×
10.05.2018
218.016.3ed7

Результат интеллектуальной деятельности: Способ получения структурированных гидрогелей

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине, в частности к биомедицинскому материаловедению, и раскрывает метод получения гидрогелей с заданными механическими свойствами и архитектоникой. Способ включает формирование тонких слоев жидкой фотополимеризующейся композиции, содержащей 3 масс. % раствор аллилхитозана в 4% уксусной кислоте с добавлением 1 масс. % фотоинициатора Irgacure 2959 и 10 масс. % сшивающего агента полиэтиленгликольдиакрилата (ПЭГ-ДА) с молекулярной массой 500 Да, последующее структурирование композиции на лазерном стереолитографе спомощью сфокусированного лазерного излучения в УФ-области спектра, последующую отмывку непрореагировавшего материала с использованием воды и помещение структурированных гидрогелей в реактор высокого давления, куда в дальнейшем напускается углекислый газ под давлением 8 мПа и проводится нагрев реактора до температуры 40°C, при повышении давления до 15 МПа и выдерживании системы при таких параметрах 3 часа. Изобретение может быть использовано для изготовления матриц-носителей клеток для регенеративной медицины. 2 ил., 1 пр.

Изобретение относится к материаловедению, а именно к методам получения гидрогелей с заданными механическими свойствами и архитектоникой, и может быть использовано, например, в области биомедицинского материаловедения для изготовления матриц-носителей клеток для регенеративной медицины.

Необходимость создания гидрогелей с заданными механическими свойствами и архитектоникой для регенеративной медицины обусловлена созданием замещающих трехмерных матриц-носителей клеток, содержащих биоактивные компоненты.

Хорошо известен способ получения гидрогелей заданной формы, основанный на полимеризации глутарового альдегида (см., например, http://chem21.info/info/369248/). Способ заключается в помещении глутарового альдегида в необходимую форму, разогреве формы с глутаровым альдегидом до 45-48°С и последующем охлаждении его до комнатной температуры, в результате чего происходит затвердение гидрогеля. С помощью известного способа можно из гидрогеля формировать различные объекты.

Основной недостаток известного способа заключается в том, что с его помощью невозможно сформировать структурированный с заданными архитектоникой и механическими свойствами гидрогель, поэтому этот способ не находит применения для изготовления матриц-носителей клеток для регенеративной медицины.

Указанного недостатка лишен наиболее близкий к заявляемому способ получения структурированных гидрогелей, основанный на лазерной стереолитографии (Тимашев П.С., Бардакова К.Н., Демина Т.С. и др. Новый биосовместимый материал на основе модифицированного твердофазным методом хитозана для лазерной стереолитографии // Современные технологии в медицине. 2015. Т. 7, №3. С. 20-31), основанный на инициировании локальных пространственных сшивок между реакционноспособными звеньями макромолекул под действием лазерного излучения в ультрафиолетовой области спектра. Известный способ включает послойное нанесение тонких слоев жидкой фотополимеризующейся композиции, с последующим формированием на каждом слое с помощью сканирования сфокусированного лазерного излучения в ультрафиолетовой области спектра структуры полимера заданной конфигурации, с последующей отмывкой непрореагирующего материала с использованием воды.

Известный способ позволяет создавать структуры заданной архитектоники на базе трехмерной компьютерной модели, которая может быть разработана с использованием как специального программного обеспечения, так и данных, полученных методами анализа пространственной структуры объекта in vivo, например MPT - данных дефектов тканей при создании соответствующих полимерных матриц-носителей клеток (Mankovich N.J., Samson D., Pratt W., Lew D., Beumer J. Surgical planning using three-dimensional imaging and computer modeling // Otolaryngologic Clinics of North America. 1994. V. 27. N. 5. P. 875-889).

