×
23.07.2019
219.017.b716

СПОСОБ ПЛАНАРИЗАЦИИ ПОВЕРХНОСТИ НАНОСТРУКТУР МАТЕРИАЛОВ ЭЛЕКТРОННОЙ ТЕХНИКИ ПУЧКОМ ГАЗОВЫХ КЛАСТЕРНЫХ ИОНОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Использование: для планаризации поверхности наноструктур материалов. Сущность изобретения заключается в том, что способ планаризации поверхности наноструктур материалов электронной техники осуществляют пучком газовых кластерных ионов, а в качестве рабочего газа пучка газовых кластерных ионов используют ксенон. Технический результат: обеспечение возможности уменьшения шероховатости поверхности примерно в 2 раза. 1 табл.
Реферат Свернуть Развернуть

Изобретение относится к области производства изделий в микро- и наноэлектроники, оптоэлектроники и оптике, при производстве которых шероховатость поверхности является критическим фактором в улучшении их эксплуатационных параметров.

Точность тонких структур зависит от точности методов изготовления, используемых в процессе формирования пленки, процесса травления, и тому подобного. Примером такого способа выравнивания поверхности является метод сглаживания боковой стенки структуры с помощью облучения пучком газовых кластерных ионов под углом от 60° до 90° по отношению к нормали к твердой поверхности (WO 2005031838 МПК C23F 4/00; H01J 37/305, опуб. 2005-04-07).

Однако этот способ позволяет сгладить твердую поверхность с неравномерностью (шероховатость поверхности), имеющей площадь порядка десяти нанометров, что не удовлетворяет современный уровень техники.

Известен принятый за прототип способ планиризации поверхности диэлектрика непрерывным пучком газовых кластерных ионов (GCIB), в котором технологический газ для GCIB т выбирают из группы, состоящей из SiH4, NH3, N2, Ar, He, O2, NF3, CF4, В2Н6, РН3, AsH3, СеН4, СН4, CxHyFz, HBr, SF 6, Cl 2, или их сочетание. ((US 8193094 (В2), МПК H01L 21/3105, опуб. 2011-12-22).

Однако шероховатость поверхности не является удовлетворительной для современного уровня техники.

Предлагаемое изобретение решает задачу уменьшения шероховатости при обработке поверхности наноструктур материалов электронной техники пучком газовых кластерных ионов.

Поставленная задача решается способом планиризации поверхности наноструктур материалов электронной техники пучком газовых кластерных ионов, новизна которого заключается в том, что в качестве рабочего газа пучка газовых кластерных ионов используют ксенон (Xe).

Технический результат при этом заключается в уменьшения шероховатости поверхности примерно в 2 раза.

Отсутствие источников информации, содержащих ту же совокупность признаков, что и в разработанном способе, сообщает ему соответствие критерию «новизна».

Та же совокупность признаков позволяет получить новый непредсказуемый эффект, уменьшения шероховатости примерно в 2 раза, и, таким образом, сообщает ей соответствию критерию «изобретательский уровень».

Проведение нового способа с использованием известного оборудования сообщает разработанному изобретению соответствие критерию «промышленная применимость».

В Таблице 1 приведены данные по влияния изменения параметров планиризации на ее результаты.

Приведенные ниже примеры подтверждают, но не ограничивают применение изобретения.

Пример 1. Планаризация поверхности кремния пучком газовых кластерных ионов при использовании в качестве рабочего газа ксенона (Xe).

Для проведения планаризации образцов кремния брали стандартные пластины кремния КДБ10 ориентацией [100] диаметром 100 мм и толщиной 500 мкм, покрытые термическим оксидом кремния. Толщина окисленного слоя составляла 150 нм, а шероховатость поверхности пластины до обработки не более 30 нм.

С помощью системы дифференциальной откачки вакуумировали камеру ускорителя пучков газовых кластерных ионов до достижения давления в системе не выше 10-5 Торр. В качестве рабочего газа использовали ксенон (Xe), удаление из пучка атомарных ионов и легких кластеров проводили путем уменьшения расстояния между постоянными магнитами в системе сепарации. Так, уменьшение расстояния между магнитами до 7 мм, позволило отделять из пучка мономеры и кластеры с размером менее 150 атомов в кластере.

