×
10.05.2018
218.016.3975

Результат интеллектуальной деятельности: Способ изготовления нанокомпозитов в стекле

Вид РИД

Изобретение

Аннотация: Изобретение относится к изготовлению нанопористых электродов для батарей, аккумуляторов и солнечных элементов, катализаторов и др. Способ изготовления металл-стеклянных и полупроводник-стеклянных нанокомпозитов заключается в приложении электрического поля к нанопористому силикатному стеклу, сквозные поры которого заполнены раствором соли металла, и проведении электролиза при напряжении электрического поля 1.5-5 В. При этом в порах стекла формируются наноразмерные металлические нити. После проведения электролиза нанопористое стекло помещают в жидкий или газообразный реагент, обеспечивающий химическую реакцию с переходом металла в полупроводниковое химическое соединение. После электролиза стекло термообрабатывают при температуре 900-950°C в воздушной или инертной атмосфере. Технический результат – упрощение технологии изготовления нанокомпозита. 2 з.п. ф-лы, 8 ил.

Изобретение относится к нанотехнологиям и может быть использовано при изготовлении нанопористых электродов для батарей, аккумуляторов и солнечных элементов, катализаторов, сенсоров, элементов электроники и оптоэлектроники и оптических поглотителей.

Известен способ формирования металлических нанокластеров в стекле (Патент РФ №2394001, МПК C03C 17/06, B82B 3/00, дата приоритета от 05.11.2008. опубликован 10.07.2010). Способ заключается в облучении электронным пучком стекла, содержащего ионы серебра, и последующей термообработке стекла. При облучении стекла электронами под поверхностью стекла формируется область отрицательного объемного заряда. Возникающее при этом электрическое поле вызывает полевой дрейф подвижных положительных ионов серебра из объема стекла в эту область, где происходит восстановление ионов термализованными электронами. При последующей термообработке из атомов серебра формируются наночастицы серебра. Данный процесс является твердофазным аналогом электролиза. Недостатком способа является то, что металл-стеклянный нанокомпозит может быть изготовлен только в тонком приповерхностном слое стекла. Недостатком является необходимость использования сложного оборудования - электронного микроскопа. Недостатком является то, нанокомпозит может быть изготовлен из металлов, ионы которых имеют высокую подвижность в стекле, например, из серебра или меди. Недостатком также является отсутствие возможности изготовления данным способом нанокомпозита с полупроводниковыми наночастицами.

Известен способ изготовления нанокомпозитов в стекле на основе стекол, содержащих ионы серебра (П.Н. Брунков, А.А. Липовский, В.Г. Мелехин, А.В. Редьков, В.В. Стаценко. // Журнал технической физики, 2015, Т. 85, В. 2, с. 112-117). Способ заключается в том, что на поверхность стекла накладывают электроды, причем положительный электрод изготовлен из серебра. Затем стекло нагревают до температуры 250°C, а к электродам прикладывают электрическое напряжение 250 В. При этом происходит твердофазный электролиз, и ионы серебра дрейфуют от положительного электрода к отрицательному. В результате вблизи отрицательного электрода в приповерхностном слое стекла и на его поверхности возникают микродендриты серебра. Недостатком способа является то, что металл-стеклянный нанокомпозит может быть изготовлен только в тонком приповерхностном слое стекла. Недостатком является то, что нанокомпозит может быть изготовлен из металлов, ионы которых имеют высокую подвижность в стекле, например из серебра или меди. Недостатком также является необходимость использования высокой температуры и напряжения, что усложняет технологию изготовления нанокомпозита, а также отсутствие возможности изготовления данным способом нанокомпозита с полупроводниковыми наночастицами.

Известен способ изготовления нанокомпозитов в стекле на основе фосфатных стекол, содержащих ионы серебра (A. Doi, N. Asakura. // Journal of Material Sciense. 2001, V. 36, P. 3897-3901), выбранный в качестве прототипа. Способ заключается в том, что на противоположные поверхности стекла накладывают электроды, причем положительный электрод изготовлен из серебра. Затем стекло нагревают до температуры 148°C в вакууме, а к электродам прикладывают электрическое напряжение 50 В. При этом происходит твердофазный электролиз, и ионы серебра дрейфуют от положительного электрода к отрицательному. В результате вблизи отрицательного электрода в объеме стекла и на его поверхности возникают микродендриты серебра. Недостатком является то, что нанокомпозит может быть изготовлен из металлов, ионы которых имеют высокую подвижность в стекле, например из серебра или меди. Недостатком также является необходимость использования высокой температуры и напряжения и вакуумирования, что усложняет технологию изготовления нанокомпозита, а также отсутствие возможности изготовления данным способом нанокомпозита с полупроводниковыми наночастицами.

