×
10.05.2018
218.016.389c

ЭЛЕКТРОДУГОВОЙ ПЛАЗМОТРОН

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области плазменной техники. . Электродуговой плазмотрон имеет корпус, в котором соосно установлены изолированные друг от друга водоохлаждаемые электроды - анод и катод. Между ними находится узел ввода плазмообразующего газа. Канал анода состоит из конфузора и диффузора, выполненных в форме усеченных конусов, которые сопряжены своими верхними основаниями. Переход между конусами выполнен тороидальным с радиусом образующей окружности r=4…8 мм. Углы при вершинах конусов конфузора и диффузора равны соответственно α=80°…96° и β=38°…48°. Диаметр наименьшего сечения канала равен D=15…18 мм. Катод представляет собой медную водоохлаждаемую обойму с тугоплавкой вставкой и имеет на конце форму усеченного конуса с углом при вершине γ<α. Катод установлен так, что его конический участок располагается в конфузоре анода, а торец его тугоплавкой вставки находится внутри тороидального перехода. Узел ввода плазмообразующего газа представляет собой изоляционную втулку, расположенную над обоймой катода перед входом в канал анода. Втулка имеет не менее двух рядов отверстий диаметром d=0,4…0,6 мм. Каждый ряд содержит не менее 12 отверстий, распределенных равномерно по окружности. Оси отверстий проходят через продольную ось плазмотрона и наклонены к этой оси под углом δ=(45…60)°. Технический результат - увеличение рабочего тока плазмотрона до 2000 А, повышение производительности процесса центробежного распыления, увеличение ресурса работы электродов плазмотрона в среднем до 300 ч, обеспечение стабильной работы плазмотрона в диапазоне силы тока от 700 до 2000 А. 2 ил., 2 пр.
Реферат Свернуть Развернуть

Изобретение относится к области плазменной техники, а именно к электродуговым плазмотронам, и может быть использовано в технологических процессах плавки и обработки металлов и сплавов, в частности для получения металлических порошков и гранул методом центробежного распыления, и в других областях промышленности, где применяется низкотемпературная плазма.

Среди способов получения металлических порошков известны методы центробежного распыления, реализуемые на установках типа УЦР (RU 2549797 С1, 27.04.2015; RU 2356696 С1, 27.05.2009). В составе таких установок для оплавления торца вращающейся металлической заготовки применяются в основном плазмотроны постоянного тока, к конструкции которых предъявляются особые требования.

Наиболее близким к заявляемому по технической сущности и достигаемому результату является плазмотрон ПСМ-100 (RU №2350052 С1, 20.03.2009), содержащий корпус, вольфрамовый катод и соединенное с корпусом сопло-анод с выходным каналом. Выходной канал сопла-анода выполнен коническим, расширяющимся к выходу, при этом сопло-анод в зоне выходного канала выполнено биметаллическим в виде соединенных между собой медной стенки и молибденового экрана.

Указанный плазмотрон имеет ряд недостатков. Стабильная работа плазмотрона возможна в достаточно узком диапазоне силы тока: приблизительно от 800 до 1200 А. При токах дуги выше 1200 А анод плазмотрона подвергается интенсивной эрозии с вероятностью местного отслоения молибденового экрана от медного корпуса, что ограничивает технологические возможности плазмотрона, особенно в процессах центробежного распыления тугоплавких и жаропрочных сплавов, распыление которых при малых мощностях плазмотрона не эффективно из-за крайне низкой производительности процесса. Катод плазмотрона выполнен в виде вольфрамового стержня, соединенного с охлаждаемым корпусом через цанговый зажим. Стержень установлен консольно и имеет достаточно большой вылет, в связи с чем возникают дополнительные сложности в обеспечении соосности электродов при изготовлении и сборке плазмотрона. В то же время несоосность электродов существенно сокращает ресурс их работы. Основной теплосъем с поверхности катода происходит через контактную поверхность цангового зажима и за счет конвективного теплообмена с потоком плазмообразующего газа. Такой теплоотвод является малоэффективным, вследствие чего для работы на токах более 1200 А требуется применение вольфрамовых стержней диаметром порядка 12-14 мм. Из-за неизбежной эрозии катода и уноса материала с потоком плазмообразующего газа длина стержня постепенно уменьшается, и при достижении некоторой длины остаток стержня становится непригодным для дальнейшего использования из-за невозможности его надежного закрепления, что ведет к нерациональному использованию материала катода. Сопло-анод имеет весьма сложную технологию изготовления, что связано с необходимостью соединения молибденового экрана с медным корпусом по коническим поверхностям, при этом должен быть обеспечен надежный тепловой контакт по всей сопрягаемой поверхности.

