×
10.05.2018
218.016.4023

Результат интеллектуальной деятельности: СПОСОБ ЭНЕРГОЭФФЕКТИВНОГО ОСВЕЩЕНИЯ СВЕТОДИОДНЫМ МОНОХРОМАТИЧЕСКИМ СВЕТОМ

Вид РИД

Изобретение

№ охранного документа
0002648831
Дата охранного документа
28.03.2018
Аннотация: Изобретение относится к светотехнике и физиологии зрения человека, в частности к обеспечению наиболее энергоэффективного освещение помещений, территорий и пространств при условии скотопической адаптации глаза человека. Способ включает использование одного или нескольких светодиодных источников монохроматического света. Длина волны света составляет 507 (±10) нм, а уровень яркости освещаемых объектов до 10 (≤10) кд/м. При этом способ обеспечивает скотопическую адаптацию глаза человека, при которой актины преимущественно палочковые фоторецепторы сетчатки глаза. 2 ил.

Область техники, к которой относится изобретение

Изобретение относится к области светотехники

Уровень техники

Известны самые разнообразные способы освещения с использованием различных источников света. Одними из наиболее энергоэффективных источников света являются светодиоды. Наиболее энергоэффективен люминофорный светодиод белого света. Все созданные приборы освещения рассчитаны на фотопическую адаптацию глаза человека. Так же существуют способы освещения, использующие мезопическую адаптацию глаза человека, при которой используются и колбочковые и палочковые фоторецепторы сетчатки глаза человека. Для мезопического зрения важен S/P фактор (Scotopic/Photopic), т.е. соотношение световой отдачи источника света в условиях ночного зрения к световой отдаче в условиях дневного зрения. Энергоэффективных приборов освещения, рассчитанных на использование только скотопической адаптации глаза человека, на данный момент не существует. Известны патенты, где описаны способы энергоэффективного освещения для мезопического зрения. Заявка на патент США №20160327225 «MATERIALS AND PROCESS FOR SPATIAL S/P RATIO DISTRIBUTION» от 10 ноября 2016 года описывает светодиодные источники света для мезопического зрения. Данный способ не позволяет достигнуть наибольшей энергоэффективности освещения, т.к. в процессе восприятия излучения источника света участвуют колбочковые фоторецепторы сетчатки глаза человека, имеющие максимальную спектральную чувствительность 683 лм/Вт и палочковые фоторецепторы сетчатки глаза человека, имеющие максимальную спектральную чувствительность 1700 лм/Вт, что в результате не обеспечивает наибольшую энергоэффективность. Способ энергоэффективного освещения светодиодным монохроматическим светом позволяет при использовании палочковых фоторецепторов сетчатки глаза человека, имеющих максимальную спектральную чувствительность 1700 лм/Вт, достигнуть наибольшей энергоэффективности при скотопической адаптации глаза человека. Следовательно, количество энергии для получения одинаковой зрительной реакции при скотопическом зрения требуется меньше, чем для получения такой же зрительной реакции при мезопическом зрении, что экономически выгодней.

Раскрытие изобретения

Задачей изобретения является наиболее энергоэффективное освещение помещений, территорий и пространств. В условиях яркости освещаемых объектов в диапазонах до 10-2 (≤10-2) кд/м2 это достигается тем, что при освещении способом энергоэффективного освещения светодиодным монохроматическим светом при длине волны λ=507 (±10) нм используется преимущество светочувствительности палочковых фоторецепторов сетчатки глаза человека по сравнению с колбочковыми фоторецепторами сетчатки глаза человека, поскольку максимальная спектральная чувствительность (световая эффективность) для монохроматического света при λ=507 нм, К'max = 1700 лм/Вт, а при фотопической адаптации глаза человека для светодиода белого света с цветовой температурой 3000 К, Кmax = 327,6 лм/Вт. (таблица световой эффективности излучения на фиг. 2.), т.е. световая эффективность при ночном зрении в 5,19 раза выше, чем при дневном зрении. Мы не сравниваем максимальные значения световой эффективности ночного и дневного зрения для светодиодных монохроматических источников света, поскольку светодиодов, излучающих на длине волны 555 нм с высокой световой эффективностью, на данный момент не создано. Вышеуказанный коэффициент 5,19 верен для идеальных светодиодных источников света. При существующем реальном уровне энергоэффективности светодиодов коэффициент может быть иным.

В качестве примера сравним два существующих светодиодных источника света.