Изобретение решает задачи упрощения технологии изготовления металл-стеклянных и полупроводник-стеклянных нанокомпозитов, а также нанокомпозитов смешанного типа, содержащих металл и полупроводник, и расширения номенклатуры материалов, из которых могут быть изготовлены нанокомпозиты.

Сущность заключается в том, что нанопористое силикатное стекло со сквозными порами заполняют раствором соли металла и проводят электролиз при напряжении электрического поля 1.5-5 В. После чего нанопористое стекло промывают и высушивают. Сущность заключается также в том, что после проведения электролиза нанопористое стекло помещают в жидкий или газообразный реагент. Сущность заключается также в том, что после проведения электролиза нанопористое стекло термообрабатывают при температуре 900-950°C в воздушной или инертной атмосфере. Цель достигается также тем, что после электролиза и проведения химической реакции нанопористое стекло термообрабатывают при температуре 900-950°C в воздушной или инертной атмосфере.

Нанопористые силикатные стекла (НПСС) содержат сквозные сообщающиеся поры, размер которых может варьироваться от 3 до 2000 нм. Выбор технологических режимов изготовления НПСС позволяет получать стекла с малым разбросом размеров пор. Объемная концентрация пор может варьироваться от 20 до 60%. Каркас НПСС на 90-95% состоит из SiO2. При нагреве НПСС до Т=900-950°C поры НПСС схлопываются, и образуется сплошное кварцоидное стекло. В ряде стран НПСС производятся в промышленных масштабах (например, стекло Vikor фирмы Corning). Наши эксперименты показали, что при заполнении НПСС водным раствором соли металла и проведении электролиза с положительным электродом, изготовленным из металла, входящего в состав соли, в порах стекла формируются металлические нити, поперечный размер которых не превышает поперечный размер пор стекла, рост металлических нитей происходит от отрицательного электрода, и в процессе электролиза они заполняют весь объем пор стекла между электродами. Процесс происходит при комнатной температуре, электрическом напряжении между электродами 1.5-5 В, а его продолжительность составляет от десятков секунд до нескольких минут. После завершения электролиза, промывки и высушивания НПСС представляет собой металл-стеклянный нанокомпозит, состоящий из стекла с наноразмерными металлическими нитями в объеме. Металлические нити, входящие в состав нанокомпозита, могут быть изготовлены из любого металла, для которого возможно проведение электролиза, например из Ag, Au, Pd, Cu, Fe, Ni, Cr, Sn, Pb, Zn и др., а также из сплавов металлов. При использовании электродов малого поперечного сечения нанокомпозит может быть изготовлен локально, на небольшом участке НПСС. При последующей обработке нанокомпозита в жидком или газообразном реагенте, при необходимости, включающей в себя термообработку, металл, из которого состоят нити, может быть преобразован в полупроводниковое химическое соединение, например оксид, галогенид или халькогенид. Таким образом, предлагаемый способ позволяет изготавливать металл-стеклянные и полупроводник-стеклянные нанокомпозиты, состоящие из НПСС, объем которых заполнен наноразмерными металлическими или полупроводниковыми нитями. При дополнительной термообработке при Т=900-950°C происходит схлопывание пор НПСС, в результате чего формируется сплошной нанокомпозит, состоящий из кварцоидного стекла, содержащего наноразмерные металлические или полупроводниковые нити в объеме.

