×
10.05.2018
218.016.3dd4

Результат интеллектуальной деятельности: Способ изготовления электрически изолированных резисторов микросхем

Вид РИД

Изобретение

Аннотация: Изобретение относится к микроэлектронике, а именно к способу изготовления электрически изолированных резисторов микросхем на арсениде галлия с высокой термостабильностью. Технический результат заключается в увеличении термостабильности и повышении пробивного напряжения изолирующих слоев микросхем на арсениде галлия. Способ изготовления электрически изолированных резисторов микросхем, заключающийся в изготовлении контактных площадок на эпитаксиальных структурах арсенида галлия, проведении внедрения ионов гелия с энергией 30-150 кэВ и дозой 1,2-1,4 мкКл/см для формирования областей изоляции, нанесении маски фоторезиста с последующим формированием окон в фоторезистивной маске для повторного внедрения ионов гелия с энергией 30-150 кэВ и дозой 6-12 мкКл/см. 10 ил, 1 табл.

Изобретение относится к микроэлектронике, а именно к способу изготовления электрически изолированных резисторов микросхем на арсениде галлия с высокой термостабильностью.

Известен способ изготовления резистивных слоев микросхем облучением протонами [Патент США №4196228, H01L 21/425, 1980] с энергией до 100 кэВ и дозой потока протонов 3-6 мкКл/см2, причем тонкий имплантированный поверхностный слой формируется при низких температурах.

Недостатком этого способа является низкая термическая стабильность изготавливаемых резистивных слоев.

Известен способ модифицирования полупроводников пучками протонов для создания омических контактов к материалам AIIIBV (Козловский В.В., Козлов В.А., Ломасов В.Н. Модифицирование полупроводников пучками протонов // Физика и техника полупроводников, 2000. - Т. 34. - Вып. 10. - с. 22-28).

Разработанная радиационная технология обеспечивает возможность с высокой точностью и воспроизводимостью управлять процессом формирования в кристаллах скрытых высокоомных слоев.

Недостатком разработанного способа является низкое пробивное напряжение и необходимость проведения дополнительного постимплантационного отжига изолирующих слоев.

Наиболее близким к предлагаемому изобретению является способ изготовления электрически изолированных резистивных элементов микросхем [Козейкин Б.В., Перинский В.В. и др. Ионно-лучевая технология пассивных интегральных схем СВЧ на арсениде галлия: обзоры по электронной технике, серия 7 «Технология, организация производства и оборудование» / Б.В. Козейкин, В.В. Перинский и др. Москва: ЦНИИ «Электроника», 1990. Вып. 12(1548). С. 30-40], заключающийся в том, что после формирования контактных площадок на эпитаксиальных структурах арсенида галлия проводят внедрение ионов аргона, кислорода, водорода с энергией от 60 до 120 кэВ и в интервале доз 0-3000 мкКл/см2.

Недостатком данного изобретения является низкая термостабильность резисторов и низкое пробивное напряжение изолирующих слоев.

Задача изобретения заключается в расширении технологических возможностей при проектировании микросхем.

Технический результат заключается в увеличении термостабильности и повышении пробивного напряжения изолирующих слоев микросхем на арсениде галлия.

Поставленная задача решается тем, что при осуществлении способа изготовления электрически изолированных резисторов микросхем с высокой термостабильностью, заключающегося в изготовлении контактных площадок на эпитаксиальных структурах арсенида галлия, нанесении маски фоторезиста, новым является то, что после изготовления контактных площадок на поверхности эпитаксиальных структур арсенида галлия проводят внедрение ионов гелия с энергией 30-150 кэВ и дозой 1,2-1,4 мкКл/см2 для формирования областей изоляции; после нанесения маски фоторезиста формируют окна в фоторезистивной маске и осуществляют повторное внедрение ионов гелия с энергией 30-150 кэВ и дозой 6-12 мкКл/см2.

