×
10.05.2018
218.016.3ae8

Результат интеллектуальной деятельности: ДЕНЕЖНАЯ КУПЮРА, СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ И СПОСОБ ПОДТВЕРЖДЕНИЯ ЕЕ ИСТИННОСТИ И ИНДИВИДУАЛЬНОСТИ

Вид РИД

Изобретение

№ охранного документа
0002647375
Дата охранного документа
15.03.2018
Аннотация: Изобретение относится к информационным технологиям, точнее к идентификации денежных купюр, и предназначено для проверки индивидуальности денежных купюр и выявления подделок. Денежная купюра согласно изобретению имеет в качестве микроэлементов внедренные в бумажную основу нано- и микропорошки размером от 50 до 1000 Нм, а бумажная основа дополнительно снабжена двумерным штрихкодом, в котором с помощью электронной цифровой подписи внесены буквенно-цифровые коды, серия и номер купюры, координатная сетка, координаты и размер микроэлементов на координатной сетке. Способ изготовления заключается в том, что формирование физической метки осуществляется стохастическим процессом на специализированной нанобумаге, полученной путем предварительного внесения добавки нанопорошка к бумажной массе с последующим изготовлением листов нанобумаги и одновременной фиксацией расположения наночастиц относительно друг друга, а полученное сжатое бинарное цифровое изображение физической метки, краткую информацию о номинале купюры, серии и цифровом коде подписывается цифровой подписью (закрытым ключом), подписанное изображение преобразуется в двумерный штриховой код и печатается на этой купюре рядом с физической меткой. Способ проверки заключается в том, что проверяющий читает штриховой код, напечатанный на документе, раскрывает цифровую подпись с помощью открытого ключа и узнает характеристики изображения физической метки, а проверку документа на индивидуальность осуществляют путем сравнения характеристик изображения метки со сканированной метки на штрихкоде с имеющейся физической меткой на этой же банкноте. 3 н. и 2 з.п. ф-лы, 4 ил.

Изобретение относится к информационным технологиям, точнее к идентификации денежных купюр, и предназначено для проверки индивидуальности денежных купюр и выявления подделок.

Известна денежная купюра, содержащая бумажную основу с водяными знаками, буквенно-цифровым кодом и микроотверстиями [1]. Однако такая денежная купюра не обладает высокой степенью информационной защиты, поскольку и нанесение водяного знака и буквенно-цифрового кода не относятся к невоспроизводимым технологиям. Микроотверстия на российской денежной купюре используются для обозначения номинала в 1000 и 5000 рублей. Микроотверстия при этом наносятся в строго заданные места, которые в совокупности образуют изображение цифрового кода (номинала) банкноты. На всех банкнотах одинакового номинала стоит один и тот же набор микроотверстий, соответствующий этому номиналу. Именно поэтому банкнота не проявляет свою индивидуальность с помощью микроотверстий, и поэтому потенциально номинал купюры может быть изображен этим способом и на фальшивке. Воспроизводимая технология, даже если она сделана с помощью микроотверстий, не обладает высочайшей информационной защитой.

В качестве аналога выбрана денежная купюра [2], содержащая бумажную основу и микроотверстия вблизи водяных знаков или буквенно-цифровых кодов. Однако у такой купюры не сформированы машиносчитываемые информационно защищенные участки, содержащие координатные сетки. Без координатных сеток затруднительно совмещать микроотверстия на купюре с соответствующими микроотверстиями в базе данных. Любое искажение, помятость на купюре, нарушение внешних габаритов купюры приводит к ошибочности при идентификации. При длительной эксплуатации купюры часть микроотверстий может затираться, искажая набор микроотверстий.

Известно также использование штрихкода на бумажной купюре [3]. Однако в этом решении отсутствуют элементы защиты как купюры, так и штрихкода. В этой технологии штрихкод используется только для записи серии и номинала купюры, что позволяет автоматизировать подсчет общей суммы. К недостатку можно отнести и то, что используется линейный штрихкод, с помощью которого практически невозможно записать информацию о физической метке, с координатами 100 случайно разбросанных электроразрядных перфораций и их площади. В статье Храмцовской [3] высказано предположение о возможности использования цифровой подписи для защиты штрихкода. Но процедура процесса не предполагает, как и в денежных купюрах Ливана использовать защитные стохастические метки.