Достоинством предлагаемого способа является то, что он позволяет изготавливать нанокомпозиты при комнатной температуре, с использованием низкого электрического напряжения. Это упрощает технологию изготовления нанокомпозита. Достоинством является также то, что наноразмерные нити, входящие в состав нанокомпозита, могут быть изготовлены из любого металла, для которого возможно проведение электролиза, сплавов металлов, а также из полупроводниковых соединений металла. Совокупность признаков, изложенных формуле, характеризует способ изготовления нанокомпозитов в стекле, заключающийся в проведении электролиза в нанопористом силикатном стекле, содержащем раствор соли металла. Это позволяет формировать в объеме стекла наноразмерные металлические нити. Способ позволяет трансформировать металл, из которого состоят нити, в его полупроводниковое химическое соединение. Это позволяет формировать в объеме стекла наноразмерные полупроводниковые нити. Предлагаемый способ позволяет также изготавливать сплошной нанокомпозит, состоящий из кварцоидного стекла, содержащего наноразмерные металлические или полупроводниковые нити в объеме.

Изобретение иллюстрируется следующими чертежами, где на:

фиг. 1 показаны схемы электролиза для изготовления нанокомпозита во всем объеме НПСС: а - электроды расположены на противоположных поверхностях пластины НПСС; б - электроды расположены на противоположных торцах пластины НПСС. 1 - пластина НПСС, заполненная раствором соли металла; 2 - отрицательный электрод; 3 - положительный электрод;

фиг. 2 показаны: а - схема электролиза для локального изготовления нанокомпозита в объеме пластины НПСС; б - схема электролиза для локального изготовления нанокомпозита в приповерхностном слое пластины НПСС. 1 - пластина НПСС, заполненная раствором соли металла; 2 - отрицательный электрод; 3 - положительный электрод;

фиг. 3 показана фотография, сделанная с помощью оптического микроскопа, участка НПСС с наноразмерными нитями серебра, изготовленными при использовании схемы, показанной на фиг. 2, а. 4 - участок НПС без нанокомпозита; 5 - участок НПСС с нанокомпозитом. Масштаб 100 мкм.

фиг. 4 показано изображение, полученное с помощью сканирующего электронного микроскопа, торца скола НПСС с микродендритом из серебра. Масштаб 200 нм.

фиг. 5 показана фотография, сделанная с помощью оптического микроскопа, торца скола НПСС с наноразмерными нитями серебра после частичного йодирования. 6 - Ag, 7 - AgI. Масштаб 500 мкм.

фиг. 6 показан спектр поглощения нанокомпозита на основе НПСС с полупроводниковым йодидом серебра.

фиг. 7 показана фотография, сделанная с помощью оптического микроскопа, участка НПСС с микродендритами меди, изготовленными при использовании схемы, показанной на фиг. 2, а.

фиг. 8 показана фотография, сделанная с помощью оптического микроскопа, участка НПСС наноразмерными нитями железа, изготовленными при использовании схемы, показанной на фиг. 2, а. Масштаб 50 мкм.

Сущность изобретения раскрывается на примерах, которые не должны рассматриваться экспертом как ограничивающие притязания изобретения.

Сведения, подтверждающие возможность осуществления изобретения.

Пример 1

На фиг. 1 и фиг. 2 показаны схемы проведения электролиза при изготовлении нанокомпозита. 1 - пластина НПСС, заполненная раствором соли металла, 2 - отрицательный электрод, 3 - положительный электрод, изготовленный из металла, входящего в состав соли. Схемы, показанные на фиг. 1, используются для формирования нанокомпозита во всем объеме НПСС. Схема, показанная на фиг. 2, а, используется для формирования нанокомпозита локально по всей толщине пластины НПСС. Схема, показанная на фиг. 2, а, используется для формирования нанокомпозита локально в приповерхностном слое пластины НПСС. Пластину НПСС толщиной 1 мм со средним размером пор 25 нм и объемной концентрацией пор 57% помещают в водный раствор AgNO3 (концентрация 20 г/л) с добавлением 10% HNO3. После заполнения пор раствором пластину помещают между электродами по схеме, показанной на фиг. 2, а. Положительный электрод 3 на фиг. 2, а изготовлен из серебра. Диаметр электродов равен 1 мм. К электродам прикладывают постоянное напряжение, равное 3 В. Электролиз проводят при комнатной температуре в течение 30 с при плотности тока 2 А/дм2. После проведения электролиза пластину НПСС помещают в дистиллированную воду на 30 мин для удаления остатков раствора AgNO3, после чего пластину высушивают на воздухе при комнатной атмосфере. На фиг. 3 показана фотография участка пластины НПСС после локального изготовления нанокомпозита серебро-стекло. Исходно бесцветное и прозрачное стекло на фиг. 3 (область 4) приобрело темно-коричневую окраску под электродами и вблизи электродов на фиг. 3 (область 5). Из фиг. 3 видно, что серебро заполнило объем пор стекла в виде микродендритов и серебра. На фиг. 4 показано изображение, полученное с помощью сканирующего электронного микроскопа, торца скола НПСС с микродендритом из серебра на поверхности скола. Из фиг. 4 видно, что микродендрит состоит из наноразмерных нитей серебра толщиной 20-25 нм. Удельное сопротивление исходного НПСС превышает 200 МОм/см. В области формирования нанокомпозита удельное сопротивление НПСС равно 1.4 МОм/см.