Основной недостаток известного метода заключается в том, что получаемый по известному способу структурированный гидрогель является излишне мягким. Наши измерения показали, что такие структурированные гидрогели обладают низкими значениями модуля Юнга, не превышающими 10-30 кПа. А дополнительное удаление влаги из таких гидрогелей путем обычной сушки делает их излишне жесткими (модуль Юнга превышает 200 МПа). Как хорошо известно (Pereira, Т.F., Silva, М.А.С., Oliveira, М.F., Maia, I.A., Silva, J.V.L., Costa, M.F., & , R.M.S.M. Effect of process parameters on the properties of selective laser sintered Poly (3-hydroxybutyrate) scaffolds for bone tissue engineering // Virtual and Physical Prototyping. 2012. V. 7. N. 4. P. 275-285), оптимальным с точки зрения создания матриц-носителей клеток для регенеративной медицины являются материалы, модуль Юнга которых сопоставим с соответствующими значениями окружающих биологических тканей, что снижает толщину фиброзной капсулы, образующейся вокруг матрицы. Например, значения модуля Юнга нейрональных клеток лежат в диапазоне 60-90 кПа (Mirela Mustata, Ken Ritchie, Helen A. McNally, Neuronal elasticity as measured by atomic force microscopy // Journal of Neuroscience Methods. 2010. V. 186. P. 35-41).

Задача изобретения состоит в получении структурированных гидрогелей с заданными архитектоникой, модуль Юнга которых лежит в диапазоне 50-110 кПа.

Техническим результатом является создание способа получения гидрогелей с заданными механическими свойствами и архитектоникой.

Поставленная задача и достигаемый результат обеспечиваются применением способа получения структурированного гидрогеля, включающего формирование тонких слоев жидкой фотополимеризующейся композиции, содержащей 3 масс. % раствор аллилхитозана в 4% уксусной кислоте с добавлением 1 масс. % фотоинициатора Irgacure 2959 и 10 масс. % сшивающего агента полиэтиленгликольдиакрилата (ПЭГ-ДА) с молекулярной массой 500 Да, последующее структурирование композиции на лазерном стереолитографе с помощью сфокусированного лазерного излучения в УФ-области спектра. Затем производят отмывку непрореагировавшего материала с использованием воды и помещение структурированных гидрогелей в реактор высокого давления, куда в дальнейшем напускают углекислый газ под давлением 8 МПа и проводят нагрев реактора до температуры 40°С при повышении давления до 15 МПа и выдерживании системы при таких параметрах 3 часа.

Пример реализации разработанного способа.

В качестве структурированного гидрогеля использовались матрицы, полученные авторами по методике, описанной в работе (Тимашев П.С., Бардакова К.Н., Демина Т.С. и др. Новый биосовместимый материал на основе модифицированного твердофазным методом хитозана для лазерной стереолитографии // Современные технологии в медицине. 2015. Т. 7, №3. С. 20-31). Для приготовления фоточувствительной композиции использовали аллилхитозан, полученный методом твердофазного реакционного смешения хитозана и аллилбромида в условиях сдвигового деформирования. Готовили 3 масс. % раствор аллилхитозана в 4% уксусной кислоте (хитозан с высокой степенью кристалличности отделяли на центрифуге). Далее в смесь добавляли 1 масс. % фотоинициатора Irgacure 2959, перемешивание раствора производили в течение 2 часов. После вводили полиэтиленгликольдиакрилат (ПЭГ-ДА, молекулярная масса 500 Да, концентрация 10 масс. %). Композицию оставляли перемешиваться на сутки, после чего производили структурирование полученных матриксов на лазерном стереолитографе.

Для увеличения модуля Юнга полученные матриксы помещались в реактор высокого давления, куда в дальнейшем напускался углекислый газ до давления 8 мПа. Затем проводился нагрев реактора до температуры 40°С, при этом давление повышалось до 15 МПа. При таких параметрах система выдерживалась 3 часа, после чего углекислый газ выпускался из камеры, а полученные структурированные гидрогели с необходимым значением модуля Юнга извлекались.

Для оценки механических характеристик гидрогелей использовался наноиндентер (Piuma (Optic 11, Нидерлады)), позволяющий оценивать механические характеристики гидрогеля в пределах от 1 кПа до 500 МПа. Измерения проводили как в водной, так и воздушной среде. Спектроскопия комбинационного рассеяния использовалась для установления изменений в химическом составе структурированных гидрогелей после обработки углекислым газом в сверхкритическом состоянии.

На фиг. 1 представлены спектры комбинационного рассеяния исходного структурированного гидрогеля (1) и структурированного гидрогеля после обработки углекислым газом в сверхкритическом состоянии (2).

На фиг. 2 показаны полученные значения модуля Юнга исходного структурированного гидрогеля и структурированного гидрогеля после обработки углекислым газом в сверхкритическом состоянии. Показаны средние значения и стандартные отклонения.