В качестве прототипа выбрана денежная купюра [4], содержащая бумажную основу и микроэлементы вблизи водяных знаков или буквенно-цифровых кодов, машиносчитываемые информационно защищенные участки, снабженные с обеих сторон защитным прозрачным слоем, содержащие координатные сетки и нанесенный стохастичным процессом набор микроэлементов разной площади и формы.

В качестве недостатка можно выделить то, что в качестве микроэлементов на денежной купюре используются микроотверстия разной площади и формы. Микроотверстия, как правило, отличаются друг от друга незначительно (в 2-3 раза и не более) и их достаточное количество может влиять на их износоустойчивость. Для проверки такой денежной купюры на подлинность необходимо постоянно обращаться к базе данных денежных купюр РФ. Желательно базу данных денежных купюр эксплуатировать в закрытом режиме или полуоткрытом режиме при наличии правительственного уровня запроса из другого государства, а для рядовой проверки на подлинность денежной купюры не обращаться вообще к базе данных.

Предложенная денежная купюра содержит бумажную основу и микроэлементы вблизи водяных знаков или буквенно-цифровых кодов, машиносчитываемые информационно защищенные участки, снабженные с обеих сторон защитным прозрачным слоем, содержащие координатные сетки и нанесенный стохастичным процессом набор микроэлементов разной площади и формы.

Особенность предложенной бумажной купюры заключается в том, что в качестве микроэлементов используют внедренные в бумажную основу нано- и микропорошки размером от 50 до 1000 Нм, а бумажная основа дополнительно снабжена двумерным штрихкодом, в котором с помощью электронной цифровой подписи внесены буквенно-цифровые коды, серия и номер купюры, координатная сетка, координаты и размер микроэлементов на координатной сетке. В случае необходимости в двумерный штрихкод можно также внести неповторимость морфологии бумаги денежной купюры, распределение защитных волокон на бумаге и т.п.

На фиг. 1 схематично изображен предлагаемая бумажная банкнота 1. содержащая защитную метку 2 в виде совокупности внедренных в бумажную основу нано- и микропорошков 3 размером от 50 до 1000 Нм, а бумажная основа дополнительно снабжена двумерным штрихкодом 4, в котором с помощью электронной цифровой подписи внесены буквенно-цифровые коды 5, серия 6 и номинал купюры 7, координатная сетка 8, координаты и размер микроэлементов 3, образующих защитную метку 2, на координатной сетке 8. Помимо нано- и микрочастиц 3, внедренных в бумажную основу, метка 2 дополнительно может быть обработана известным физическим электроразрядным процессом с получением совокупности электроразрядных перфораций 9.

При выборе размеров частиц менее 50 Нм считывание информации с защитной метки 2 требует применение весьма дорогостоящих оптических средств. А при выборе размера частиц свыше 1000 Нм могут возникнуть особенности классического производства бумаги.

Известно применение цифровой подписи при защите виртуальных электронных документов. Однако такой подход считался неприменимым для защиты бумажных документов [5]. Постановка эфемерной электронной цифровой подписи на материальный объект - бумажную купюру - представляет собой отдельную и непростую проблему.

Известен способ защиты документов [6] без обращения к центральной базе данных. Этот способ основан на сравнении документа с его голографическим изображением.

В качестве прототипа при рассмотрении способа изготовления денежной купюры выбран способ создания защищенного бумажного документа, путем нанесения на него физической метки, полученной стохастическим электроразрядным процессом и цифрового кода, сканирования и при необходимости внесения этой информации в базу данных [7].

Особенностью предлагаемого способа создания является то, что формирование физической метки осуществляется стохастическим процессом на специализированной нанобумаге, полученной путем предварительного внесения добавки нанопорошка к бумажной массе с последующим изготовлением листов нанобумаги и одновременной фиксацией расположения наночастиц относительно друг друга, а полученное сжатое бинарное цифровое изображение метки, краткая информация о тексте и цифровой код подписывается цифровой подписью (закрытым ключом), подписанное изображение преобразуется в двумерный штриховой код и печатается на этом документе рядом с меткой.

