×
10.05.2018
218.016.43ae

Результат интеллектуальной деятельности: СПОСОБ ПРОГНОЗИРОВАНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Предложен способ прогнозирования показателей термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием постоянной массы минимум при трех температурах, выбранных в зависимости от базовой основы, назначения и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления. Причем через равные промежутки времени отбирают пробу окисленного смазочного материала и проводят оценку процесса окисления. Согласно изобретению для оценки процесса окисления определяют оптическую плотность, испаряемость и коэффициент термоокислительной стабильности, строят графические зависимости этих показателей от времени и трех выбранных температур испытания. Определяют время достижения выбранных значений показателей термоокислительной стабильности от минимальной до максимальной величины при каждой температуре. Определяют десятичный логарифм времени достижения выбранных значений показателей термоокислительной стабильности, строят графические зависимости десятичного логарифма времени достижения выбранных значений показателей термоокислительной стабильности от температуры испытания. Прогнозирование этих показателей при других температурах, отличных от принятых, осуществляют по значениям антилогарифмов времени достижения показателей термоокислительной стабильности для этих температур. Технический результат - повышение информативности способа, снижение трудоемкости определения показателей термоокислительной стабильности в широком диапазоне температур за счет возможности их прогнозирования, более точное определение температурной области работоспособности смазочных материалов. 2 табл., 6 ил.

Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов.

Известен способ определения термоокислительной стабильности смазочных материалов, включающий нагревание смазочного материала в присутствии воздуха, перемешивание, фотометрирование и определение параметров процесса окисления (Патент РФ №2219530 С1, дата приоритета 11.04.2002, дата публикации 20.12.2003, авторы Ковальский В.И. и др. RU).

Наиболее близким по технической сущности и достигаемому результату является принятый в качестве прототипа способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием, постоянного объема при оптимальной температуре, выбранной в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, через равные промежутки времени отбирают пробу окисленного смазочного материала, определяют фотометрированием коэффициент поглощения светового потока, вязкость исходного и окисленного смазочного материала и проводят оценку процесса окисления, причем испытания смазочного материала проводят как минимум при трех температурах ниже критической, определяют относительную вязкость как отношение вязкости окисленного смазочного материала к вязкости исходного, а термоокислительную стабильность определяют по показателю отношения коэффициента поглощения светового потока к относительной вязкости, строят графическую зависимость показателя термоокислительной стабильности от коэффициента поглощения светового потока, по которой определяют однородность состава продуктов окисления и температурную область работоспособности исследуемого смазочного материала (Патент РФ №2334976 С1, дата приоритета 26.12.2006, дата публикации 27.09.2008, авторы Ковальский Б.И. и др., RU, прототип).

Общим недостатком аналога и прототипа является невозможность прогнозировать показатели термоокислительной стабильности, включающие оптическую плотность, испаряемость и коэффициент термоокислительной стабильности при любых температурах ниже критической.

Задачей изобретения является создание способа прогнозирования показателей термоокислительной стабильности смазочных материалов при любых температурах, на основе известных данных этих показателей, полученных при трех выбранных температурах.

Для решения поставленной задачи предложен способ прогнозирования показателей термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием постоянной массы минимум при трех температурах, выбранных в зависимости от базовой основы, назначения и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала и проводят оценку процесса окисления. Согласно изобретению для оценки процесса окисления определяют оптическую плотность, испаряемость и коэффициент термоокислительной стабильности, строят графические зависимости этих показателей от времени и трех выбранных температур испытания, определяют время достижения выбранных значений показателей термоокислительной стабильности от минимальной до максимальной величины при каждой температуре, определяют десятичный логарифм времени достижения выбранных значений показателей термоокислительной стабильности, строят графические зависимости десятичного логарифма времени достижения выбранных значений показателей термоокислительной стабильности от температуры испытания, а прогнозирование этих показателей при других температурах, отличных от принятых, осуществляют по значениям антилогарифмов времени достижения показателей термоокислительной стабильности для этих температур.