Как видно из фиг. 1, спектр комбинационного рассеяния структурированного гидрогеля после обработки углекислым газом в сверхкритическом состоянии (2) качественно не отличается от исходного (1), что подтверждает неизменности химического состава структуры. Снижение интенсивности всех полос спектра комбинационного рассеяния связано с понижением концентрации низкомолекулярных несшитых фрагментов в процессе обработки в среде сверхкритического углекислого газа. Из фиг. 2 видно, что модуль Юнга структурированных гидрогелей после обработки углекислым газом в сверхкритическом состоянии в среднем увеличивается с 22±8 кПа до 82±31 кПа.

Достигнутое увеличение модуля Юнга структурированных гидрогелей с 22±8 кПа в исходном гидрогеле до 82±31 кПа после обработки диоксидом углерода при температуре 40°С и давлении 15 МПа в течение 3 часов произошло за счет понижения концентрации низкомолекулярных несшитых фрагментов, вымытых из матрицы в процессе обработки. Поскольку количество удаленных несшитых фрагментов зависит от параметров такой обработки (температуры, давления и времени), то варьируя эти параметры, можно для каждых конкретных гидрогелей подобрать диапазон оптимальных параметров для заданного увеличения модуля Юнга.

Таким образом, предложенный способ позволил достичь заявленных целей, а именно, получить структурированный гидрогель с заданной архитектоникой, модуль Юнга которого лежит в диапазоне 50-110 кПа.

Способ получения структурированного гидрогеля, включающий формирование тонких слоев жидкой фотополимеризующейся композиции, содержащей 3 масс. % раствор аллилхитозана в 4% уксусной кислоте с добавлением 1 масс. % фотоинициатора Irgacure 2959 и 10 масс. % сшивающего агента полиэтиленгликольдиакрилата (ПЭГ-ДА) с молекулярной массой 500 Да, последующее структурирование композиции на лазерном стереолитографе спомощью сфокусированного лазерного излучения в УФ-области спектра, последующую отмывку непрореагировавшего материала с использованием воды и помещение структурированных гидрогелей в реактор высокого давления, куда в дальнейшем напускается углекислый газ под давлением 8 мПа и проводится нагрев реактора до температуры 40°C, при повышении давления до 15 МПа и выдерживании системы при таких параметрах 3 часа.
Способ получения структурированных гидрогелей
Источник поступления информации: Роспатент

Показаны записи 21-30 из 39.
02.09.2019
№219.017.c5ef

Устройство для выращивания кристаллов вертикальным методом бриджмена

Изобретение относится к технологии выращивания монокристаллов полупроводников вертикальным методом Бриджмена. Устройство содержит корпус 1 с размещенной внутри него теплоизоляцией 2, два последовательно установленных нагревателя 3, 5 и тигель 6 с рабочей камерой, имеющий возможность осевого...
Тип: Изобретение
Номер охранного документа: 0002698830
Дата охранного документа: 30.08.2019
04.10.2019
№219.017.d284

Кластер установок для выращивания кристаллов из раствора

Изобретение относится к области выращивания кристаллов. Предлагается кластер установок для выращивания кристаллов из раствора, содержащий несколько кристаллизационных установок 1, которые объединены в отдельные блоки по несколько установок, например по десять, которые образуют кластеры нижнего...
Тип: Изобретение
Номер охранного документа: 0002701940
Дата охранного документа: 02.10.2019
17.10.2019
№219.017.d6c7

Фтор-проводящий композитный электролит и способ его получения

Изобретение относится к фтор-проводящим твердым электролитам (ФТЭЛ), которые используются в различных областях ионики твердого тела, электрохимии, сенсорных систем и низковольтной энергетики, а также к способу его получения. Фтор-проводящий композитный электролит получают кристаллизацией...
Тип: Изобретение
Номер охранного документа: 0002702905
Дата охранного документа: 14.10.2019
18.10.2019
№219.017.d753

Композитный протонопроводящий материал и способ его получения

Изобретение может быть использовано при создании протонообменных мембран, применяемых в топливных элементах на основе водорода. Композитный протонопроводящий материал имеет состав xCs(HSO)(HPO)-(1-х)AlPO, где х=0,5-0,9. Способ получения композитного материала включает получение гидроксида...
Тип: Изобретение
Номер охранного документа: 0002703246
Дата охранного документа: 15.10.2019
17.01.2020
№220.017.f622

Реактор высокого давления для регистрации спектров электронного парамагнитного резонанса