1. Светодиод C35L-CN-A производства фирмы SEMILEDS, имеющий следующие параметры: минимальная световая эффективность при температуре кристалла Tj = 25°C равна 87.4 лм/Вт для фотопического зрения. Эффективность для скотопического зрения для данного светодиода рассчитаем, используя значения V(λ) относительной спектральной световой чувствительности таблицы (Табл. 2 ГОСТа 8.332-78). Значение V(λ) = 0,4443 при λ = 507 нм. Световую отдачу для скотопического зрения η' рассчитаем по формуле: η'=[V'(λ)/V(λ)*К'max/Кmax]*η=489 лм/Вт, где η = 87,4 лм/Вт - световая отдача для фотопического зрения, взятая из «SEMILEDS PRODUCT DATASHEET C35L-XX-A High Power LED», V'(λ) - относительная скотопическая спектральная световая эффективность излучения для стандартного фотометрического наблюдателя МКО, V(λ) - относительная фотопическая спектральная световая эффективность излучения для стандартного фотометрического наблюдателя МКО, К'max = 1700 лм/Вт - максимальная скотопическая спектральная чувствительность, Кmax = 683 лм/Вт - максимальная фотопическая спектральная чувствительность.

2. Светодиод C35L-W0-A производства фирмы SEMILEDS, имеющий следующие параметры: минимальная световая эффективность при температуре кристалла Tj = 25°C равна 139 лм/Вт для фотопического зрения, взятая из «SEMILEDS PRODUCT DATASHEET C35L-XX-A High Power LED». Сравнивая светодиоды C35L-CN-A и C35L-W0-A, видно, что для создания освещенности в 1 лк светодиодом C35L-CN-A будет потребляться электроэнергии в η'/η = 489 лм/Вт/139 лм/Вт = 3.5 раза меньше. Т.е. в данном примере светодиодный источник монохромного света с длиной волны λ = 507 нм экономичнее люминофорного светодиодного источника света в 3,5 раза.

Осуществление изобретения

Задачей изобретения является наиболее энергоэффективное освещение помещений, территорий и пространств. В условиях скотопической адаптации глаза человека, при яркости освещаемых объектов в диапазоне до 10-2 (≤10-2) кд/м2 это достигается тем, что при освещении способом энергоэффективного освещения светодиодным монохроматическим светом с длиной волны λ = 507 (±10) нм при скотопической адаптации глаза человека используется преимущество светочувствительности палочковых фоторецепторов сетчатки глаза человека по сравнению с колбочковыми фоторецепторами сетчатки глаза человека в диапазоне до 10-2 (≤10-2) кд/м2, поскольку максимальная спектральная чувствительность (световая эффективность) для монохромного света при λ = 507 нм, К'max = 1700 лм/Вт, а при фотопической адаптации глаза человека для светодиода белого света с цветовой температурой 3000 К, Кmax = 327,6 лм/Вт (таблица световой эффективности излучения на фиг. 2.), т.е. световая эффективность при ночном зрении в 5,19 раза выше, чем при дневном зрении. Мы не сравниваем максимальные значения световой эффективности ночного и дневного зрения для светодиодных монохроматических источников света, поскольку светодиодов, излучающих на длине волны 555 нм с высокой световой эффективностью, на данный момент не создано.

Способ работает следующим образом. Предлагаемый способ использует преимущество светочувствительности палочковых фоторецепторов сетчатки глаза человека перед колбочковыми фоторецепторами сетчатки глаза человека. Существующие источники освещения не создают преимущественных условий для палочковых фоторецепторов сетчатки глаза человека. Существующие источники освещения используют различные непрерывные, в том числе и комбинированные диапазоны длин волн в видимом диапазоне спектра электромагнитного излучения, которые не позволяют наиболее энергоэффективно использовать свойства ночного зрения глаза человека. Скотопическое зрение осуществляется с помощью только палочковых фоторецепторов сетчатки глаза человека, при скотопической адаптации при яркости фона в пределах до 10-2 (≤10-2) кд/м2. Скотопическое зрение обладает наибольшей чувствительностью при светодиодном монохроматическом освещении с λ = 507 нм, при яркости фона в пределах до 10-2 (≤10-2) кд/м2, однако не способно передавать ощущение цветности.

Для реализации предлагаемого способа необходимо наличие следующих условий:

1. Яркость освещаемых объектов, создаваемая светодиодным источником либо источниками света, находится в пределах до 10-2 (≤10-2) кд/м2, что соответствует условиям скотопической адаптации глаза человека.