На фиг. 2 схематично приведен участок линии изготовления нанотехнологической бумаги. Он почти ничем не отличается от классического процесса изготовления бумаги для лазерных принтеров. За тем исключением, что существует участок для нанесения полидисперсной смеси наночатиц 3, образующих защитную метку 2. Как правило, выбранный способ получения наночастиц 3, например плазменный, путем взрыва тонких проволок или любым другим способом сопровождается получением довольно узкой по размерам фракции наночастиц. Широкий диапазон размеров наночастиц объективно является дополнительным фактором, позволяющим проявлять индивидуальность денежной купюры. Поэтому этот участок линии содержит несколько бункеров 10 с наночастицами разных размеров, например, если это четыре бункера, то в первом бункере 10 размеры частиц 10-25 Нм, во втором 30-40 Нм, в третьем 50 100 Нм и в честверотом 100-1000 Нм. соединенных со смесителем 11 через дозаторы сыпучих материалов 12. Сами управляемые дозаторы 12 в свою очередь соединены с блоком управления 13, содержащим генератор случайных чисел. Смеситель 11 выполнен вращающимся и обеспечивающим тщательное перемешивание наночастиц 3. Это позволяет получать бесконечное число смесей нано- и микрочастиц 3. Последний управляемый сыпучий дозатор 12 вносит заранее фиксированную (согласованную с весовыми параметрами бумажной массы), полученную смесь нано- и микрочастиц 3 подают в чан 14 для равномерного перемешивания бумажной массы смесителем 15. Полученная смесь бумажной массы с нано- и микропорошком 3 участвует в дальнейшей технологии практически без изменений, поскольку размеры нано- и микрочастиц 3 существенно меньше толщины получаемого листа бумаги.

Работает предлагаемый способ изготовления денежных купюр следующим образом. После получения нанотехнологических листов бумаги (листов бумаги со случайным расположением на поверхности полидисперсной смеси нано- и микрочастиц 3) лист бумаги разбивается на участки соответствующие размерам будущих денежных купюр.

Пример выполнения способа создания денежной купюры №1

На фиг. 3 схематично изображена технологическая схема создания криптографически защищенной бумажной банкноты с меткой 2, содержащей внедренные нано- и микрочастицы и электроразрядные перфорации. На втором этапе на бумажную банкноту 1 с помощью электроразрядной установки наносится защитная метка 2, преимущественно в области координатной сетки 8. Опишем подробно последовательность всех технологических операций.

1. Денежная купюра, содержащая бумажный носитель с меткой 2, содержащей наночастицы 3 и электроразрядные перфорации. Бумажная основа дополнительно снабжена двумерным штрихкодом 4, в котором с помощью электронной цифровой подписи внесены буквенно-цифровые коды 5, серия 6 и номер купюры 7, координатная сетка 8, координаты и размер микроэлементов 3, образующих защитную метку 2, на координатной сетке 8.

Взаимное расположение электроразрядных перфораций и частиц в бумажной основе, формирующие защитную метку 2, сканируются отдельно и хранятся в отдельных базах данных. Это затруднит любые попытки фальсифицировать бумажные купюры.

16. Сканирующее и обрабатывающее устройство. В качестве такого устройства может выступать один из серийно выпускаемых смартфонов, планшетов, наладонных компьютеров (PDA), оснащенных цифровой камерой требуемого разрешения и набором специальных прикладных программ для считывания и обработки изображений. Возможен также вариант использования персонального компьютера с подключенным к нему серийно выпускаемым стационарным сканером.

В составе сканирующего и обрабатывающего устройства 16 реализуются следующие операции:

16.1. Процедура сканирования защитной метки 2 на денежной купюре, обеспечивающая считывание метки и получение оцифрованного бинарного изображения метки 2 в памяти устройства 16.

16.2. Оцифрованное бинарное изображение метки, хранящееся в памяти устройства 16.