Пример 2

В пластине НПСС толщиной 1 мм со средним размером пор 25 нм и объемной концентрацией пор 57% изготавливают нанокомпозит с серебром способом, описанным в примере 1. После этого пластину НПСС при комнатной температуре помещают в воздушную атмосферу с насыщенным давлением паров йода и выдерживают в течение 1 ч. При этом в результате химической реакции серебра с йодом серебро преобразуется в полупроводниковое соединение йодид серебра (AgI). В результате этого нанокомпозит изменяет окраску с черной на желтую. На фиг. 5 показан торец скола НПСС после частичного йодирования. Из фиг. 5 видно, что в приповерхностных слоях стекла серебро трансформировалось в йодид серебра (6 на фиг. 5), а в глубине стекла серебро осталось в металлическом виде (7 на фиг. 5). Таким образом, предложенный способ позволяет изготавливать нанокомпозиты смешанного типа, содержащие как металл, так и полупроводник. После полного йодирования на спектре поглощения нанокомпозита на длине волны 410 нм появляется экситонная полоса поглощения, характерная для кристаллического йодида серебра (фиг. 6).

Пример 3

Пластину НПСС толщиной 1 мм со средним размером пор 3.5 нм и объемной концентрацией пор 22% помещают в водный раствор CuSO4 (концентрация 15 г/л) с добавлением 10% H2SO4. После заполнения пор раствором пластину помещают между электродами по схеме, показанной на фиг. 2, б. Положительный электрод 3 на фиг. 2, б изготовлен из меди. Диаметр электродов равен 1 мм. Расстояние между электродами 3 мм. К электродам прикладывают постоянное напряжение, равное 3.5 В. Электролиз проводят при комнатной температуре в течение 10 мин при плотности тока 3 А/дм2. После проведения электролиза пластину НПСС помещают в дистиллированную воду на 30 мин для удаления остатков раствора CuSO4, после чего пластину высушивают на воздухе при комнатной атмосфере. На фиг. 7 показана фотография участка пластины НПСС на начальной стадии электролиза (через 2 мин после начала электролиза) при локальном изготовлении нанокомпозита медь-стекло. Из фиг. 7 видно, что на поверхности и в приповерхностном слое НПСС вблизи отрицательного электрода формируются микродендриты из меди, состоящие из групп наноразмерных нитей и имеющие коричневую окраску. На концах микродендритов, соответствующих начальной стадии роста микродендритов, окраска переходит в желтую. При проведении полного цикла электролиза НПСС между электродами приобретает коричневую окраску из-за полного заполнения пространства микродендритами. В области формирования нанокомпозита удельное сопротивление НПСС равно 5 МОм/см.

Пример 4

В пластине НПСС толщиной 1 мм со средним размером пор 3.5 нм и объемной концентрацией пор 22% изготавливают нанокомпозит с медью способом, описанным в примере 3. После этого пластину НПСС нагревают в воздушной атмосфере при температуре 400°C в течение 30 мин. При этом в результате химической реакции меди с кислородом воздуха медь преобразуется в полупроводниковое соединение оксид меди (CuO). В результате этого нанокомпозит изменяет окраску с коричневой на черную.