Задачами, на решение которых направлено предлагаемое изобретение, являются: повышение производительности процесса центробежного распыления металлических заготовок, увеличение ресурса работы электродов плазмотрона, обеспечение стабильной работы плазмотрона в широком диапазоне силы тока.

Поставленные задачи достигаются тем, что применяется электродуговой плазмотрон, имеющий корпус, в котором соосно установлены изолированные друг от друга водоохлаждаемые электроды - анод и катод, между которыми находится узел ввода плазмообразующего газа, отличающийся тем, что канал анода состоит из конфузора и диффузора, выполненных в форме усеченных конусов, которые сопряжены своими верхними основаниями; при этом переход между конусами выполнен тороидальным с радиусом образующей окружности r=4…8 мм; углы при вершинах конусов конфузора и диффузора равны соответственно α=80°…96° и β=38°…48°, а диаметр наименьшего сечения канала равен D=15…18 мм; катод представляет собой медную водоохлаждаемую обойму с тугоплавкой вставкой и имеет на конце форму усеченного конуса с углом при вершине γ<α, катод установлен так, что его конический участок располагается в конфузоре анода, а торец его тугоплавкой вставки находится внутри тороидального перехода; узел ввода плазмообразующего газа представляет собой изоляционную втулку, расположенную над обоймой катода перед входом в канал анода; втулка имеет не менее двух рядов отверстий диаметром d=0,4…0,6 мм, каждый ряд содержит не менее 12 отверстий, распределенных равномерно по окружности, оси отверстий проходят через продольную ось плазмотрона и наклонены к этой оси под углом δ=(45…60)°.

Ввод плазмообразующего газа через множество отверстий малого диаметра, расположенных в несколько рядов, создает внутри диффузора анода благоприятные газодинамические условия для горения электрической дуги. Внутри камеры, находящейся перед конфузором анода, происходит дополнительное выравнивание давления плазмообразующего газа, поступающего в диффузор. Такая система обеспечивает распределенную привязку дуги к стенке диффузора и, следовательно, малую удельную тепловую нагрузку на стенку. Этим достигается высокая стойкость анода при токах до 2000 А и высокий ресурс электродов, составляющий в среднем 300 ч, а также однородность температурного поля внутри плазменной струи, что является весьма важным фактором для процесса центробежного распыления.

Катодное пятно дуги удерживается потоком газа на торце тугоплавкой вставки катода. Тепло, выделяющееся в катодном пятне, отводится от тугоплавкой вставки в медную обойму катода, которая непрерывно охлаждается проточной водой. Такая конструкция обеспечивает длительную работу плазмотрона на токах до 2000 А.

Техническим результатом изобретения является:

- увеличение рабочего тока плазмотрона до 2000 А, что значительно повышает производительность процесса центробежного распыления;

- увеличение ресурса работы электродов плазмотрона в среднем до 300 ч;

- обеспечение стабильной работы плазмотрона в диапазоне силы тока от 700 до 2000 А.

Изобретение поясняется чертежами. На фиг. 1 представлен разрез рабочей части плазмотрона, на фиг. 2 показана изоляционная втулка с двумя рядами отверстий.

Плазмотрон содержит охлаждаемый корпус 1 (фиг. 1) с рубашками охлаждения 2 и 3, анод 4, накидную гайку 5, обтекатель 6, катод 7, катододержатель 8 с трубкой 9, изоляционную втулку 10 (фиг. 1, фиг. 2), уплотнительные кольца 11, 12 и 13.