16.3. Процедура сжатия бинарного изображения метки 16.2, обладающее определенной информационной избыточностью, в более компактный цифровой код X (16.4). Процедура сжатия проводится с целью экономии памяти, необходимой для хранения метки 2 в обрабатывающем устройстве 16 и ускорения последующих процедур обработки. Процедура сжатия выполняется без потери важной информации о параметрах конкретной метки.

16.4. Компактный цифровой код X. Несет важную информацию о параметрах конкретной метки 2, но в отличие от ее бинарного изображения 16.2 обладает существенно меньшей избыточностью.

16.5. Процедура подписания компактного цифрового кода 16.4, цифровой подписью удостоверяющей стороны Р. Цифровая подпись удостоверяет подлинность компактного цифрового кода X 16.4 и, следовательно, подлинность исходного бинарного изображения защитной метки 16.2. Процедура цифровой подписи описывается следующим математическим выражением:

S=DP(X),

где X - это компактный цифровой код, подлинность которого удостоверяется;

Dp - закрытое асимметричное криптографическое преобразование, выполняемое с помощью закрытого ключа удостоверяющей стороны P. S - результат криптографического преобразования в виде двоичной последовательности.

16.6. Сигнатура S, которая представляет собой результат подписания компактного цифрового кода X секретным ключом удостоверяющей стороны Р.

16.7. Процедура штрихового кодирования, которая обеспечивает преобразование полученной сигнатуры S 16.6. в один из общепринятых штриховых кодов 4, например в широко используемый двумерный QR-код. Штриховое кодирование используют для того, чтобы обеспечить возможность последующего воспроизведения и считывания данной информации общеизвестными средствами.

16.8. Условия кодировки штрихкода, позволяющие превратить подпись полученную с помощью S подпись в один из штрихкодов, например в QR двумерный штрихкод.

17. Штриховой код 4, несущий информацию о бинарном изображении защитной метки 2, подлинность которого удостоверяется цифровой подписью, удостоверяющей стороны Р. Создается в обрабатывающем устройстве 16 и передается на печатающее устройство 18.

18. Любое серийно выпускаемое печатающее устройство (принтер), способное воспроизвести на бумажном носителе денежной купюры штриховой код 4.

19. Итоговый документ, выполненный на бумажной банкноте, содержащий защитную метку 2 и соответствующий ей штриховой код 4, подтверждающий подлинность происхождения данной защитной метки.

В качестве прототипа при рассмотрении процедуры проверки документа на подлинность можно использовать способ [8] путем сравнения защитных элементов в виде совокупности перфораций на документе с аналогичной в базе данных. К недостаткам такого способа можно отнести необходимость в обращении к центральной базе данных, где хранится совокупность перфораций для каждого бумажного документа. Для этого необходимо дополнительное устройство для снятия совокупности перфораций, отсылка сообщения в центральную базу и сравнение его с эталонной совокупностью перфораций и отправка обратного сообщения, подтверждающего или отвергающего индивидуальность бумажной банкноты. Без обращения к центральной базе данных этот метод неработоспособен.

Особенностью проверки на индивидуальность в этом случае можно признать то, что любой проверяющий читает штриховой код, напечатанный на бумажной купюре, раскрывает цифровую подпись с помощью открытого ключа (программного обеспечения) и узнает подлинные характеристики изображения защитной метки 2, а проверку документа на индивидуальность осуществляют путем сравнения подлинных характеристик изображения защитной метки 2 с теми же характеристиками, полученными при сканировании метки на бумажной банкноте 1. Другими словами, в этом способе отсутствует необходимость обращения к центральной базе данных. Степень защиты бумажной купюры при этом резко возрастает. Если даже допустить возможность искусственной поделки набора перфораций на документе, то без знания ключа (программного обеспечения с помощью Хэш-функции) это сделать невозможно в принципе. В итоге, без обращения к центральной базе данных, сравнивается совсем другая пара защитных элементов 3 - зашифрованная и помещенная на документе в виде штрихкода с реальными электроразрядными перфорациями или реальным взаиморасположением нано и микрочастиц 3 на той же бумажной банкноте. Вместо центральной базы данных используется распределенная база данных в виде штрихкода 4 на каждой банкноте 1.