Пример 5

Пластину НПСС толщиной 1 мм со средним размером пор 3.5 нм и объемной концентрацией пор 22% помещают в водный раствор FeCl2 (концентрация 20 г/л) с добавлением 10% HCl. После заполнения пор раствором пластину помещают между электродами по схеме, показанной на фиг. 2, а. Положительный электрод 3 на фиг. 2, б изготовлен из железа. Диаметр электродов равен 0.5 мм. К электродам прикладывают постоянное напряжение, равное 3.5 В. Электролиз проводят при комнатной температуре в течение 10 мин при плотности тока 5 А/дм2. После проведения электролиза пластину НПСС помещают в дистиллированную воду на 30 мин для удаления остатков раствора FeCl2, после чего пластину высушивают на воздухе при комнатной атмосфере. На фиг. 8 показана фотография участка пластины НПСС после электролиза в области нанокомпозита железо-стекло. Из фиг. 8 видно, что в объеме НПСС формируются наноразмерные нити из железа, создающие темно-коричневую окраску. В области формирования нанокомпозита удельное сопротивление НПСС равно 7 МОм/см. Нанокомпозит с железом обладает магнитными свойствами.

Пример 6

В пластине НПСС толщиной 1 мм со средним размером пор 3.5 нм и объемной концентрацией пор 22% изготавливают нанокомпозит с железом способом, описанным в примере 5. После этого пластину НПСС при комнатной температуре помещают в водный раствор Na2S на 30 мин. При этом в результате химической реакции железа с Na2S железо преобразуется в полупроводниковое соединение сульфид железа (FeS). В результате этого нанокомпозит изменяет окраску с коричневой на черную. После этого НПСС промывают в дистиллированной воде и высушивают.

Пример 7

В пластине НПСС толщиной 1 мм со средним размером пор 3.5 нм и объемной концентрацией пор 22% изготавливают нанокомпозит с сульфидом железа способом, описанным в примере 6. После этого пластину НПСС подвергают термообработке в воздушной атмосфере при температуре 950°C в течение 30 мин. При этом происходит схлопывание пор НПСС, в результате чего формируется сплошной нанокомпозит, состоящий из кварцоидного стекла, содержащего наноразмерные полупроводниковые нити из сульфида железа в объеме.

Промышленная применимость изобретения

Предложенный способ позволяет изготавливать нанопористые электроды для батарей, аккумуляторов и солнечных элементов, прозрачные и непрозрачные проводящие электроды, катализаторы, среды с усилением рамановского рассеяния, оптические поглотители, элементы электроники и оптоэлектроники, чувствительные элементы химических сенсоров и биосенсоров. Метод позволяет также изготавливать магнитные стекла, при использовании в нанокомпозите переходных и редкоземельных металлов, а также поглотители и накопители водорода при использовании в нанокомпозите никеля, палладия или ванадия.

Таким образом, предлагаемое техническое решение позволяет решить задачу упрощения технологии изготовления металл-стеклянных и полупроводник-стеклянных нанокомпозитов, а также нанокомпозитов смешанного типа, и расширения номенклатуры материалов, из которых могут быть изготовлены нанокомпозиты. Достоинством предлагаемого способа является то, что он позволяет изготавливать нанокомпозиты при комнатной температуре, с использованием низкого электрического напряжения. Это упрощает технологию изготовления нанокомпозита. Достоинством является также то, что наноразмерные нити, входящие в состав нанокомпозита, могут быть изготовлены из любого металла, для которого возможно проведение электролиза, сплавов металлов, а также из полупроводниковых соединений металла.


Способ изготовления нанокомпозитов в стекле
Способ изготовления нанокомпозитов в стекле
Способ изготовления нанокомпозитов в стекле
Способ изготовления нанокомпозитов в стекле
Источник поступления информации: Роспатент

Показаны записи 11-20 из 105.
27.06.2015
№216.013.5a0e

Способ изготовления микрооптического растра

Изобретение относится к области изготовления оптических элементов и касается способа изготовления микрооптического растра в пластине из пористого материала. Способ включает термообработку и формирование областей с измененными оптическими свойствами. Термообработка проводится перед этапом...
Тип: Изобретение
Номер охранного документа: 0002554595
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5db3

