×
10.05.2018
218.016.40ee

Результат интеллектуальной деятельности: СПОСОБ ПОДГОТОВКИ ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ ЦИРКОНИЯ ИЛИ СПЛАВОВ НА ЕГО ОСНОВЕ ПЕРЕД ГАЛЬВАНИЧЕСКИМ НИКЕЛИРОВАНИЕМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к гальваностегии, в частности к нанесению защитных никелевых покрытий на изделия из циркония и сплавов на его основе, и может найти применение в области атомной энергии при производстве уран-циркониевых твэлов при подготовке поверхности перед гальваническим никелированием. Способ подготовки поверхности изделий из сплавов на основе циркония перед гальваническим никелированием включает воздействие на на поверхность изделия сканирующим потоком частиц никеля размером 50-250 мкм, разгоняемых потоком сжатого воздуха до образования на обрабатываемой поверхности равномерного по толщине и сплошности никелевого подслоя толщиной 1-2 мкм при продолжительности воздействия потока частиц никеля 15-25 с/см. Скорость потока частиц никеля определяют по выражению: где ν - скорость частиц никеля, м/с, d - плотность никеля, кг/м, L - длина разгона частиц до скорости ν, м, R - усредненный радиус частиц никеля, м, Р - давление потока сжатого воздуха, Па. Получают равномерное покрытие, обладающее высокой адгезией. 5 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к гальваностегии, в частности к нанесению защитных никелевых покрытий на изделия из циркония и сплавов на его основе, и может найти применение в области атомной энергии при производстве уран-циркониевых твэлов при подготовке поверхности перед гальваническим никелированием, а также может быть использовано в машиностроительной, приборостроительной и других отраслях промышленности с целью придания изделиям высоких защитных и декоративных свойств.

Качество гальванических никелевых покрытий на металлических поверхностях изделий зависит от тщательности подготовки их поверхности. Большинство известных способов такой подготовки относятся к водно-химическим методам, которые предполагают проведение операций обезжиривания, травления поверхности растворами кислот и щелочей и промывки.

Известен способ, в соответствии с которым подготовку металлической поверхности перед нанесением гальванических покрытий осуществляют путем химического травления и последующей активации водными растворами, содержащими соляную кислоту и уротропин (ГОСТ 9.305-84, карта 19, состав 3).

Известен способ подготовки металлической поверхности изделий перед гальваническим никелированием, который включает промывку изделий в воде, обезжиривание и электрохимическую обработку в растворе серной кислоты (10-20 мас. %) путем анодного и затем катодного травления (патент RU 2201478, МПК C25D 5/36, опубл. 27.03.2003). Недостатком этих и других водно-химических методов подготовки металлических поверхностей является их низкая технологичность, обусловленная многостадийностью проведения.

Наиболее близким по технической сущности к предлагаемому изобретению является способ подготовки поверхности циркония перед гальваническим никелированием, выбранный в качестве прототипа, в соответствии с которым проводят пескоструйную обработку крупным и мелким песком. После такой обработки проводят травление поверхности циркония в растворе фторида аммония и плавиковой кислоты, а также ее промывку и сушку («Металлургия циркония» ИИЛ, Москва 1959 г., стр. 204). Недостатком этого способа подготовки поверхности является то, что он не обеспечивает удовлетворительное качество осаждаемых на поверхность циркония или его сплавов никелевых покрытий (неоднородность по толщине, трещины, вспучивание и т.п.).

Неудовлетворительное качество покрытий обусловлено, прежде всего, неоднородным электрохимическим потенциалом по поверхности изделия. Эта неоднородность может возникать в местах сварки или локальной химической и физической неоднородности материала покрываемой поверхности.

Задача и достигаемый при использовании изобретения технический результат - разработка способа подготовки поверхности изделий из циркония или сплавов на его основе, позволяющего в дальнейшем получать гальваническим никелированием покрытия хорошего качества (равномерные по толщине, без трещин и отслаивания).