На фиг. 1а представлены зависимости оптической плотности от времени и температуры окисления: 1 - 200°C; 2 - 190°C; 3 - 180°C; 4 - 170°C; на фиг. 1б - зависимости десятичного логарифма времени достижения принятых значений оптической плотности от температуры испытания частично синтетического моторного масла Mobil 10W-40 SJ/CF: 1 - D=0,1; 2 - D=0,2; 3 - D=0,3; 4 - D=0,4; 5 - D=0,5; 6 - D=0,6; 7 - D=0,7.

На фиг. 2а - зависимости испаряемости от времени и температуры испытания: 1 - 200°C; 2 - 190°C; 3 - 180°C; 4 - 170°C; на фиг. 2б - зависимости десятичного логарифма времени достижения принятых значений испаряемости от температуры испытания частично синтетического моторного масла Mobil 10W-40 SJ/CF: 1 - G=2 г; 2 - G=3 г; 3 - G=4 г; 4 - G=5 г; 5 - G=6 г; 6 - G=7 г; 7 - G=8 г.

На фиг. 3а - зависимости коэффициента термоокислительной стабильности от времени и температуры испытания: 1 - 200°C; 2 - 190°C; 3 - 180°C; 4 - 170°C; на фиг. 3б - зависимости десятичного логарифма времени достижения принятых значений коэффициента термоокислительной стабильности от температуры испытания частично синтетического моторного масла Mobil 10W-40 SJ/CF: 1 - ПТОС=0,1; 2 - ПТОС=0,2; 3 - ПТОС=0,3; 4 - ПТОС=0,4; 5 - ПТОС=0,5; 6 - ПТОС=0,6; 7 - ПТОС=0,7.

На фиг. 4а - зависимости оптической плотности от времени и температуры окисления: 1 - 180°C; 2 - 170°C; 3 - 160°C; на фиг. 4б - зависимости десятичного логарифма времени достижения принятых значений оптической плотности от температуры испытания минерального моторного масла Tavota Castle 10W-30 SL: 1 - D=0,1; 2 - D=0,2; 3 - D=0,3; 4 - D=0,4; 5 - D=0,5.

На фиг. 5a - зависимости испаряемости от времени и температуры испытания: 1 - 180°C; 2 - 170°C; 3 - 160°C; на фиг. 5б - зависимости десятичного логарифма времени достижения принятых значений испаряемости от температуры испытания минерального моторного масла Tavota Castle 10W-30 SL: 1 - G=1 г; 2 - G=2 г; 3 - G=3 г; 4 - G=4 г; 5 - G=5 г; 6 - G=6 г; 7 - G=7 г; 8 - G=8 г.

На фиг. 6a - зависимости коэффициента термоокислительной стабильности от времени и температуры испытания: 1 - 180°C; 2 - 170°C; 3 - 160°C; на фиг. 6б - зависимости десятичного логарифма времени достижения принятых значений коэффициента термоокислительной стабильности от температуры испытания минерального моторного масла Tavota Castle 10W-30 SL: 1 - ПТОС=0,1; 2 - ПТОС=0,2; 3 - ПТОС=0,3; 4 - ПТОС=0,4; 5 - ПТОС=0,5; 6 - ПТОС=0,6.

Способ прогнозирования показателей термоокислительной стабильности предусматривает испытания смазочных материалов при трех температурах, определение показателей термоокислительной стабильности, таких как оптическая плотность D, испаряемость G и коэффициент термоокислительной стабильности ПТОС, и по этим данным вычисляются значения этих показателей при других температурах. Поэтому для реализации способа необходимо получить зависимости оптической плотности, испаряемости и коэффициента термоокислительной стабильности от времени и принятых температур испытания. Для этого пробы смазочного материала постоянной массы термостатируют при одной из выбранных температур, например 180°C, с перемешиванием механической мешалкой с постоянной частотой вращения. Через равные промежутки времени пробу окисленного смазочного материала взвешивают, определяют массу испарившегося масла (испаряемость) G, определяют коэффициент испаряемости KG

где G - масса испарившегося смазочного материала за время окисления, г; M - масса смазочного материала до испытания, г.