Способ получения продукта на растительной основе

Изобретение относится к получению продукта на растительной основе. Способ предусматривает очистку семян люпина, измельчение их и получение цельносмолотой муки, смешение муки с водой в соотношении 1:15, экстрагирование небелковых соединений при рН 4,4-4,5 при постоянном перемешивании и...
Тип: Изобретение
Номер охранного документа: 0002555528
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60a2

Чувствительный элемент волоконно-оптического датчика температуры

Изобретение относится к волоконно-оптическим датчикам температуры. Чувствительный элемент выполнен в виде волокна из люминесцентного стекла, которое содержит нейтральные молекулярные кластеры серебра и ионы редкоземельного металла. Технический результат - увеличение температурной...
Тип: Изобретение
Номер охранного документа: 0002556279
Дата охранного документа: 10.07.2015
27.07.2015
№216.013.660d

Устройство для ограничения поворота статора цифрового преобразователя круговых перемещений

Изобретение относится к измерительной технике и может быть использовано для ограничения разворота статора цифрового преобразователя круговых перемещений при его контроле или использовании в станках и приборах. Устройство для ограничения разворота статора цифрового преобразователя круговых...
Тип: Изобретение
Номер охранного документа: 0002557678
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6be0

Устройство для контроля погрешности преобразователя поворота вала в код

Изобретение относится к устройству для контроля погрешности преобразования угла поворота вала в код. Устройство содержит образцовый преобразователь поворота вала в код, блок сопряжения контролируемого и образцового преобразователей, состоящий из узла жесткого соединения валов образцового и...
Тип: Изобретение
Номер охранного документа: 0002559174
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.71f5

Устройство для ограничения разворота корпуса преобразователя вращения в код

Изобретение относится к измерительной технике и может быть использовано для ограничения разворота корпуса преобразователя круговых вращений вала в код при его контроле или использовании в станках и приборах. Устройство содержит основание с закрепленной на нем упругой направляющей вращения...
Тип: Изобретение
Номер охранного документа: 0002560743
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.71f6

Способ разделения минерального сырья оптическим методом

Изобретение относится к контрольно-измерительной технике, а именно к способам разделения минерального сырья оптическим методом. Согласно способу получают цифровое RGB-изображение объекта и преобразуют его в пространство HLS. Как минимум для одного из каналов пространства HLS находят соотношение...
Тип: Изобретение
Номер охранного документа: 0002560744
Дата охранного документа: 20.08.2015
20.05.2016
№216.015.3e4d

Способ сушки высоковлажных растительных продуктов

Способ предусматривает мойку растительных продуктов, мерную резку и укладку слоем на сетчатые поддоны, которые устанавливают на бесконечный транспортер сушильной камеры. Проводят распределенный подвод тепловой энергии посредством двухстороннего инфракрасного излучения оптимизированной длины...
Тип: Изобретение
Номер охранного документа: 0002584612
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.4056

Ахроматический зеркально-линзовый объектив

Изобретение может использоваться в оптических системах, работающих в широком спектральном диапазоне. Зеркально-линзовый объектив содержит на входе афокальный компенсатор с близкой к нулю оптической силой, состоящий из обращенного вогнутостью к предмету отрицательного мениска и положительной...
Тип: Изобретение
Номер охранного документа: 0002584382
Дата охранного документа: 20.05.2016
20.08.2016
№216.015.4d50

Способ сушки термолабильных материалов

Материалы моют, измельчают и укладывают слоем на газопроницаемых поддонах, установленных в вентилируемой камере. Нагрев слоя продукта высотой 10-30 мм осуществляют двухсторонним непрерывным инфракрасным облучением на длине волны 1,5-3,0 мкм при плотности теплового потока 2,8-3,1 кВт/м до...
Тип: Изобретение
Номер охранного документа: 0002595146
Дата охранного документа: 20.08.2016
Показаны записи 11-20 из 34.
20.04.2016
№216.015.3672

Способ защиты от обрывов фазных и нулевого проводов четырехпроводной воздушной линии электрической сети напряжением 380 в и устройство для его реализации

Использование: в области электротехники. Технический результат - повышение надежности работы электрических сетей напряжением 380 В и улучшение условий электробезопасности. Способ заключается в использовании для защиты линии трехфазного микропроцессорного счетчика электрической энергии,...
Тип: Изобретение
Номер охранного документа: 0002581607
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3946

