№220.018.0036

Устройство для манипулирования микро- и нанообъектами

Изобретение относится к устройству для манипулирования микро- и нанообъектами и способу изготовления микромеханического актюатора и может найти применение в области радиоэлектроники, машиностроения, биотехнологии, электронной микроскопии, медицины. Устройство включает микромеханический актюатор...
Тип: Изобретение
Номер охранного документа: 0002713527
Дата охранного документа: 05.02.2020
02.08.2020
№220.018.3b83

Устройство для ионизации кластерных ионов

Изобретение относится к устройству для ионизации кластерных ионов. Устройство включает анод (1), катод (2), керамическое основание (3) и отражатель электронов (4). Анод (1) и катод (2) закреплены на керамическом основании (3). Катод (2) изготовлен из материала с низкой температурой эмиссии....
Тип: Изобретение
Номер охранного документа: 0002728513
Дата охранного документа: 30.07.2020
+ добавить свой РИД