Изобретение поясняется чертежами (фиг. 1 - фиг. 10), где на фиг. 1 представлена эпитаксиальная структура арсенида галлия до и после внедрения ионов гелия (He+), образующих области изоляции; на фиг. 2 представлена эпитаксиальная структура арсенида галлия после формирования окон в фоторезистивной маске и повторного внедрения ионов гелия (He+), образующих собственно резисторы; на фиг. 3 - эпитаксиальная структура арсенида галлия с резистором между контактными площадками, лежащим в слое изоляции; на фиг. 4 приведена зависимость электрического сопротивления эпитаксиального слоя арсенида галлия от дозы внедренных ионов гелия с энергией: Δ-E=30 кэВ; •-150 кэВ; на фиг. 5 - зависимость сопротивления от энергии ионов гелия: о - область изоляции (Ф=1,2 мкКл/см2); Δ - собственно сопротивление (Ф=6 мкКл/см2); на фиг. 6 - зависимость толщины нарушенного слоя от дозы ионов гелия: Δ-Е=150 кэВ; •-Е=30 кэВ; на фиг. 7 показана зависимость пробивного напряжения (Vпр) изолирующего слоя от дозы (Ф) ионов гелия (о-Е=30 кэВ, ток утечки Iут=10 мкА, без дополнительной термообработки; Δ-Е=30 кэВ, ток утечки Iут=10 мкА, термообработка +300°C); на фиг. 8 показана зависимость пробивного напряжения (Vпр) резисторов от температуры отжига (время отжига 60 мин) (Δ-Е=30 кэВ, Ф=8 мкКл/см2; •-Е=30 кэВ, Ф=12 мкКл/см2; о-Е=150 кэВ, Ф=8 мкКл/см2; □-Е=150 кэВ, Ф=12 мкКл/см2); на фиг. 9 показана зависимость пробивного напряжения (Vпр) изолирующего слоя от дозы: • - протонов (H+); Е=50 кэВ; ток утечки Iут=10 мкА; Δ - ионов гелия (He+); Е=30 кэВ; ток утечки Iут=10 мкА; □ - ионов гелия (He+); Е=150 кэВ; ток утечки Iут=10 мкА; на фиг. 10 показана зависимость пробивного напряжения (Vпр) резисторов, изготовленных: • - протонным облучением; Е=50 кэВ; Ф=12 мкКл/см2; Δ - облучением ионами гелия; Е=30 кэВ; Ф=12 мкКл/см2 от температуры отжига (время отжига 60 мин); □ - облучением ионами гелия; Е=150 кэВ; Ф=12 мкКл/см2 от температуры отжига (время отжига 60 мин). Позициями на чертежах 1-3 обозначены: 1 - полуизолирующая подложка; 2 - эпитаксиальный слой арсенида галлия; 3 - контактные площадки; 4 - области изоляции после внедрения ионов гелия; 5 - фоторезистивная маска; 6 - резистор, образованный после повторного внедрения ионов гелия.

Способ осуществляют следующим образом.

В качестве исходного материала используют эпитаксиальные структуры арсенида галлия с толщиной эпитаксиального слоя 0,3÷0,4 мкм и концентрацией электронов 2⋅1016 см-3. Контактные площадки 3 изготавливают методом вакуумного напыления алюминия толщиной 0,3 мкм с последующей фотолитографией (фиг. 1a) по стандартной технологии. Изолирующие области 4 между контактными площадками 3 создают внедрением ионов гелия на установке ионного легирования типа «Везувий» с энергией 30-150 кэВ и дозой 1,2-1,4 мкКл/см2 (фиг. 1б).

Области резисторов 6 выделяют формированием окон в фоторезистивной маске 5 из ФП-383 толщиной 1 мкм и повторно внедряют ионы гелия с энергией 30 кэВ (150 кэВ) и дозой 8 мкКл/см2 (12 мкКл/см2) (фиг. 2). В результате получают резисторы 6 с сопротивлением R=320 Ом (380 Ом) электрически изолированные от других резисторов 6 в плоскости эпитаксиальной структуры 2 слоем с удельным сопротивлением 106 Ом⋅см (фиг. 3, 4).

Экспериментально полученными оптимальными дозами ионов гелия, необходимыми для получения электрически изолированных резисторов 6 являются 8-12 мкКл/см2 с энергией 30-150 кэВ, так как при дозах ионов гелия 8-12 мкКл/см2 электронное торможение является преобладающим процессом для ионов гелия, энергия которых в пределах 30-150 кэВ в арсениде галлия (фиг. 5).

*среднее значение номинала сопротивления; усреднение проведено для каждого режима группе из 50 резисторов; разброс номинала по каждой группе не превышает ±3%.

Зная (Козловский В.В., Козлов В.А., Ломасов В.Н. Модифицирование полупроводников пучками протонов // Физика и техника полупроводников, 2000. - Т. 34. - Вып. 10. - с. 22-28) характер распределения вводимых облучением дефектов, а также зависимость толщины нарушенного слоя от дозы ионов гелия (фиг. 6), определяем условия, при которых в ограниченной по горизонтали области кристалла арсенида галлия образуется слой с высокой плотностью радиационных дефектов.

Методом измерения вольт-фарадных характеристик и емкостной переходной спектроскопии имплантированных ионами гелия слоев найдены четыре ловушки электронов с энергией активации 0,79; 0,65; 0,32; 0,27 эВ (Козловский В.В., Козлов В.А., Ломасов В.Н. Модифицирование полупроводников пучками протонов // Физика и техника полупроводников, 2000. - Т. 34. - Вып. 10. - с. 22-28), причем два наиболее глубоких центра доминируют при высоких дозах облучения 8-12 мкКл/см2, а при протонном облучении этого не наблюдается.