2. Длина волны монохромного светодиодного источника, либо источников света, должна соответствовать длине волны λ = 507 (±10) нм, при которой функция относительной спектральной эффективности монохроматического излучения для стандартного фотометрического наблюдателя МКО V'(λ) достигает своего максимального значения. Максимальная спектральная чувствительность (световая эффективность) К'max = 1700 лм/Вт (Справочная книга по светотехнике / Под ред. Ю.Б. Айзенберга, 3-е изд. перераб. и доп. 2006 г., табл. 1.2). Основным преимуществом способа энергоэффективного освещения светодиодным монохроматическим светом с длиной волны λ = 507 нм является более низкое энергопотребление, в 5,19 раза меньше, чем у люминофорных светодиодных источников белого света. Данный коэффициент верен для идеальных источников света.

Определение понятий

Дневное (фотопическое) зрение - механизм восприятия света зрительной системой человека, действующий в условиях относительно высокой освещенности. Осуществляется с помощью колбочек при яркости фона, превышающей 5 кд/м2, что соответствует дневным условиям освещения. Палочки в этих условиях не функционируют.

Ночное (скотопическое) зрение - механизм восприятия света зрительной системой человека, действующий в условиях относительно низкой освещенности. Осуществляется с помощью палочек при яркости фона менее 0,5*10-2(≤0,5*10-2) кд/м2 (CIE 191:2010), что соответствует ночным условиям освещения. Колбочки в этих условиях не функционируют, поскольку для их возбуждения требуется более высокая интенсивность света.

Сумеречное (мезопическое) зрение - механизм восприятия света зрительной системой человека, действующий в условиях освещенности, промежуточной по отношению к тем, при которых действуют ночное и дневное зрение. Осуществляется с помощью функционирующих одновременно палочек и колбочек при значениях яркостях фона, лежащих в диапазоне между 0,5*10-2 и 5 кд/м2 (CIE 191:2010).

Световая эффективность излучения - физическая величина, равная отношению светового потока к соответствующему потоку излучения: K=Фv/Фе, единица измерения в Международной системе единиц (СИ): лм/Вт.

Спектральная чувствительность зрения - стандартная кривая МКО 1931 и 1951 гг. относительной спектральной чувствительности V(λ), изображенной на фиг. 1, определяющей световую эффективность, измеряемую в лм/Вт.

Монохроматический свет, излучение - электромагнитное излучение, обладающее очень малым разбросом частот, в идеале - одной частотой (длиной волны). Монохроматическое излучение формируется в системах, в которых существует только один разрешенный электронный переход из возбужденного в основное состояние.

Энергоэффективный источник света - источник света, обладающий наибольшей световой эффективностью излучения из всех существующих источников света.

Световая отдача источника света - отношение излучаемого источником светового потока к потребляемой им мощности. В Международной системе единиц (СИ) измеряется в люменах на ватт (лм/Вт). Является показателем эффективности и экономичности источников света. Выражение для световой отдачи имеет вид: η = Фv/Р, где Фv - световой поток, излучаемый источником, а Р - потребляемая им мощность.

Описание графика и таблицы:

На фиг. 1 представлена спектральная чувствительность V(λ) для дневного и V'(λ) для ночного зрения в абсолютных единицах. На фиг. 2 представлена таблица световой эффективности излучения.

Способ энергоэффективного освещения светодиодным монохроматическим светом в условиях скотопической адаптации глаза человека, включающий использование одного или нескольких светодиодных источников монохроматического света с длиной волны 507 (±10) нм, при уровнях яркости освещаемых объектов до 10 (≤10) кд/м.
СПОСОБ ЭНЕРГОЭФФЕКТИВНОГО ОСВЕЩЕНИЯ СВЕТОДИОДНЫМ МОНОХРОМАТИЧЕСКИМ СВЕТОМ
СПОСОБ ЭНЕРГОЭФФЕКТИВНОГО ОСВЕЩЕНИЯ СВЕТОДИОДНЫМ МОНОХРОМАТИЧЕСКИМ СВЕТОМ
Источник поступления информации: Роспатент

Показаны записи 1-2 из 2.
10.05.2018
№218.016.3ffd

Способ энергоэффективного освещения светодиодным монохроматическим светом при мезопической адаптации глаза человека

Изобретение относится к светотехнике и физиологии зрения человека, в частности к обеспечению наиболее энергоэффективного освещения помещений, территорий и пространств при условии мезопической адаптации глаза человека. Для этого способ включает использование одного или нескольких светодиодных...
Тип: Изобретение
Номер охранного документа: 0002648829
Дата охранного документа: 28.03.2018
09.06.2018
№218.016.5b38

Способ создания стабильного и долговременного художественного визуального эффекта диффузного флуоресцентного свечения поверхности художественно-архитектурного объекта