Пример выполнения способа проверки бумажной купюры на индивидуальность №2.

На фиг. 4 приведена принципиальная схема по проверке банкноты на индивидуальность. Она реализуется за счет того, что любой проверяющий читает штриховой код, напечатанный на банкноте, раскрывает цифровую подпись с помощью открытого ключа и узнает характеристики изображения защитной метки 2, а проверку документа на индивидуальность осуществляют путем сравнения характеристик изображения защитной метки 2 на банкноте со сканированной и расшифрованной имеющейся защитной меткой 2, хранящейся на банкноте в виде штрихкода 4.

Последовательность операций по проверке индивидуальности бумажной купюры (фиг. 4):

Бумажная купюра 1, содержащая защитную метку 2 в виде совокупности внедренных в бумажную основу нано- и микропорошков 3 размером от 50 до 1000 Нм, а бумажная основа дополнительно снабжена двумерным штрихкодом 4, в котором с помощью электронной цифровой подписи внесены буквенно-цифровые коды 5, серия 6 и номер купюры 7, координатная сетка 8, координаты и размер микроэлементов 3, образующих защитную метку 2, на координатной сетке 8.

20. Сканирующее и обрабатывающее устройство. В качестве такого устройства может выступать один из серийно выпускаемых смартфонов, планшетов, наладонных компьютеров (PDA), оснащенный цифровой камерой требуемого разрешения и набором специальных прикладных программ для считывания и обработки изображений. Возможет также вариант использования персонального компьютера с подключенным к нему серийно выпускаемым стационарным сканером.

В составе сканирующего и обрабатывающего устройства 20 реализуются следующие процессы:

20.1. Процедура 20.1 сканирования защитной метки, аналогичная процедуре 16.1 на фиг. 3. Обеспечивает считывание метки и получение оцифрованного бинарного изображения метки 2 и его сохранение в памяти устройства 20.

20.2. Оцифрованное бинарное изображение метки 2, хранящееся в памяти устройства 20 и аналогичное процессу 16. 2. на фиг.3.

20.3. Процедура сжатия бинарного изображения метки 2, преобразующая исходное бинарное изображение метки 20.2 в более компактный цифровой код X* аналогично процедуре 16.3 на фиг. 3.

20.4. Компактный цифровой код X*, аналогичный элементу 16.4 на фиг. 3. Подлинность этого кода эквивалентна подлинности сканированной метки 2. Подлинность компактного цифрового кода X*, а, следовательно, и подлинность считанной метки 2 проверяется в ходе выполнения последующих встречных процедур.

20.5. Процедура сканирования штрихового кода 4. Обеспечивает считывание штрихового кода 4 и его сохранение в памяти устройства 20.

20.6. Штриховой код 4, несущий информацию о бинарном изображении подлинности защитной метки 2, подлинность которой удостоверена цифровой подписью, удостоверяющей стороны Р. Аналогичен элементу 16.5 на фиг. 3.

20.7. Процедура декодирования штрихового кода 4, обеспечивающая получение сигнатуры S.

20.8. Сигнатура S, аналогичная элементу 16.6. на фиг. 3. Содержит подписанную удостоверяющей стороной Р информацию о подлинном цифровом коде X.

20.9. Процедура проверки (раскрытия) цифровой подписи, которая описывается следующим математическим выражением:

X=Ер (S),

где X - это подлинный компактный цифровой код; Ер - открытое асимметричное криптографическое преобразование, выполняемое с помощью открытого ключа удостоверяющей стороны Р; S - сигнатура.

20.10. Полученный подлинный цифровой код X.

20.11. Операция побитного сравнения цифрового кода X*, полученного в результате считывания и обработки метки 2 на денежной купюре, с подлинным компактным цифровым кодом X, который был на двумерном штрихкоде 4 подписан удостоверяющей стороной Р. Коды X* и X сравниваются побитно. Если они совпадают с определенной точностью, то денежная купюра признается подлинной.

21. Решение о подлинности документа. Реализуется в виде сообщения, формируемого устройством 20, и предназначается для проверяющего V.