Технический результат достигается тем, что в способе подготовки поверхности изделий из циркония или сплавов на его основе перед гальваническим нанесением никелевых покрытий, включающим предварительное воздействие потоком частиц на покрываемую поверхность, согласно изобретению подготовка поверхности изделий по существу заключается в предварительном никелировании покрываемой поверхности путем воздействия на поверхность сканирующим потоком частиц никеля размером (50÷250) мкм, разгоняемых потоком сжатого воздуха, при этом скорость потока частиц никеля выбирают из условия образования на обрабатываемой поверхности равномерного по толщине и сплошности никелевого подслоя.

В частных случаях осуществления изобретения:

скорость потока частиц никеля определяют по формуле:

где

ν - скорость частиц никеля;

d - плотность никеля;

L - длина разгона частиц до скорости ν;

R - усредненный радиус частиц никеля;

Р0 - давление потока сжатого воздуха.

Продолжительность воздействия потоком частиц никеля составляет (15÷25) с/см2 до образования на обрабатываемой поверхности никелевого подслоя толщиной (1÷2) мкм.

Сканирующий поток частиц никеля создают с помощью абразивно-струйного устройства.

Давление воздуха на входе канала разгона частиц (сопла абразивно-струйного устройства) при подаче потока частиц никеля под углом γ к обрабатываемой поверхности устанавливают равным:

где Р0=Р при γ=90°

Сканирующий поток частиц никеля направляют на обрабатываемую поверхность под углом (30÷90)°.

Обрабатываемую поверхность и сканирующий поток частиц никеля перемещают друг относительно друга со скоростью не менее 0,1 см/с.

Сканирование осуществляют по линии или по плоской геометрической фигуре.

В способе подготовки поверхности циркония или его сплавов перед нанесением гальванического никелевого покрытия на поверхность изделия наносят равномерный по толщине и сплошности никелевый подслой, способствующий выравниванию электрохимического потенциала поверхности. Установлено, что такой подслой можно получить путем воздействия на поверхность сканирующим потоком частиц никеля размером (50÷250) мкм, направляемых на поверхность с определенной скоростью, которую обеспечивает поток сжатого воздуха.

При этом скорость разгона частиц никеля можно определить как экспериментальным путем, так и расчетным методом, исходя из условия образования равномерного по толщине и сплошности никелевого подслоя, обеспечивающего выравнивание электрохимического потенциала поверхности.

Сканирующий поток частиц никеля можно создать с помощью абразивно-струйного устройства.

Работа по перемещению частицы никеля (никелевого порошка), разгоняемой в канале сопла абразивно-струйного устройства под воздействием среднего давления сжатого воздуха, Рср=P0/2 (с учетом, что давление на входе канала - P0, а на выходе Р=0) равна кинетической энергии частицы на выходе из канала сопла:

где

ν - скорость частицы никеля;

m - масса частицы никеля;

L - длина разгона частиц, которая равна длине канала сопла абразивно-струйного устройства, приведенного на фиг. 1;

R - усредненный радиус частиц никеля;

P0 - давление потока сжатого воздуха на входе абразивно-струйного устройства.

с учетом того, что масса частицы равна:

где

- объем частицы;

d - удельная плотность никеля, кг/м3.

Из формулы (3) получаем значение скорости частицы:

Формула (1) получена с учетом предположения, что режим течения газа в канале сопла является ламинарным, т.е. по всей длине канала сопла существует устойчивый пограничный слой, в котором турбулентные пульсации не происходят и разгоняемые частицы не взаимодействуют со стенкой сопла.

Основные представления о процессе разгона частиц и расчета их скорости заимствованы из теории двуфазных потоков (В.Н. Ужов, А.В. Вальдберг. «Очистка газов мокрыми фильтрами». Химия. М. 1972, стр. 15-20).

Расчеты показывают, что даже при наличии турбулентности при скорости газа в канале сопла (150÷250) м/с скорость турбулентной пульсации ничтожно мала и составляет (5-10) м/с. Эта скорость направлена перпендикулярно скорости газа и частиц в канале. Если учесть это обстоятельство, то оказывается, что частица быстрее пролетит до выхода сопла (L=10 см), чем переместится от оси сопла до его стенки на расстояние (0,5-1,0) мм.

Так, например, было установлено, что для образования на обрабатываемой поверхности никелевого подслоя толщиной от 1 мкм до 2 мкм скорость разгона частиц никеля составляет более 150 м/с при продолжительности воздействия (15÷25) с/см2.