Результаты экспериментов по влиянию дозы ионов на параметры изолирующих областей и термообработки на параметры резисторов представлены на фиг. 7, 8.

Заметное возрастание пробивного напряжения арсенида галлия, подвергнутого имплантации ионов гелия, наблюдается при дозе ионов гелия выше 0,4 мкКл/см2. В интервале 0,2-0,8 мкКл/см2 происходит монотонное увеличение Vпр от исходного значения до 300 В (в зависимости от исходных параметров эпитаксиального слоя). Как и следовало ожидать, в области Ф≥1,2-1,4 мкКл/см2 наклон дозовой зависимости уменьшается, зависимость стремится к насыщению с абсолютным значением сопротивления изолирующих областей 5⋅105-106 Ом (фиг. 4).

Как следует из этих данных, параметры полученных имплантацией ионов гелия изолирующих слоев термостабильны до температуры ~500°C и практически не изменяются после часового отжига. При температуре 300°C термообработка увеличивает пробивное напряжение изолирующих областей арсенида галлия в 1,5 раза. Уместно предположить, что низкотемпературный отжиг приводит к распаду нестабильных радиационных нарушений, отжигу и миграции быстро диффундирующих дефектов на стоки.

Таким образом, разработан способ изготовления электрически изолированных резисторов при температурной обработке до 500°C, причем зависимость сопротивления и пробивного напряжения от дозы ионов гелия свидетельствует об отжиге некоторых центров в запрещенной зоне арсенида галлия либо их комплексообразовании; после отжига стабилизировались дефекты с энергией активации проводимости 0,08 и 0,66 эВ, по-видимому, образующие донорно-акцепторную связь с химическими примесями кристалла, что обеспечивает увеличение термостабильности и повышение пробивного напряжения изолирующих слоев арсенида галлия и, следовательно, расширяет возможности при проектировании микросхем (фиг. 9, 10).

Предлагаемое техническое решение позволяет получать электрически изолированные резисторы микросхем на арсениде галлия необходимого номинала термостабильностью до 500°C, изолированные имплантированными ионами гелия слоями изоляции с пробивным напряжением до 450 В.

Способ изготовления электрически изолированных резисторов микросхем, заключающийся в изготовлении контактных площадок на эпитаксиальных структурах арсенида галлия, нанесении маски фоторезиста, отличающийся тем, что после изготовления контактных площадок на поверхности эпитаксиальных структур арсенида галлия проводят внедрение ионов гелия с энергией 30-150 кэВ и дозой 1,2-1,4 мкКл/см для формирования областей изоляции; после нанесения маски фоторезиста формируют окна в фоторезистивной маске и осуществляют повторное внедрение ионов гелия с энергией 30-150 кэВ и дозой 6-12 мкКл/см.
Способ изготовления электрически изолированных резисторов микросхем
Способ изготовления электрически изолированных резисторов микросхем
Способ изготовления электрически изолированных резисторов микросхем
Способ изготовления электрически изолированных резисторов микросхем
Источник поступления информации: Роспатент

Показаны записи 61-70 из 164.
13.02.2018
№218.016.23f5

Способ устройства подземных резервуаров

Изобретение относится к строительству, а именно к устройству подземных резервуаров, преимущественно для хранения сжиженных газов. Способ устройства подземных резервуаров заключается в рытье котлована под резервуар, установке фундамента, установке резервуара в котлован и креплении его к...
Тип: Изобретение
Номер охранного документа: 0002642587
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.2e13

Способ работы воздушно-аккумулирующей газотурбинной электростанции с абсорбционной бромисто-литиевой холодильной машиной (абхм)

Изобретение относится к энергетике. В способе работы воздушно-аккумулирующей газотурбинной электростанции (ВАГТЭ) с абсорбционной бромисто-литиевой холодильной машиной (АБХМ) в период спада электрической нагрузки сжатый, предварительно охлажденный в промежуточном охладителе воздух добавочно...
Тип: Изобретение
Номер охранного документа: 0002643878
Дата охранного документа: 06.02.2018
10.05.2018
№218.016.392d

Способ формирования оксидных покрытий на изделиях из циркониевых сплавов

Изобретение относится к области машино- и приборостроения, а именно к технологии формирования оксидных покрытий на циркониевых изделиях технического или медицинского назначения, например элементах пар трения, датчиках, тепловыделяющих элементах и внутрикостных имплантируемых конструкциях....
Тип: Изобретение
Номер охранного документа: 0002647048
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.3966