Любая попытка сгенерировать двумерный штрихкод на банкноте без наличия у злоумышленника закрытого ключа приведет к несоответствию штрихкода набору и совокупности защитных элементов 3 и цифровому коду 4. Это несоответствие будет означать, что перед нами сфальсифицированная купюра. Такой подход исключает необходимость обращения к центральной базе данных. Использование центральной базы данных денежных купюр можно оставить в виде опции подстраховки, например, для случая частичной потери информации на банкноте, например, потери штрихкода на банкноте. Открытый ключ, необходимый для раскрытия и верификации цифровой подписи, может храниться в составе штрихового кода в открытом виде. Таким образом, доступ к нему может получить любой проверяющий, получивший на это разрешение. Но даже наличие открытого ключа не дает возможности злоумышленнику определить закрытый ключ и сфальсифицировать цифровую подпись, защищающую характеристики эталонного изображения метки. Открытый ключ распространяется по открытым каналам связи в адрес заинтересованных сторон. Поскольку пока неизвестно случаев успешных атак злоумышленников на электронную цифровую подпись, то можно считать предложенную технологию защиты бумажных денежных купюр весьма надежной.

Источники информации

1. Статья «Признаки подлинности банкнот Банка России».

2. Патент РФ №2399496.

3. http://habrahabr.ru/post/150335/ Бумажная банкнота Ливана, Статья Храмовской Н.А. «загадки современного делопроизводства» htpp//www.eos.ru.

4. Решение о выдаче патента по заявке РФ №2009132045 и патент №2496145 на «Денежную купюру, способ ее изготовления и способ проверки на истинность».

5. Шнайер Б. Прикладая криптография. Протоколы, алгоритмы, исходные тексты на языке Си. - Издательство «Триумф», 2002 г. - 816 с.

6. Патент Молдовы №4051.

7. Патент Республики Молдова №4060.


ДЕНЕЖНАЯ КУПЮРА, СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ И СПОСОБ ПОДТВЕРЖДЕНИЯ ЕЕ ИСТИННОСТИ И ИНДИВИДУАЛЬНОСТИ
ДЕНЕЖНАЯ КУПЮРА, СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ И СПОСОБ ПОДТВЕРЖДЕНИЯ ЕЕ ИСТИННОСТИ И ИНДИВИДУАЛЬНОСТИ
ДЕНЕЖНАЯ КУПЮРА, СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ И СПОСОБ ПОДТВЕРЖДЕНИЯ ЕЕ ИСТИННОСТИ И ИНДИВИДУАЛЬНОСТИ
ДЕНЕЖНАЯ КУПЮРА, СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ И СПОСОБ ПОДТВЕРЖДЕНИЯ ЕЕ ИСТИННОСТИ И ИНДИВИДУАЛЬНОСТИ
ДЕНЕЖНАЯ КУПЮРА, СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ И СПОСОБ ПОДТВЕРЖДЕНИЯ ЕЕ ИСТИННОСТИ И ИНДИВИДУАЛЬНОСТИ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 53.
09.08.2018
№218.016.78e3

Тепловая труба

Изобретение относится к области испарительно-конденсационных устройств и может быть использовано в области криогенных и средних температур при исследовании особенностей эффекта Лейденфроста. Особенность предлагаемой тепловой трубы состоит в том, что внутри корпуса зоны конденсации установлен...
Тип: Изобретение
Номер охранного документа: 0002663373
Дата охранного документа: 03.08.2018
09.08.2018
№218.016.7900

Сверхпроводящий накопитель энергии

Изобретение относится к теплотехнике, а точнее к сверхпроводящим накопителям энергии, и может быть использовано для запуска вихревых термоядерных реакторов. Особенностью предложенного сверхпроводящего накопителя энергии является то, что корпус и сверхпроводящий электрод выполнены в виде...
Тип: Изобретение
Номер охранного документа: 0002663365
Дата охранного документа: 03.08.2018
03.10.2018
№218.016.8d72

