×
10.05.2018
218.016.40f7

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ИСПАРЕНИЯ ЖИДКОСТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области приборостроения, в частности, может быть использовано в устройствах дозирования газов, а также может быть использовано в химической, нефтеперерабатывающей и других областях промышленности. В устройстве для испарения жидкости, содержащем мини- или микроканал для протока газа, в нижней стенке которого имеется каверна с жидкостью прямоугольной формы, согласно изобретению в нижней стенке канала на границе раздела газ-жидкость содержится решетка, состоящая из продольных ребер прямоугольной формы, причем верхняя грань ребра имеет продольную канавку треугольной формы. Технический результат - повышение интенсивности испарения, снижение металлоемкости испарителей. 2 ил.

Изобретение относится к области приборостроении, в частности, может быть использовано в устройствах дозирования газов, а также может быть использовано в химической, нефтеперерабатывающей и других областях промышленности.

В ряде случаев в промышленности необходимо при относительно невысокой температуре испарить некоторый объем жидкости. Часто такое испарение происходит в поток газа другой жидкости или в воздух. Так, в дозаторах газа к основному потоку газа, например азота, воздуха или аргона, подмешивается строго определенная концентрация другого газа, например водяного пара, этилового спирта или фреона. Причем последний образуется за счет испарения некоторого количества жидкости.

Наиболее близкое техническое решение описано в статье (Lyulin Y.V. and Kabov О.А., Measurement of the Evaporation Mass Flow Rate in a Horizontal Liquid Layer Partly Opened into Flowing Gas, Technical Physics Letters, vol. 39, No. 9, pp.795-797, 2013; Scheid В., Margerit J., Iorio C.S., Joannes L., Heraud M., Queeckers P., Dauby P.C., Colinet P. // Experiments in Fluids. 2012. V. 52. P. 1107-1119), в котором газ прокачивается в плоском мини- или микроканале, в нижней стенке которого имеется каверна с жидкостью. Уровень жидкости либо поддерживается постоянным с помощью специальных устройств, либо может изменяться и быть выпуклым в газовую фазу или вогнутым в каверну.

Недостатком данного устройства является сравнительно низкая интенсивность удельного испарения (кг/м2с), которая слабо зависит от скорости газа и снижается с увеличением размера каверны (Yu. V. Lyulin, D.V. Feoktistov, I.A. Afanas'ev, E.S. Chachilo, O.A. Kabov and G.V. Kuznetsov, Measuring the Rate of Local Evaporation from the Liquid Surface under the Action of Gas Flow, Technical Physics Letters, vol. 41, No. 7, pp. 665-667, 2015.). Например, в работе (Lyulin Y.V. and Kabov O.A., Evaporative convection in a horizontal liquid layer under shear-stress gas flow, Int. J. of Heat and Mass Transfer, Vol. 70, pp. 599-609, 2014) получена зависимость расхода испарения Q от скорости газа U:

Q ~ U0.15

Другим недостатком этого устройства является то, что оно может работать только при положении, близком к горизонтальному. При существенном отклонении от горизонтального положения жидкость может вытекать из каверны, что приводит к нестационарному испарению.

Задачей заявляемого изобретения является повышение интенсивности испарения, повышение эффективности системы в целом, снижение металлоемкости испарителей, обеспечение их работы на транспортных средствах.

Поставленная задача решается тем, что в устройстве для испарения жидкости, содержащем мини- или микроканал для протока газа, в нижней стенке которого имеется каверна с жидкостью прямоугольной формы, согласно изобретению в нижней стенке канала на границе раздела газ-жидкость содержится решетка, состоящая из продольных ребер прямоугольной формы, причем верхняя грань ребра имеет продольную канавку треугольной формы.

Решетка разделяет относительно большую поверхность границы раздела газ-жидкость на микро- или мини-ячейки и тем самым интенсифицирует испарение. Интенсификация достигается за счет образования значительного количества контактных линий газ-жидкость-твердое тело.

На фиг. 1 показано устройства для испарения жидкости (вид сверху). На фиг. 2 показан поперечный разрез ребер решетки.

1 - поток газа, 2 - каверна с жидкостью, 3 - ребра решетки (n=5), 4 - выход парогазовой смеси, 5 - испаряющаяся жидкость, 6 - мениск жидкости, 7 - контактная линия газ-жидкость-твердое тело, 8 - продольная канавка.

Устройство работает следующим образом.