Затем отбирается часть окисленной пробы для фотометрирования и определения оптической плотности D:

где ϕ0 - световой поток, падающий на поверхность смазочного масла в кювете; ϕ - световой поток, прошедший через слой окисленного масла в кювете.

По данным D и KG определяют коэффициент термоокислительной стабильности:

Испытания смазочного материала продолжают до достижения показателя оптической плотности значения, равного 0,6-0,7. Данный смазочный материал испытывают по этой технологии при двух других выбранных температурах, например 170 и 160°C. По полученным данным показателей D, G и ПТОС строят графические зависимости от времени и температуры испытания (фиг. 1а-6а). Данные зависимости используют для определения времени достижения оптической плотности D и коэффициента термоокислительной стабильности значений, равных 0,1; 0,2; 0,3 и т.д., а испаряемости - значений, равных 1; 2; 3 и т.д. г (на графиках горизонтальные штриховые линии). По данным времени достижения указанных значений оптической плотности, испаряемости и коэффициента термоокислительной стабильности определяют их десятичные логарифмы, строят графические зависимости десятичного логарифма времени достижения принятых значений показателей термоокислительной стабильности (D, G, ПТОС) от температуры испытания, по которым прогнозируют значения показателей термоокислительной стабильности при других температурах. Например, для определения значений оптической плотности, испаряемости и коэффициента термоокислительной стабильности частично синтетического моторного масла Mobil 10W-40 SJ/CF при температуре 160°C было выбрано четыре температуры термостатирования - 200°C, 190°C, 180°C и 170°C. Для этих температур определили значения D, G и ПТОС и результаты записали в таблицу 1. Затем построили графические зависимости показателей D, G и ПТОС от времени и температуры испытания (фиг. 1а-3а), а также графические зависимости десятичного логарифма времени достижения принятых показателей от температуры испытания (фиг. 1б-3б). После этого определили ординаты десятичного логарифма на оси ординат при температуре 160°C, вычислили антилогарифм этих значений, на фиг. 1а-3а отложили эти значения на горизонтальных штриховых линиях (кривые 5 на фиг. 1а-3а) и на оси ординат определили искомые значения оптической плотности, испаряемости и коэффициента термоокислительной стабильности при температуре 160°C. Аналогичные действия проведены при испытании минерального моторного масла Tavota Castle 10W-30 SL при выбранных температурах 180°C, 170°C и 160°C для нахождения значений показателей термоокислительной стабильности при температурах 190 и 150°C (кривые 4 и 5 на фиг. 4а-6а). Результаты данных испытаний отражены в таблице 2 и на фиг. 4 - 6.

На фиг. 1а, 2а, 3а построены экспериментальные зависимости показателей термоокислительной стабильности D, G, ПТОС от времени и температур испытания 200°C, 190°C, 180°C и 170°C (кривые 1-4) для частично синтетического моторного масла Mobil 10W-40 SJ/CF с целью доказательства, что десятичный логарифм времени достижения установленных значений, например D и ПТОС, равных 0,1; 0,2; 0,3 и т.д., или испаряемости G, равной 2 г, 3 г, 4 г и т.д., от температуры испытания изменяется по линейной зависимости (фиг. 1б-3б). Для того чтобы получить зависимость, например, оптической плотности от времени при температуре 160°C без проведения эксперимента используют графические зависимости lgt=f(T) (фиг. 1б) и уже для температуры 160°C (данные на ординате) определяют антилогарифм времени достижения значений D, например 0,1; 0,2; 0,3 и на штриховых линиях на фиг. 1а откладывают время и строят графическую зависимость D=f(t) для температуры 160°C (кривая 5). Таким образом, можно прогнозировать изменение оптической плотности, испаряемости и коэффициента термоокислительной стабильности для температур ниже или выше температур, при которых проводились экспериментальные исследования.

Предлагаемое техническое решение позволяет повысить информативность способа, снизить трудоемкость определения показателей термоокислительной стабильности в широком диапазоне температур, определить температурную область работоспособности смазочных материалов и промышленно применимо.