Исходные подложки облучали пучком кластерных ионов с сепарацией по массам с энергией 10 кэВ и дозой 5⋅1016. Облучение проводили в непрерывном режиме подачи газовых кластерных ионов на мишень. Площадь облучения определялась диаметром ионного пучка и составляла 4 мм. Время облучения составляло 30 минут.

Локальная шероховатость исследовалась методом атомно-силовой микроскопии.

В результате планаризации за 30 минут шероховатость кремния снизилась до 0,13 нм.

Пример 2. Планаризация поверхности кремния пучком газовых кластерных ионов при использовании в качестве рабочего газа аргона (Ar).

То же, что в примере 1, только в качестве рабочего газа использовали аргон (Ar).

В результате планаризации за 30 минут шероховатость кремния снизилась до 0,27 нм.

Как видно из данных приведенных в таблице 1, проведение планиризации поверхности образцов кремния пучком газовых кластерных ионов при использовании в качестве рабочего газа ксенона позволяет снизить шероховатость обрабатываемой поверхности по сравнению с использованием в качестве рабочего газа аргона примерно в 2 раза.

Пример 3. Планаризация поверхности меди пучком газовых кластерных ионов при использовании в качестве рабочего газа ксенона (Xe).

В качестве исходных образцов меди для проведения планаризации использовали стандартные пластины кремния КДБ10 ориентацией [100] диаметром 100 мм и толщиной 500 мкм, покрытые термическим оксидом кремния и слоем меди толщиной 0,3 мкм, полученного при помощи магнетронного осаждения. Шероховатость поверхности пластины до обработки не более 30 нм.

С помощью системы дифференциальной откачки вакуумировали камеру ускорителя пучков газовых кластерных ионов до достижения давления в системе не выше 10-5 Торр. В качестве рабочего газа использовали ксенон, удаление из пучка атомарных ионов и легких кластеров проводили путем уменьшения расстояния между постоянными магнитами в системе сепарации. Так, уменьшение расстояния между магнитами до 7 мм, позволило отделять из пучка мономеры и кластеры с размером менее 150 атомов в кластере.

Исходные подложки облучали пучком кластерных ионов с сепарацией по массам с энергией 10 кэВ и дозой 5⋅1016. Облучение проводили в непрерывном режиме в непрерывном режиме подачи газовых кластерных ионов на мишень. Площадь облучения определялась диаметром ионного пучка и составляла 4 мм. Время облучения составляло 30 минут.

Локальная шероховатость исследовалась методом атомно-силовой микроскопии.

В результате планаризации за 30 минут шероховатость меди снизилась до 0,28 нм.

Пример 4. Планаризация поверхности меди пучком газовых кластерных ионов при использовании в качестве рабочего газа криптона (Kr).

То же, что в примере 1, только в качестве рабочего газа использовали криптон (Kr).

В результате планаризации за 30 минут шероховатость меди снизилась до 0,5 нм.

Как видно из данных приведенных в таблице 1, проведение планиризации поверхности образцов кремния пучком газовых кластерных ионов при использовании в качестве рабочего газа ксенона позволяет снизить шероховатость обрабатываемой поверхности по сравнению с использованием в качестве рабочего газа криптона примерно в 2 раза.

Аналогичные результаты были получены при использовании в качестве рабочего газа таких газов как SiH4, NH3, N2, Ar, He, O2, NF3, CF4, В2Н6, РН3, AsH3, СеН4, СН4, CxHyFz, HBr, SF 6, Cl 2, или их сочетание

Таким образом, приведенные выше примеры проведения планиризации поверхности наноструктур материалов электронной техники пучком газовых кластерных ионов при использовании в качестве рабочего газа ксенона позволяет снизить шероховатость обрабатываемой поверхности по сравнению с использованием в качестве рабочего газа известных из уровня техники газов примерно в 2 раза позволяя достичь значений шероховатости 0,13-0,28 нм.