Способ работы трубопроводного транспорта и устройство для его осуществления

Способ работы трубопроводного транспорта заключается в том, что разность давления между кормовой и носовой частью создается за счет средств, расположенных в трубопроводном транспорте путем испарения криогенной жидкости, разгона паров в турбине и формирования в сверхзвуковом сопле (соплах)...
Тип: Изобретение
Номер охранного документа: 0002668452
Дата охранного документа: 01.10.2018
24.11.2018
№218.016.a0bf

Насос с тепловым приводом и способ его работы

Группа изобретений относится к области насосостроения и может быть использована для подъема грунтовых вод в пустынях, охлаждаемых химических реакторах, в системах охлаждения космических аппаратов, системах кондиционирования, в системах капельного орошения, при разработке высокоточный капельных...
Тип: Изобретение
Номер охранного документа: 0002673308
Дата охранного документа: 23.11.2018
06.12.2018
№218.016.a3ec

Конвективный электростатический генератор

Изобретение относится к электротехнике, в частности электрогидродинамике. Технический результат состоит в увеличении производительности выработки электростатической энергии. В качестве рабочей среды генератора используется смесь двух диэлектрических жидкостей, одна из которых легкоиспаряющаяся....
Тип: Изобретение
Номер охранного документа: 0002674006
Дата охранного документа: 04.12.2018
26.12.2018
№218.016.ab2c

Способ получения фуллеренов и устройство для его осуществления

Изобретение относится к нанотехнологии. Углеродосодержащий материал обрабатывают в электрическом поле между электродом в виде иглы 1, подключенным к источнику высокого напряжения 2, и жидкостным проточным осадительным электродом 3. Электрод в виде иглы 1 изготовлен из графита и его заостренное...
Тип: Изобретение
Номер охранного документа: 0002675865
Дата охранного документа: 25.12.2018
18.01.2019
№219.016.b12c

Способ сварки тонколистовых изделий из металла и устройство для его осуществления

Изобретение относится к способу и устройству сварки тонколистовых изделий из металла. Согласно способу световую систему размещают в эллипсоидальном отражателе и снабжают фокусирующей линзой. В одном фокусе отражателя размещают светопрозрачную колбу. Во втором фокусе размещают место контакта...
Тип: Изобретение
Номер охранного документа: 0002677421
Дата охранного документа: 16.01.2019
08.02.2019
№219.016.b831

Способ идентификации объектов из металла и устройство для его осуществления

Изобретение относится к области идентификации и может использоваться для конечной идентификации сложного изделия, в частности из металла, преимущественно плоского. Технический результат заключается в расширении арсенала средств идентификации плоских объектов из металла. В способе после...
Тип: Изобретение
Номер охранного документа: 0002679177
Дата охранного документа: 06.02.2019
10.08.2019
№219.017.bdb3

Сверхпроводящий накопитель энергии

Изобретение относится к теплотехнике, а именно к сверхпроводящим накопителям энергии с использованием туннельного эффекта Джозефсона, создающего мощные магнитные поля. Накопитель, отличающийся тем, что над кольцевым сверхпроводящим тором 4 а установлена двух- или трехфазная электропроводящая...
Тип: Изобретение
Номер охранного документа: 0002696831
Дата охранного документа: 06.08.2019
15.10.2019
№219.017.d5a2

Пинчевый светоэрозионный ракетный двигатель

Изобретение относится к ракетным двигателям малой тяги, предназначенным для систем ориентации космических аппаратов в условиях невесомости, и частично к области пневмогидравлики. Особенность данного двигателя заключается в том, что соосно светопрозрачной оболочке 4, внутри корпуса 1,...
Тип: Изобретение
Номер охранного документа: 0002702773
Дата охранного документа: 11.10.2019
Показаны записи 41-50 из 56.
12.07.2018
№218.016.7047

Тепловая труба и способ ее работы

Изобретение относится к области теплотехники и может быть применено для тепловых труб криогенных и средних температур и может быть использовано при разработке разнообразных систем охлаждения, в том числе при разработке систем охлаждения космических аппаратов, работающих в условиях пониженной...
Тип: Изобретение
Номер охранного документа: 0002660980
Дата охранного документа: 11.07.2018
19.07.2018
№218.016.7247

Способ нанесения буквенно-цифрового кода на идентификационную метку из металла и устройства для его осуществления