Изобретение относится к области создания визуальных эффектов. Способ создания стабильного и долговременного художественного визуального эффекта диффузного свечения поверхности художественно-архитектурного объекта под воздействием внешнего возбуждающего УФ-А (365-385 нм) и/или ИК-А (760-1000 нм)...
Тип: Изобретение
Номер охранного документа: 0002655725
Дата охранного документа: 29.05.2018
Показаны записи 11-18 из 18.
08.07.2018
№218.016.6e77

Катализатор гидрирования фурфурола

Изобретение относится к области разработки катализатора селективного гидрирования фурфурола до фурфурилового спирта. Катализатор содержит Ni и Мо в форме сплава и в качестве модификатора до 4 мас. % углерода в форме карбида Ni и/или Мо, причем соотношение Ni к Мо в катализаторе варьируется до...
Тип: Изобретение
Номер охранного документа: 0002660439
Дата охранного документа: 06.07.2018
01.03.2019
№219.016.c8ba

Способ получения фурфурилового спирта путем селективного гидрирования фурфурола

Изобретение относится к способу получения фурфурилового спирта путем селективного гидрирования фурфурола, который заключается в гидрировании фурфурола в присутствии гетерогенного катализатора, где используемый катализатор содержит: 5,0-40,0 мас. % CuO; носитель - остальное; при этом носитель...
Тип: Изобретение
Номер охранного документа: 0002680799
Дата охранного документа: 27.02.2019
30.05.2019
№219.017.6b6e

Катализатор селективного гидрирования фурфурола

Изобретение относится к катализатору селективного гидрирования фурфурола до фурфурилового спирта, содержащему оксиды меди и железа, при этом в его составе 5,0-40,0 мас.% CuO, носитель - остальное, причем в качестве носителя взята шпинель со структурой FeO, содержащая 48-85,5 мас.% FeO, а также...
Тип: Изобретение
Номер охранного документа: 0002689418
Дата охранного документа: 28.05.2019
30.05.2019
№219.017.6b81

Способ приготовления катализатора селективного гидрирования фурфурола

Изобретение относится к способу приготовления катализатора селективного гидрирования фурфурола до фурфурилового спирта, который заключается в том, что смешивают кристаллогидраты нитратов меди, железа и алюминия, далее полученную смесь кристаллогидратов нитратов меди, железа и алюминия сплавляют...
Тип: Изобретение
Номер охранного документа: 0002689417
Дата охранного документа: 28.05.2019
22.11.2019
№219.017.e50e

Способ получения частиц сферического графита и устройство для его осуществления

Изобретение относится к химической промышленности и может быть использовано для изготовления электродных материалов химических источников тока. Устройство для получения частиц сферического графита содержит корпус 2 с загрузочным 1 и вызгрузочным 9 устройствами, а также ротор 4. Корпус 2 и ротор...
Тип: Изобретение
Номер охранного документа: 0002706623
Дата охранного документа: 19.11.2019
07.06.2020
№220.018.2544

Катализатор гидрирования фурфурола и фурфурилового спирта до 2-метилфурана

Изобретение относится к области разработки катализаторов селективного гидрирования фурфурола и/или фурфурилового спирта для получения 2-метилфурана. Описан катализатор селективного гидрирования фурфурола и/или фурфурилового спирта, содержащий 15 мас. % активного компонента, представляющего...
Тип: Изобретение
Номер охранного документа: 0002722836
Дата охранного документа: 04.06.2020
07.06.2020
№220.018.2545

Способ приготовления катализатора гидрирования фурфурола и фурфурилового спирта до 2-метилфурана

Изобретение относится к области разработки способов приготовления катализаторов селективного гидрирования фурфурола и/или фурфурилового спирта для получения 2-метилфурана. Описан способ приготовления катализатора гидрирования фурфурола и/или фурфурилового спирта, включающий смешение молибдата...
Тип: Изобретение
Номер охранного документа: 0002722837
Дата охранного документа: 04.06.2020
18.06.2020
№220.018.27b8

Способ получения высокооктановой добавки путем гидрирования фурфурола и фурфурилового спирта

Изобретение относится к способу получения 2-метилфурана путем селективного гидрирования фурановых производных - фурфурола и/или фурфурилового спирта. Способ заключается в гидрировании фурфурола и/или фурфурилового спирта в присутствии катализатора, содержащего 15 мас.% карбида молибдена,...
Тип: Изобретение
Номер охранного документа: 0002723548
Дата охранного документа: 16.06.2020
+ добавить свой РИД