Изобретение относится к области спектроскопии, а именно к устройствам для регистрации спектров электронного парамагнитного резонанса (ЭПР) в жидкостях и сверхкритических флюидах при высоком давлении. Реактор высокого давления для регистрации спектров электронного парамагнитного резонанса (ЭПР)...
Тип: Изобретение
Номер охранного документа: 0002711218
Дата охранного документа: 15.01.2020
28.03.2020
№220.018.1131

Способ выращивания кристалла из раствора при постоянной температуре

Изобретение относится к области выращивания искусственных кристаллов из растворов. В способе выращивания кристалла из раствора при постоянной температуре, включающем отвод и последующее возвращение раствора в кристаллизатор, общий объем раствора в кристаллизаторе делят на две сообщающиеся...
Тип: Изобретение
Номер охранного документа: 0002717799
Дата охранного документа: 25.03.2020
24.06.2020
№220.018.29cc

Способ получения наностержней никеля с регулируемым аспектным отношением

Изобретение относится к области металлургии, в частности к способам получения никелевых наностержней цилиндрической формы с заданным аспектным отношением. Способ включает изготовление трековой полимерной матрицы, имеющей сквозные каналы-поры, на одну из сторон которой наносят слой меди с...
Тип: Изобретение
Номер охранного документа: 0002724264
Дата охранного документа: 22.06.2020
22.07.2020
№220.018.3562

Способ лечения открытоугольной формы глаукомы, устройство для его осуществления и рабочий инструмент

Группа изобретений относится к офтальмологии. Способ лечения открытоугольной формы глаукомы путем обеспечения оттока водянистой влаги через склеру в проекции цилиарного тела посредством серии лазерных аппликаций по его периметру. В месте каждой конкретной аппликации с помощью рабочего...
Тип: Изобретение
Номер охранного документа: 0002727036
Дата охранного документа: 17.07.2020
12.04.2023
№223.018.4310

Способ синхронизированной регистрации рентгеновского излучения и вторичного флуоресцентного излучения в монофотонном режиме при облучении образца рентгеновским излучением

Использование: для синхронизированной регистрации рентгеновского и вторичного флуоресцентного излучения в монофотонном режиме. Сущность изобретения заключается в том, что осуществляют облучение исследуемого образца рентгеновским излучением с последующей регистрацией флуоресцентного излучения от...
Тип: Изобретение
Номер охранного документа: 0002793568
Дата охранного документа: 04.04.2023
20.04.2023
№223.018.4d95

Способ изготовления зонных пластин

Способ изготовления зонных пластин, в котором формируют блок из стеклянных пластин двух сортов, имеющих различную плотность и диэлектрическую проницаемость, но одинаковую площадь и объем, располагая пластины первого и второго сорта поочередно. С обеих сторон блока находятся пакеты пластин из...
Тип: Изобретение
Номер охранного документа: 0002793078
Дата охранного документа: 28.03.2023
Показаны записи 21-23 из 23.
14.05.2023
№223.018.5491

Способ формирования 3d микроструктур в оптических материалах

Изобретение относится к способу формирования 3D микроструктур в оптически прозрачном материале и может быть использовано, например, для изготовления элементов микрооптики, волоконной и интегральной оптики, фотоники, плазмоники, сенсорики и микрофлюидики. Осуществляют воздействие импульсного...
Тип: Изобретение
Номер охранного документа: 0002729253
Дата охранного документа: 05.08.2020
15.05.2023
№223.018.592f

Отверждаемые смолы для изготовления термостойких трехмерных объектов методом dlp 3d-печати

Изобретение относится к отверждаемым смолам и может быть использовано для изготовления термостойких трехмерных объектов методом DLP 3D-печати. Отверждаемые смолы состоят из термостойкого полимера – поли-2,2’-(-оксидифенилен)-5,5’-дибензимидазола с молекулярной массой 100-180 кДа, ароматического...
Тип: Изобретение
Номер охранного документа: 0002760736
Дата охранного документа: 30.11.2021
17.06.2023
№223.018.80f6

Способ закрытия стойких перфораций барабанной перепонки

Изобретение относится к медицине, а именно к оториноларингологии и регенеративной медицине. Выполняют деэпидермизацию барабанной перепонки по периметру края перфорации. Коллагеновую гемостатическую губку толщиной 1-2 мм пропитывают раствором, содержащим основной фактор роста фибробластов. Затем...
Тип: Изобретение
Номер охранного документа: 0002763980
Дата охранного документа: 12.01.2022
+ добавить свой РИД