Способ работы воздушно-аккумулирующей газотурбинной электростанции

Изобретение относится к теплоэнергетике. Способ работы воздушно-аккумулирующей газотурбинной электростанции характеризуется тем, что уходящие газы после газовой турбины поступают в котел-утилизатор, который входит в состав дополнительно установленного утилизационного контура. Одну часть...
Тип: Изобретение
Номер охранного документа: 0002647013
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.3a42

Способ определения относительного размера синхронного кластера в сети по ее макропараметрам

Изобретение относится к области цифровой обработки и анализа данных. Технический результат заключается в расширении арсенала технических средств определения относительных размеров отдельных синхронных кластеров сложной сети. Способ определения относительных размеров синхронных кластеров сетей...
Тип: Изобретение
Номер охранного документа: 0002647677
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3b4b

Сорбционно-флуоресцентный способ количественного определения содержания полициклических ароматических углеводородов в водных растворах

Изобретение относится к аналитической химии и может быть использовано для количественного определения содержания полициклических ароматических углеводородов (ПАУ) в водных средах. Способ количественного определения содержания ПАУ в водных растворах включает добавление диметилсульфоксида (ДМСО)...
Тип: Изобретение
Номер охранного документа: 0002647475
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.3c4a

Способ работы компрессорной станции магистральных газопроводов

Способ работы компрессорной станции магистральных газопроводов, газоперекачивающие агрегаты которой оснащены комбинированным типом привода - электроприводным и газотурбинным, характеризуется тем, что при падении электрической нагрузки общей энергосистемы для газоперекачивающих агрегатов в...
Тип: Изобретение
Номер охранного документа: 0002647742
Дата охранного документа: 19.03.2018
10.05.2018
№218.016.3d05

Способ формирования титановых пористых покрытий на титановых имплантатах

Изобретение относится к области медицинской техники, а именно технологии формирования пористых биоинертных металлических покрытий на внутрикостных частях титановых имплантируемых конструкций. Способ формирования титановых пористых покрытий на титановых имплантатах включает воздушно-абразивную...
Тип: Изобретение
Номер охранного документа: 0002647968
Дата охранного документа: 21.03.2018
10.05.2018
№218.016.3d79

Композиция на основе эпоксидной диановой смолы

Изобретение предназначено для использования в таких отраслях, как строительство, в качестве наливных бесшовных полов, в машиностроении, ракетно-космической технике, для обеспечения пожарной безопасности, защитных покрытий, имеющих повышенную деформационную стойкость. Композиция включает...
Тип: Изобретение
Номер охранного документа: 0002648069
Дата охранного документа: 22.03.2018
10.05.2018
№218.016.41bf

Виртуальная система управления процессом выпуска однородной продукции предприятия с его регулированием

Изобретение относится к управлению предприятием. Виртуальная система управления процессом выпуска однородной продукции предприятия с его регулированием состоит из производственного и виртуально-компьютерного комплекса. Производственный комплекс состоит из соединенных программно-планового блока,...
Тип: Изобретение
Номер охранного документа: 0002649114
Дата охранного документа: 29.03.2018
Показаны записи 21-23 из 23.
30.05.2019
№219.017.6bc3

Способ формирования оксидных покрытий на изделиях из нержавеющих хромоникелевых сталей

Изобретение относится к области машино- и приборостроения, а именно к технологии оксидирования изделий конструкционного и медицинского назначения из нержавеющей хромоникелевой стали, например элементов запорной арматуры и внутрикостных имплантируемых конструкций. Способ включает размещение...
Тип: Изобретение
Номер охранного документа: 0002689485
Дата охранного документа: 28.05.2019
01.06.2019
№219.017.7207

Способ химико-термического упрочнения малогабаритных изделий из технического титана

Изобретение относится к области машино- и приборостроения, а именно технологии химико-термической обработки и упрочнения малогабаритных изделий конструкционного и медицинского назначения, изготовленных из сплавов титана. Способ включает размещение изделий в термостойком контейнере на подкладке...
Тип: Изобретение
Номер охранного документа: 0002690067
Дата охранного документа: 30.05.2019
30.10.2019
№219.017.dbd1

Способ формирования цирконийсодержащего оксидного покрытия на титановых сплавах

Изобретение относится к области машино- и приборостроения, а именно к технологии формирования локальных покрытий системы Ti-Zr-(Ti,Zr)O на изделиях из титановых сплавов, и может быть использовано для защиты деталей, работающих в условиях повышенных температур, агрессивных сред и абразивного...
Тип: Изобретение
Номер охранного документа: 0002704337
Дата охранного документа: 28.10.2019
+ добавить свой РИД