Способ прогнозирования показателей термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием постоянной массы минимум при трех температурах, выбранных в зависимости от базовой основы, назначения и группы эксплуатационных свойств в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала и проводят оценку процесса окисления, отличающийся тем, что для оценки процесса окисления определяют оптическую плотность, испаряемость и коэффициент термоокислительной стабильности, строят графические зависимости этих показателей от времени и трех выбранных температур испытания, определяют время достижения выбранных значений показателей термоокислительной стабильности от минимальной до максимальной величины при каждой температуре, определяют десятичный логарифм времени достижения выбранных значений показателей термоокислительной стабильности, строят графические зависимости десятичного логарифма времени достижения выбранных значений показателей термоокислительной стабильности от температуры испытания, а прогнозирование значений этих показателей при других температурах, отличных от принятых, осуществляют по значениям антилогарифмов времени достижения показателей термоокислительной стабильности для этих температур.
СПОСОБ ПРОГНОЗИРОВАНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ПРОГНОЗИРОВАНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ПРОГНОЗИРОВАНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ПРОГНОЗИРОВАНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ПРОГНОЗИРОВАНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ПРОГНОЗИРОВАНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ПРОГНОЗИРОВАНИЯ ПОКАЗАТЕЛЕЙ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Показаны записи 241-250 из 324.
21.12.2019
№219.017.f046

Свая, возведенная в вечномерзлом грунте

Изобретение относится к строительству и может быть использовано при возведении свайных фундаментов на вечномерзлых грунтах. Технический результат - повышение несущей способности сваи, повышение сопротивляемости сваи крутящему моменту, а также сохранение устойчивости и при внезапном оттаивании....
Тип: Изобретение
Номер охранного документа: 0002709579
Дата охранного документа: 18.12.2019
22.12.2019
№219.017.f08b

Передатчик системы ближнепольной магнитной связи

Изобретение относится к технике связи, в частности магнитной связи, предназначено для организации канала передачи информации посредством модулирования низкочастотных магнитных полей и может быть использовано при разработке различных подземных, подводных и других систем связи. Передатчик...
Тип: Изобретение
Номер охранного документа: 0002709790
Дата охранного документа: 20.12.2019
22.12.2019
№219.017.f120

Усилитель мощности передатчика ближнепольной магнитной системы связи

Изобретение относится к области передачи информации, а более конкретно - организации канала посредством модулирования низкочастотных магнитных полей, и предназначено для повышения надежности усилителя мощности передатчика ближнепольной магнитной системы связи при одновременном обеспечении...
Тип: Изобретение
Номер охранного документа: 0002709789
Дата охранного документа: 20.12.2019
27.12.2019
№219.017.f3e7

Миниатюрный полосковый полосно-пропускающий фильтр

Изобретение относятся к радиотехнике, в частности к фильтрам, построенным на полосковых резонаторах. Миниатюрный полосковый полосно-пропускающий фильтр содержит подвешенную в металлическом корпусе-экране диэлектрическую подложку, на одной стороне которой расположены П-образные полосковые...
Тип: Изобретение
Номер охранного документа: 0002710386
Дата охранного документа: 26.12.2019
31.12.2020
№219.017.f47a

Способ получения металлических магнитных покрытий

Изобретение относится к получению магнитных металлических покрытий на медных или стеклянных подложках. Первый вариант способа включает химическое осаждение металлического покрытия на подготовленную подложку из водного раствора, содержащего, г/л: сульфат кобальта 10, сульфат никеля 15,...
Тип: Изобретение
Номер охранного документа: 0002710611
Дата охранного документа: 30.12.2019
16.01.2020
№220.017.f552

Устройство для электрообогрева цистерны с мазутом

Изобретение относится к транспорту вязких продуктов и может быть использовано на объектах нефтехимии, нефтепереработки, при разгрузке застывающих высоковязких продуктов для ускоренного опорожнения железнодорожных цистерн без применения пара и погружных элементов внутри цистерны. Технический...
Тип: Изобретение
Номер охранного документа: 0002710792
Дата охранного документа: 14.01.2020
16.01.2020
№220.017.f5c8