Люминесцентный дозиметр ультрафиолетового излучения

Изобретение относится к области радиационных измерений и касается люминесцентного дозиметра ультрафиолетового излучения. Дозиметр включает в себя чувствительный элемент, передающее оптическое волокно, подвижную кассету с оптическими фильтрами и фотоприемное устройство. Чувствительный элемент...
Тип: Изобретение
Номер охранного документа: 0002582622
Дата охранного документа: 27.04.2016
13.01.2017
№217.015.6d92

Способ получения металлических пленок заданной формы

Изобретение относится к электронно-лучевой технологии и может быть использовано в оптике, фотонике, интегральной оптике, наноплазмонике и электронике. Способ получения металлических пленок заданной формы заключается в том, что на подложку с высоким электрическим сопротивлением предварительно...
Тип: Изобретение
Номер охранного документа: 0002597373
Дата охранного документа: 10.09.2016
25.08.2017
№217.015.af2b

Способ определения места установки устройств секционирования воздушной линии напряжением 380 в

Использование: в области электротехники. Технический результат – уменьшение времени срабатывания защиты. Согласно способу рассчитывают минимальные токи однофазного короткого замыкания по длине этой воздушной линии с учетом сопротивления дуги в месте замыкания и эффекта «теплового спада», строят...
Тип: Изобретение
Номер охранного документа: 0002610899
Дата охранного документа: 17.02.2017
25.08.2017
№217.015.c135

Люминесцентное фосфатное стекло

Изобретение относится к люминесцентным материалам. Технический результат изобретения заключается в повышении квантового выхода люминесценции стекол с переходными металлами. Люминесцентное фосфатное стекло содержит, мол.%: NaO – 33, PO– 33, AgO – 0,1, CuO – 0,1 и ZnO – 33,5. 3 ил.
Тип: Изобретение
Номер охранного документа: 0002617662
Дата охранного документа: 25.04.2017
26.08.2017
№217.015.e3b9

Чувствительный элемент датчика температуры

Изобретение относится к измерительной технике и может быть использовано для измерения температуры в диапазоне температур от -50°С до +250°С. Чувствительный элемент датчика температуры содержит диэлектрическую пластину из щелочно-силикатного стекла с металлическими электродами, при этом...
Тип: Изобретение
Номер охранного документа: 0002626222
Дата охранного документа: 24.07.2017
26.08.2017
№217.015.e3ec

Устройство для регистрации оптических параметров жидкого аналита

Изобретение относится к области измерительной техники и касается устройства для регистрации оптических параметров жидкого аналита. Устройство включает в себя подложку, в толще которой сформированы камера, входной и выходной микрофлюидные каналы, сообщающиеся с камерой, источник оптического...
Тип: Изобретение
Номер охранного документа: 0002626299
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e680

Гетерогенный катализатор жидкофазного окисления органических соединений

Изобретение относится к химической промышленности, а именно к области производства гетерогенных катализаторов процессов жидкофазного окисления органических соединений (в том числе, производных фенолов) и может быть применено на предприятиях различных отраслей промышленности для проведения...
Тип: Изобретение
Номер охранного документа: 0002626964
Дата охранного документа: 02.08.2017
20.01.2018
№218.016.1126

Устройство защиты от обрывов проводов воздушной линии электропередачи с изолированной нейтралью

Использование: в области электротехники. Технический результат - повышение надежности работы электрических сетей напряжением 6-10 кВ и улучшение условий электробезопасности. Устройство защиты от обрывов проводов трехпроводной воздушной линии электропередачи электрической сети с изолированной...
Тип: Изобретение
Номер охранного документа: 0002633803
Дата охранного документа: 19.10.2017
13.02.2018
№218.016.20a6

Дозиметр ультрафиолетового излучения

Изобретение относится к области оптических измерений и касается дозиметра ультрафиолетового излучения. Дозиметр включает в себя последовательно расположенные по ходу распространения излучения средство оптической фильтрации, пропускающее ультрафиолетовое излучение, фотолюминесцентный...
Тип: Изобретение
Номер охранного документа: 0002641509
Дата охранного документа: 17.01.2018
+ добавить свой РИД