Способ планаризации поверхности наноструктур материалов электронной техники пучком газовых кластерных ионов, отличающийся тем, что в качестве рабочего газа пучка газовых кластерных ионов используют ксенон.
Источник поступления информации: Роспатент

Показаны записи 1-2 из 2.
25.08.2017
№217.015.b523

Способ получения пленки графена на подложке

Изобретение относится к химии, оптоэлектронике и нанотехнологии и может быть использовано при изготовлении прозрачных электродов и приборов наноэлектроники. В кварцевый реактор помещают подложку - Х-срез пьезоэлектрического кристалла, например, LaGaTaO, плоскости (110) которого параллельны...
Тип: Изобретение
Номер охранного документа: 0002614289
Дата охранного документа: 24.03.2017
24.05.2019
№219.017.5dae

Способ модификации наноструктур материалов электронной техники газовыми кластерными ионами

Использование: для модификации наноструктур материалов. Сущность изобретения заключается в том, что способ модификации наноструктур материалов электронной техники газовыми кластерными ионами, включающий удаление из пучка кластерных ионов любого нежелательного ионизирующего излучения, при этом...
Тип: Изобретение
Номер охранного документа: 0002688865
Дата охранного документа: 22.05.2019
Показаны записи 1-7 из 7.
10.12.2013
№216.012.89f6

Высокочастотный акустооптический модулятор рентгеновского излучения

Использование: для управления временной структурой пучка рентгеновского излучения. Сущность заключается в том, что высокочастотный акустооптический модулятор рентгеновского излучения состоит из пьезоэлектрической подложки со сформированным на ней преобразователем высокочастотного электрического...
Тип: Изобретение
Номер охранного документа: 0002501000
Дата охранного документа: 10.12.2013
20.07.2014
№216.012.e25a

Способ создания мелко залегающих наноразмерных легированных слоев в кремнии

Изобретение относится к области технологии микроэлектроники и может быть использовано для получения тонкого легированного примесью слоя в кремнии для создания мелко залегающих p-n-переходов. Предложенное изобретение решает задачу упрощения технологии с одновременным улучшением качества...
Тип: Изобретение
Номер охранного документа: 0002523732
Дата охранного документа: 20.07.2014
27.11.2014
№216.013.0a88

Способ получения материала для высокотемпературного массочувствительного пьезорезонансного сенсора на основе монокристалла лантангаллиевого танталата алюминия

Изобретение относится к технологии получения монокристаллов лантангаллиевого танталата алюминия, обладающего пьезоэлектрическим эффектом, используемым для изготовления устройств на объемных и поверхностных акустических волнах. Способ получения материала для высокотемпературного...
Тип: Изобретение
Номер охранного документа: 0002534104
Дата охранного документа: 27.11.2014
10.05.2018
№218.016.4464

Способ подачи газа в сверхзвуковое сопло ускорителя газовых кластерных ионов

Изобретение относится к области ускорительной техники, в частности к системам подачи газа в сверхзвуковое сопло при формировании пучков ускоренных газовых кластерных ионов. Технический результат - расширение класса рабочих газов, в том числе слабо кластеризуемых, используемых в системах для...
Тип: Изобретение
Номер охранного документа: 0002649883
Дата охранного документа: 05.04.2018
24.05.2019
№219.017.5dae

Способ модификации наноструктур материалов электронной техники газовыми кластерными ионами

Использование: для модификации наноструктур материалов. Сущность изобретения заключается в том, что способ модификации наноструктур материалов электронной техники газовыми кластерными ионами, включающий удаление из пучка кластерных ионов любого нежелательного ионизирующего излучения, при этом...
Тип: Изобретение
Номер охранного документа: 0002688865
Дата охранного документа: 22.05.2019
13.06.2019
№219.017.80ee

Прямой метанольный топливный элемент

Изобретение относится к области электротехники, а именно к прямому метанольному топливному элементу, который может использоваться в качестве источника питания, например, для сотовых телефонов. Предложенный топливный элемент в катодной части содержит расположенную между газодиффузионным слоем...
Тип: Изобретение
Номер охранного документа: 0002691127
Дата охранного документа: 11.06.2019
04.06.2023
№223.018.76c1

Устройство для формирования пучка кластерных или атомарных ионов газа

Изобретение относится к ускорительной технике, в частности к источникам ионов, и может быть использовано для получения ускоренных кластерных или атомарных ионов. Данное изобретение позволяет получить стабильный направленный поток ионов на выходе ионизатора и может найти применение как для...
Тип: Изобретение
Номер охранного документа: 0002796652
Дата охранного документа: 29.05.2023
+ добавить свой РИД