Устройство для прокладки пенных опорных полос при производстве отжига

Изобретение относится к области борьбы с лесными пожарами и производству профилактических выжиганий лесных горючих материалов, а именно к переносным моторизированным устройствам для прокладки пенных опорных полос с целью производства от них отжига. Технический результат, достигаемый при...
Тип: Изобретение
Номер охранного документа: 0002710793
Дата охранного документа: 14.01.2020
21.01.2020
№220.017.f79b

Способ нанесения углеродного покрытия

Изобретение относится к области металлургии и может быть использовано для нанесения углеродных покрытий путем термического разложения углеродосодержащих соединений на поверхности материала. Способ нанесения углеродного покрытия на поверхность изделия, в котором углекислый газ пропускают через...
Тип: Изобретение
Номер охранного документа: 0002711277
Дата охранного документа: 16.01.2020
21.01.2020
№220.017.f7b3

Способ нанесения покрытия sno

Изобретение относится к области металлургии, а именно к нанесению покрытия из диоксида олова, и может быть использовано при изготовлении защитных покрытий, а также при создании газовых сенсоров, оптоэлектрических и люминисцентных устройств. Печь с SnO устанавливают в емкость, закрытую...
Тип: Изобретение
Номер охранного документа: 0002711386
Дата охранного документа: 17.01.2020
21.01.2020
№220.017.f7d0

Устройство для непрерывного литья и прессования

Изобретение относится к области цветной металлургии и может быть использовано в устройствах для непрерывного литья и прессования металла. Устройство содержит дозатор для подачи расплавленного металла, корпус с коллекторами, кристаллизатор с кольцевой канавкой на верхней части, сопряженной с...
Тип: Изобретение
Номер охранного документа: 0002711276
Дата охранного документа: 16.01.2020
Показаны записи 31-35 из 35.
03.08.2019
№219.017.bc3f

Способ определения влияния температуры испытания на свойства продуктов окисления смазочных материалов

Изобретение относится к технологии испытания смазочных материалов и может использоваться для определения изменения состава продуктов окисления. Сущность: пробу смазочного материала постоянной массы термостатируют минимум при трех температурах, при атмосферном давлении с перемешиванием. Через...
Тип: Изобретение
Номер охранного документа: 0002696357
Дата охранного документа: 01.08.2019
15.11.2019
№219.017.e246

Способ определения предельно допустимых показателей работоспособности смазочных материалов

Изобретение относится к технологии определения качества нефтепродуктов и может применяться для контроля термоокислительной стабильности и температурной области работоспособности смазочных материалов. Предложен способ определения предельно допустимых показателей работоспособности смазочных...
Тип: Изобретение
Номер охранного документа: 0002705942
Дата охранного документа: 12.11.2019
09.02.2020
№220.018.015f

Способ определения состояния работающих моторных масел и технического состояния двигателей внутреннего сгорания

Изобретение относится к технологии оценки качества работающих моторных масел и технического состояния двигателей внутреннего сгорания. Предложен способ определения состояния работающих моторных масел и технического состояния двигателей внутреннего сгорания путем фотометрирования проб работающих...
Тип: Изобретение
Номер охранного документа: 0002713810
Дата охранного документа: 07.02.2020
13.02.2020
№220.018.0229

Способ определения работоспособности смазочных масел

Изобретение относится к технологии оценки качества работающих моторных масел, технического состояния двигателей внутреннего сгорания и системы фильтрации. Предложен способ определения работоспособности смазочного масла, заключающийся в том, что отбирают пробы работающего масла из двигателя...
Тип: Изобретение
Номер охранного документа: 0002713920
Дата охранного документа: 11.02.2020
29.05.2020
№220.018.21ad

Способ определения температуры начала изменения показателей термоокислительной стабильности и предельной температуры работоспособности смазочных материалов

Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Предложен способ, при котором пробы смазочного материала термостатируют минимум при трех выбранных температурах в присутствии воздуха с перемешиванием постоянной массы в течение...
Тип: Изобретение
Номер охранного документа: 0002722119
Дата охранного документа: 26.05.2020
+ добавить свой РИД