Сущность заявленного технического решения иллюстрируется фигурами графических изображений.

На фиг. 1 приведена схема абразивно-струйного устройства, при помощи которого на поверхность воздействуют сканирующим потоком частиц никеля, где 1 - форкамера; 2 - сопло; 3 - обрабатываемая поверхность.

На фиг. 2 представлены фотографии поверхности до (а) и после (б) обработки поверхности изделий частицами порошка никеля.

На фиг. 3 приведены фотографии фрагментов гальванического никелевого покрытия образцов, не прошедших (а, б) и прошедших (в, г, д ж, з, е) обработку частицами порошка никеля.

Сведения, подтверждающие возможность осуществления изобретения.

Предложенный способ был опробован на изделиях сложной формы, представляющих собой витые стержни прямоугольного сечения (см. фиг. 3). Боковые поверхности этих стержней выполнены из циркониевого сплава Э-110 (99% Zr + 1% Nb), а их торцы - из интерметаллида (90% Zr + 10% U). На обрабатываемую поверхность (3) изделий (фиг. 1) этих сплавов воздействовали сканирующим потоком никелевых частиц различных фракций от 50 мкм (исходя из условий пылеуноса) до 630 мкм, разгоняемых потоком сжатого воздуха в канале сопла (2) абразивно-струйного устройства (фиг. 1).

Обработку поверхности указанных изделий проводили с помощью стандартного устройства для абразивно-струйной обработки типа «SuperMistral» с длиной сопла L=0,1 м.

Скорости для различных фракций никелевого порошка рассчитывались с применением формулы (1). Расчет скорости частиц никеля проводили с учетом допуска сферичности частиц порошка и усредненного радиуса частиц (R), по формуле:

R=(rmin+rmax)/2,

где rmin и rmax - минимальный и максимальный радиус частиц для данной фракции порошка.

Например, для фракции 300÷450 мкм

R=(150+225)/2=187,5 мкм или 187,5 10-6 м

С учетом того, что плотность никеля составляет d=8,9 103 кг/м3 по формуле (2) имеем:

Скорость частиц в зависимости от их размера и величины давления на входе абразивно-струйного устройства колебалась в пределах 116-240 м/с.

Режимы обработки поверхности изделий перед гальваническим никелированием в соответствии с заявленным способом и качество получаемых в последующем никелевых покрытий приведены в таблице и проиллюстрированы на фиг. 2 и фиг. 3.

По расчетным оценкам для образования на обрабатываемой поверхности никелевого подслоя толщиной 1-2 мкм и выравнивания электрохимического потенциала покрываемой поверхности скорость никелевых частиц размером (50÷250) мкм составляла 100÷250 м/с. Эти же значения параметров были подтверждены экспериментально.

На обработанные в соответствии с заявляемым способом циркониевые витые стержни осуществляли гальваническое нанесение никеля, которое проводили из электролита, содержащего 300-400 г/л сульфаминовокислого никеля.

Режимы гальванического нанесения никеля на поверхность, подготовленную в соответствии с заявляемым изобретением, были следующими:

- pH раствора 4,2-4,5;

- рабочая температура процесса 45-55°С;

- время процесса 100 мин;

- ток процесса 0,3 А/дм2.

Готовый электролит непрерывно перемешивали при помощи магнитной, механической мешалки или ультразвука. Указанная температура поддерживалась в течение всего процесса. Вначале силу тока устанавливали 0,15 А/дм2, затем по истечении 10 минут процесс проводили при рабочей силе тока, установленной из расчета 0,3 А/дм2. На фиг. 2 приведены фото поверхности до (а) и после (б) обработки изделий частицами никеля. По результатам микрорентгеноспектрального анализа (электронный микроскоп - TESCAN VEGA 3 XMU) установлено, что толщина слоя никеля на поверхности изделий после их обработки потоком частиц никелевого порошка составляла 1,0-2,0 мкм. Толщина осаждаемого гальванического покрытия составляла 50-60 мкм. О качестве полученного гальванического покрытия можно судить по изображениям, представленным на фиг. 3 (а, б, в, г, д, ж, з, е). На фиг. 3 приведены фото фрагментов гальванического покрытия образцов, не прошедших (а, б) и прошедших (в, г, д ж, з, е) обработку частицами никелевого порошка.