Поток газа 1 поступает в мини- или микроканал. Решетка 3 разделяет относительно большую поверхность границы раздела газ-жидкость на микро- или мини-ячейки и тем самым интенсифицирует испарение. Интенсификация достигается за счет образования значительного количества контактных линий газ-жидкость-твердое тело 7 (фиг. 2б). Как показано в работах (М. Potash Jr., P. Wayner Jr., Evaporation from a twodimensional extended meniscus, Int. J. HeatMassTransfer, 15(10), pp. 1851-1863, 1972; P. Stephan, C. Busse, Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls, Int. J. Heat Mass Transfer, 35(2), pp. 383-391, 1992), именно в этой локальной области происходит существенная интенсификация теплообмена и испарения. Интенсификация связана с наличием сверхтонкой пленки жидкости в данной области, а также интенсивной микроциркуляцией жидкости, вызванной поверхностными силами в данной области. Данная область часто называется микрорегионом. В некоторых работах интенсификация теплообмена в микрорегионе достигалась до 10 и более раз (Vladimir S. Ajaev, Oleg A. Kabov, Heat and mass transfer near contact lines on heated surfaces, Int. J. of Heat and Mass Transfer, 2017). В работе авторов (A.L. Karchevsky, I.V. Marchuk and O.A. Kabov, Calculation of the heat flux near the liquid-gas-solid contact line, Applied Mathematical Modeling, 40, pp. 1029-1037, 2016) экспериментально получена нитрификация теплообмена в 3-5 раз.

Степень увеличения длины контактных линий определяется параметром:

N=(2(A+B)+2nA)/(2(А+В)

Здесь А и В - размеры полости с жидкостью, n - число ребер в решетке. Если А=В и n=10, то N=1+n/2=6.

В случае недостаточного уровня испаряющейся жидкости 5 (фиг. 2а) мениск 6 находится между ребрами. В случае переполнения каверны жидкости, пульсаций расхода, существенного отклонения устройства от горизонтального и т.п. точки контактной линии фиксируются на канавке, фиг. 2б. При этом мениск жидкости становится выпуклым.

Механизм смачивания капиллярной канавки и «зацепления» контактных линий на поверхности с микроканавками рассмотрен в работе (Gibbs, J.W. The Collected Works of J. Willard Gibbs; Yale University Press: New Haven, CT, 1961; vol. 1, p. 326). Установлено, что жидкость зацепляется за микроканавку, если краевой угол смачивания не превышает θс. Критический краевой угол смачивания можно определить по следующей формуле:

θс=(180°-ϕ)+θе

Здесь ϕ - угол между верхней гранью ребра и гранью микроканавки, θе - краевой угол смачивания жидкостью плоской поверхности ребра. Приведенная формула была подтверждена в работе авторов (Grishaev V., Amirfazli A., Chikov S., Lyulin Y., Kabov O., Study of edge effect to stop liquid spillage for microgravity application, Microgravity sci. technol., vol. 25, pp. 27-33, 2013). Таким образом, использование решетки препятствует вытеканию жидкости за пределы каверны и обеспечивает работу подобных устройств на транспортных средствах. Решетка может быть изготовлена из любого достаточно хорошо смачиваемого материала. Изготовление решетки из металла с высокой теплопроводностью приведет к дополнительной интенсификации испарения. Оптимальная ширина канавки составляет 50-100 микрон. Оптимальный размер толщины ребра решетки составляет 150-300 микрон. Высота ребра решетки должна быть много меньше размеров каверны с жидкостью.

Данное устройство повышает интенсивность испарения, снижает металлоемкость испарителя, обеспечивает его работу на транспортных средствах - автомобили, скоростные поезда, морские суда, самолеты.

Устройство для испарения жидкости, содержащее мини- или микроканал для протока газа, в нижней стенке которого имеется каверна с жидкостью прямоугольной формы, отличающееся тем, что в нижней стенке канала на границе раздела газ-жидкость содержится решетка, состоящая из продольных ребер прямоугольной формы, причем верхняя грань ребра имеет продольную канавку треугольной формы.
УСТРОЙСТВО ДЛЯ ИСПАРЕНИЯ ЖИДКОСТИ
УСТРОЙСТВО ДЛЯ ИСПАРЕНИЯ ЖИДКОСТИ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 95.
20.04.2016
№216.015.35af

Способ изготовления системы охлаждения электронного и микроэлектронного оборудования

Изобретение относится к области микроструктурных технологий. Способ включает нанесение множества наноструктурных областей с гидрофобными свойствами на поверхность 2 микроканала. Наноструктурные области выполняют в виде гидрофобных полос 1 шириной L. Наносят наноструктурные области поперек...
Тип: Изобретение
Номер охранного документа: 0002581342
Дата охранного документа: 20.04.2016
27.05.2016
№216.015.42c6

Вихревая топка

Изобретение относится к теплоэнергетике, а именно к топочным устройствам, работающим, в том числе, на низкосортном пылеугольном топливе, и может быть использовано в котельных установках на тепловых электростанциях. Вихревая топка содержит горизонтальную вихревую камеру горения с направляющим...
Тип: Изобретение
Номер охранного документа: 0002585347
Дата охранного документа: 27.05.2016
27.08.2016
№216.015.4d95

Способ оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки

Изобретение относится к теплоэнергетике, а более конкретно к способу оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки. Способ включает использование в режиме запуска энергетической установки угля микропомола с размерами частиц не более 10 мкм,...
Тип: Изобретение
Номер охранного документа: 0002595304
Дата охранного документа: 27.08.2016
12.01.2017
№217.015.57bd