Изобретение относится к области информационных технологий и может быть использовано при создании информационных систем с идентификацией материальных ресурсов, выполненных из электропроводящих материалов, например деталей машин, отдельных узлов транспортных средств, артиллерийских стволов....
Тип: Изобретение
Номер охранного документа: 0002661530
Дата охранного документа: 17.07.2018
09.08.2018
№218.016.78e3

Тепловая труба

Изобретение относится к области испарительно-конденсационных устройств и может быть использовано в области криогенных и средних температур при исследовании особенностей эффекта Лейденфроста. Особенность предлагаемой тепловой трубы состоит в том, что внутри корпуса зоны конденсации установлен...
Тип: Изобретение
Номер охранного документа: 0002663373
Дата охранного документа: 03.08.2018
09.08.2018
№218.016.7900

Сверхпроводящий накопитель энергии

Изобретение относится к теплотехнике, а точнее к сверхпроводящим накопителям энергии, и может быть использовано для запуска вихревых термоядерных реакторов. Особенностью предложенного сверхпроводящего накопителя энергии является то, что корпус и сверхпроводящий электрод выполнены в виде...
Тип: Изобретение
Номер охранного документа: 0002663365
Дата охранного документа: 03.08.2018
09.08.2018
№218.016.7940

Светогидравлический таран (варианты)

Группа изобретений относится к гидравлике и может быть использована в светогидравлических таранах. Таран содержит магистральный трубопровод 1, замкнутую камеру 2, заполненную светопрозрачной жидкостью, светопоглощающую мишень 4, расположенную внутри камеры 2, воздушный колпак 5, сообщенный...
Тип: Изобретение
Номер охранного документа: 0002663372
Дата охранного документа: 03.08.2018
03.10.2018
№218.016.8d72

Способ работы трубопроводного транспорта и устройство для его осуществления

Способ работы трубопроводного транспорта заключается в том, что разность давления между кормовой и носовой частью создается за счет средств, расположенных в трубопроводном транспорте путем испарения криогенной жидкости, разгона паров в турбине и формирования в сверхзвуковом сопле (соплах)...
Тип: Изобретение
Номер охранного документа: 0002668452
Дата охранного документа: 01.10.2018
24.11.2018
№218.016.a0bf

Насос с тепловым приводом и способ его работы

Группа изобретений относится к области насосостроения и может быть использована для подъема грунтовых вод в пустынях, охлаждаемых химических реакторах, в системах охлаждения космических аппаратов, системах кондиционирования, в системах капельного орошения, при разработке высокоточный капельных...
Тип: Изобретение
Номер охранного документа: 0002673308
Дата охранного документа: 23.11.2018
06.12.2018
№218.016.a3ec

Конвективный электростатический генератор

Изобретение относится к электротехнике, в частности электрогидродинамике. Технический результат состоит в увеличении производительности выработки электростатической энергии. В качестве рабочей среды генератора используется смесь двух диэлектрических жидкостей, одна из которых легкоиспаряющаяся....
Тип: Изобретение
Номер охранного документа: 0002674006
Дата охранного документа: 04.12.2018
26.12.2018
№218.016.ab2c

Способ получения фуллеренов и устройство для его осуществления

Изобретение относится к нанотехнологии. Углеродосодержащий материал обрабатывают в электрическом поле между электродом в виде иглы 1, подключенным к источнику высокого напряжения 2, и жидкостным проточным осадительным электродом 3. Электрод в виде иглы 1 изготовлен из графита и его заостренное...
Тип: Изобретение
Номер охранного документа: 0002675865
Дата охранного документа: 25.12.2018
18.01.2019
№219.016.b12c

Способ сварки тонколистовых изделий из металла и устройство для его осуществления

Изобретение относится к способу и устройству сварки тонколистовых изделий из металла. Согласно способу световую систему размещают в эллипсоидальном отражателе и снабжают фокусирующей линзой. В одном фокусе отражателя размещают светопрозрачную колбу. Во втором фокусе размещают место контакта...
Тип: Изобретение
Номер охранного документа: 0002677421
Дата охранного документа: 16.01.2019
+ добавить свой РИД