Данные, приведенные в таблице, свидетельствуют о том, что для получения равномерного по толщине и сплошности никелевого подслоя, достаточного для выравнивания электрохимического потенциала покрываемой поверхности, необходимо, чтобы размер частиц никеля составлял (50÷250) мкм.

Таким образом, предложенный способ подготовки поверхности позволяет достичь равномерности и хорошей адгезии наносимого далее гальваническим методом никелевого покрытия. Этот способ особенно эффективен в тех случаях, когда необходимо наносить гальваническое покрытие на изделия, поверхность которых имеет локальную химическую и/или физическую неоднородность (сварка, локальные включения и т.п.) и, вследствие этого, неоднородный электрохимический потенциал поверхности. Способ прост в осуществлении, технологичен и может быть реализован с использованием стандартных абразивно-струйных аппаратов.


СПОСОБ ПОДГОТОВКИ ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ ЦИРКОНИЯ ИЛИ СПЛАВОВ НА ЕГО ОСНОВЕ ПЕРЕД ГАЛЬВАНИЧЕСКИМ НИКЕЛИРОВАНИЕМ
СПОСОБ ПОДГОТОВКИ ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ ЦИРКОНИЯ ИЛИ СПЛАВОВ НА ЕГО ОСНОВЕ ПЕРЕД ГАЛЬВАНИЧЕСКИМ НИКЕЛИРОВАНИЕМ
СПОСОБ ПОДГОТОВКИ ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ ЦИРКОНИЯ ИЛИ СПЛАВОВ НА ЕГО ОСНОВЕ ПЕРЕД ГАЛЬВАНИЧЕСКИМ НИКЕЛИРОВАНИЕМ
СПОСОБ ПОДГОТОВКИ ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ ЦИРКОНИЯ ИЛИ СПЛАВОВ НА ЕГО ОСНОВЕ ПЕРЕД ГАЛЬВАНИЧЕСКИМ НИКЕЛИРОВАНИЕМ
СПОСОБ ПОДГОТОВКИ ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ ЦИРКОНИЯ ИЛИ СПЛАВОВ НА ЕГО ОСНОВЕ ПЕРЕД ГАЛЬВАНИЧЕСКИМ НИКЕЛИРОВАНИЕМ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 78.
10.05.2018
№218.016.3ade

Способ изготовления мишени для наработки изотопа мо

Изобретение относится к способу изготовления мишеней для наработки изотопа Мо. Способ изготовления мишени для наработки изотопа Мо включает изготовление сердечника на основе фольги, который формируют путем послойной укладки биметаллической фольги или ее навивки на основу из циркония или его...
Тип: Изобретение
Номер охранного документа: 0002647492
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3b3e

Способ испытания высокотемпературных тепловыделяющих элементов

Изобретение относится к способам испытаний высокотемпературных твэлов в исследовательском реакторе в составе ампульного облучательного устройства и может быть использовано при разработке и обосновании конструкции невентилируемых высокотемпературных твэлов, например, термоэмиссионного...
Тип: Изобретение
Номер охранного документа: 0002647486
Дата охранного документа: 16.03.2018
29.05.2018
№218.016.577c

Устройство для получения сферических частиц из жидких вязкотекучих материалов

Изобретение относится к технике диспергирования жидкотекучих сред, в частности вязкотекучих шликерных материалов, и может быть использовано в порошковой металлургии, химической, пищевой и других отраслях промышленности в процессах получения гранул. Устройство для получения сферических частиц из...
Тип: Изобретение
Номер охранного документа: 0002654962
Дата охранного документа: 23.05.2018
25.08.2018
№218.016.7eab

Способ электронно-лучевой сварки тонкостенных труб из молибденовых сплавов

Изобретение относится к способу электронно-лучевой сварки труб из молибденовых сплавов и может быть использовано при изготовлении тонкостенных трубных сварных изделий для атомной и космической техники, в частности для изготовления гильз канала системы управления и защиты. Перед стыковкой труб...
Тип: Изобретение
Номер охранного документа: 0002664746
Дата охранного документа: 22.08.2018
26.10.2018
№218.016.962b

Радиоизотопный элемент электрического питания с полупроводниковым преобразователем, совмещенным с источником излучения