Способ синтеза наночастиц диоксида титана

Изобретение может быть использовано в химической промышленности. Для получения наночастиц диоксида титана проводят откачивание вакуумной камеры, наполнение ее инертным газом, зажигание электрической дуги постоянного тока между графитовым электродом и металл-углеродным композитным электродом....
Тип: Изобретение
Номер охранного документа: 0002588536
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.629a

Устройство для формирования ручейкового течения жидкости в микро- и мини-каналах (варианты)

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники, которые обеспечивают высокие значения коэффициента теплопередачи при течении жидкостей в относительно небольших объемах. В устройстве для формирования...
Тип: Изобретение
Номер охранного документа: 0002588917
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6ca0

Способ синтеза порошка суперпарамагнитных наночастиц feo

Изобретение может быть использовано при получении контрастирующих веществ в магниторезонансной диагностике, суспензий для магнитной сепарации белков и фрагментов молекул ДНК и РНК, для адресной доставки лекарственных средств. Синтез порошка суперпарамагнитных наночастиц FeOпроводят в два этапа....
Тип: Изобретение
Номер охранного документа: 0002597093
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.73cc

Сетчатый комбинированный термоприемник и способ измерения температурного поля газового потока в каналах

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры движущихся газовых сред на выходе из реакторов и теплообменных аппаратов с различной структурой теплообменных поверхностей. Предложен сетчатый комбинированный термоприемник, содержащий...
Тип: Изобретение
Номер охранного документа: 0002597956
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.899e

Способ визуализации ограниченных (замкнутых) нестационарных вихревых течений

Изобретение относится к контрольно-измерительной технике и позволяет исследовать ограниченные (замкнутые) вихревые потоки жидкости. Изобретение может использоваться в фундаментальных и прикладных исследованиях в экспериментальной гидродинамике. Возможно применение в экологии, технологиях...
Тип: Изобретение
Номер охранного документа: 0002602495
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9b5b

Триангуляционный способ измерения отклонения объекта и определения его ориентации в пространстве

Триангуляционный способ измерения отклонения объекта и определения его ориентации в пространстве содержит этап, на котором источник излучения формирует на поверхности исследуемого объекта световое пятно в виде двух пересекающихся световых линий за счет освещения исследуемого объекта засветкой в...
Тип: Изобретение
Номер охранного документа: 0002610009
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.ab29

Способ ввода пучка электронов в среду с повышенным давлением

Изобретение относится к способу ввода пучка электронов в среду с повышенным давлением, при котором подачу газа осуществляют через систему напуска в сопловой блок, состоящий из двух кольцевых сопел (внутреннего и внешнего, по оси внутреннего кольцевого сопла имеется отверстие для прохождения...
Тип: Изобретение
Номер охранного документа: 0002612267
Дата охранного документа: 03.03.2017
Показаны записи 11-15 из 15.
20.01.2018
№218.016.1e3a

Интенсивный конденсатор пара с контрастным и градиентным смачиванием

Изобретение относится к области интенсификации теплообмена при конденсации внутри труб и каналов, а также конденсации на поверхностях, расположенных в объеме пара. Интенсивный конденсатор пара с контрастным и градиентным смачиванием выполнен в форме охлаждаемого цилиндра, на внешнюю поверхность...
Тип: Изобретение
Номер охранного документа: 0002640888
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e46

Плоский эффективный конденсатор-сепаратор для микрогравитации и транспортных приложений

Изобретение относится к области мини- и микросистем, которые используют в электронике, медицине, энергетике, аэрокосмической индустрии, на транспорте и могут применяться в устройствах для охлаждения электроники. Согласно изобретению конденсатор и сепаратор выполнены в виде плоского охлаждаемого...
Тип: Изобретение
Номер охранного документа: 0002640887
Дата охранного документа: 12.01.2018
10.05.2018
№218.016.413a

Способ охлаждения электронного оборудования с использованием комбинированных пленочных и капельных потоков жидкости

Изобретение относится к теплотехнике и может быть использовано в системах охлаждения электронного оборудования. В способе охлаждения электронного оборудования с использованием комбинированных пленочных и капельных потоков жидкости, основанном на движении тонкой пленки жидкости за счет потока...
Тип: Изобретение
Номер охранного документа: 0002649170
Дата охранного документа: 30.03.2018
19.11.2019
№219.017.e3c4

Способ охлаждения электронного оборудования пленочными и капельными потоками жидкости с использованием оребрения

Изобретение относится к теплотехнике и может быть использовано в системах охлаждения электронного оборудования. В способе охлаждения электронного оборудования пленочными и капельными потоками жидкости с использованием оребрения поверхность электронного компонента орошают потоками микрокапель...
Тип: Изобретение
Номер охранного документа: 0002706325
Дата охранного документа: 15.11.2019
29.05.2023
№223.018.7280

Устройство для формирования расслоенного течения жидкости в микро- и миниканалах

Изобретение относится к энергетике и теплотехнике и может быть использовано в системах охлаждения оборудования в солнечной энергетике. Технический результат - создание устройства для формирования расслоенного течения жидкости в микро- и миниканалах с целью существенной интенсификации...
Тип: Изобретение
Номер охранного документа: 0002796381
Дата охранного документа: 22.05.2023
+ добавить свой РИД