Использование: для питания микроэлектронной аппаратуры. Сущность изобретения заключается в том, что радиоизотопный элемент электрического питания включает источник излучения, выполненный в виде содержащей радиоактивный изотоп фольги, и по крайней мере один полупроводниковый преобразователь, при...
Тип: Изобретение
Номер охранного документа: 0002670710
Дата охранного документа: 24.10.2018
01.03.2019
№219.016.ce20

Устройство контроля газа в жидкометаллическом теплоносителе

Изобретение относится к области диагностики энергетических установок и может использоваться преимущественно в атомной энергетике для контроля герметичности парогенераторов, в которых греющим теплоносителем является жидкий металл (натрий, свинец, свинец-висмут), передающий тепло воде и водяному...
Тип: Изобретение
Номер охранного документа: 0002426111
Дата охранного документа: 10.08.2011
08.03.2019
№219.016.d35f

Способ получения металлического урана

Изобретение относится к получению металлического урана. Способ включает смешивание тетрафторида урана с металлическим кальцием, взятым с избытком от стехиометрического количества, загрузку смеси в реактор и инициирование плавки с помощью нижнего электрозапала. Загрузку смеси осуществляют...
Тип: Изобретение
Номер охранного документа: 0002681331
Дата охранного документа: 06.03.2019
20.03.2019
№219.016.e306

Способ реакторных испытаний высокотемпературных вентилируемых тепловыделяющих элементов

Изобретение относится к способу реакторных испытаний высокотемпературных вентилируемых твэлов в составе ампульного облучательного устройства и может быть использовано при разработке конструкции и обосновании ресурса высокотемпературных, например, термоэмиссионных твэлов космической ЯЭУ. В...
Тип: Изобретение
Номер охранного документа: 0002682238
Дата охранного документа: 18.03.2019
18.05.2019
№219.017.59cc

Способ получения монокристаллов сплава вольфрам-тантал

Изобретение относится к металлургии тугоплавких металлов и сплавов и может быть использовано при выращивании однородных монокристаллов сплава вольфрам - тантал методом бестигельной зонной плавки с электронно-лучевым нагревом (ЭБЗП). Исходные компоненты - порошки вольфрама и тантала смешивают и...
Тип: Изобретение
Номер охранного документа: 0002453624
Дата охранного документа: 20.06.2012
20.05.2019
№219.017.5c97

Способ получения тетрафторида урана

Изобретение относится к химической технологии неорганических веществ, а именно к способу получения тетрафторида урана сухим методом, который может применяться в производстве гексафторида урана или металлического урана. Способ включает смешивание порошков диоксида урана с бифторидом аммония,...
Тип: Изобретение
Номер охранного документа: 0002687935
Дата охранного документа: 16.05.2019
Показаны записи 31-33 из 33.
16.05.2023
№223.018.6108

Способ переработки кислотоупорных урансодержащих материалов

Изобретение относится к гидрометаллургической переработке кислотоупорных урансодержащих материалов, а именно - техногенных отходов, образующихся в результате окислительной переработки твэлов сложного многокомпонентного состава. Способ включает измельчение исходного урансодержащего материала в...
Тип: Изобретение
Номер охранного документа: 0002743383
Дата охранного документа: 17.02.2021
17.06.2023
№223.018.7d7d

Способ получения углеграфитовых изделий

Изобретение может быть использовано для изготовления электродов, тиглей, нагревателей, материалов для атомной техники, например уран-графитовых тепловыделяющих элементов. Заготовки помещают в контейнер из графлекса или графита, используя в качестве засыпки карбамид в количестве 5-10 мас. %...
Тип: Изобретение
Номер охранного документа: 0002780454
Дата охранного документа: 23.09.2022
17.06.2023
№223.018.7e89

Высокотемпературный плотный композитный материал ядерного топлива и способ его получения

Группа изобретений относится к материалу ядерного топлива и представляет собой высокотемпературный плотный композитный материал ядерного топлива и способ его получения. Высокотемпературный плотный композитный материал ядерного топлива содержит керамическую, инертную к облучению матрицу, в...
Тип: Изобретение
Номер охранного документа: 0002770890
Дата охранного документа: 25.04.2022
+ добавить свой РИД