Анод 4 устанавливается в посадочное отверстие корпуса 1 и прижимается к корпусу с помощью накидной гайки 5, герметичность соединения обеспечивается уплотнительными кольцами 11 и 12. Обтекатель 6 служит для образования рубашки охлаждения 14 на внутренней стенке анода 4. Во внутренней части корпуса 1 имеется канавка 15, через которую плазмообразующий газ поступает в отверстия изоляционной втулки 10. Катод 7 герметично соединен с катододержателем 8 и установлен соосно с анодом 4; герметичность обеспечивается уплотнительным кольцом 13. Для подачи охлаждающей воды на обойму катода 7 служит трубка 9.

Плазмотрон работает следующим образом.

Включается подача охлаждающей воды на анод 4 и катод 7. Через рубашку охлаждения 2 корпуса 1 вода поступает в рубашку охлаждения 14 анода 4 и отводится обратно через рубашку охлаждения 3 корпуса 1. Через трубку 9 вода поступает на внутреннюю стенку обоймы катода 7 и отводится обратно через полость 16 в катододержателе 8.

Включается подача плазмообразующего газа. Газ поступает в канавку 15 корпуса 1, откуда через отверстия в изоляционной втулке 10 попадает в камеру 17 и затем проходит вдоль по каналу анода 4.

На электроды - анод 4 и катод 7 - подается напряжение от источника питания (прямая полярность). С помощью осциллятора производится пробой промежутка между катодом 7 и анодом 4 (межэлектродный зазор), в результате чего образуется электропроводящий канал в среде плазмообразующего газа, и под действием приложенного напряжения возбуждается электрическая дуга. В потоке плазмообразующего газа дуга горит между торцом тугоплавкой вставки катода 7 и поверхностью диффузора анода 4. Процесс горения дуги продолжается до тех пор, пока не будет прекращена подача напряжения на электроды. Проходящий через электрическую дугу газ прогревается и превращается в низкотемпературную плазму, выходящую из канала анода 4 в виде плазменной струи.

Испытания опытного образца проводились в составе установки центробежного распыления ГРАНУЛА 2500 на ПАО «Электромеханика» (г. Ржев).

Пример 1. В первом цикле испытаний проводилось распыление 50 заготовок из жаропрочного никелевого сплава диаметром 80 мм, длиной 700 мм при непрерывной работе плазмотрона. Для испытаний был изготовлен анод с D=18 мм, α=96°, β=48°, r=8 мм, катод с γ=90° и изоляционная втулка, содержащая 2 ряда по 12 отверстий с d=0,5 мм, наклоненных к продольной оси плазмотрона под углом δ=60°. Ток дуги в процессе плавки был равен I=2000 А, напряжение U=65 В, скорость вращения заготовки n=24000 об/мин.

Пример 2. Второй цикл заключался в распылении 50 заготовок из титана марки ВТ1-0 диаметром 55 мм, длиной 700 мм. При испытании использовался анод с D=15 мм, α=80°, β=38°, r=4 мм, катод с γ=76° и изоляционная втулка, содержащая 2 ряда по 12 отверстий с d=0,5 мм, наклоненных к продольной оси плазмотрона под углом δ=45°. Ток на дуге I=1100 А, напряжение U=60 В, скорость вращения заготовки n=33000 об/мин.

Испытания показали стабильность работы плазмотрона на указанных режимах в течение всего цикла плавки и высокую производительность распыления: ~2 кг/мин для жаропрочного никелевого сплава при I=2000 А и ~0,6 кг/мин для титана при I=1100 А. При визуальном осмотре электродов следов эрозии на их рабочих поверхностях обнаружено не было.

Электродуговой плазмотрон, имеющий корпус, в котором соосно установлены изолированные друг от друга водоохлаждаемые электроды - анод и катод, между которыми находится узел ввода плазмообразующего газа, отличающийся тем, что канал анода состоит из конфузора и диффузора, выполненных в форме усеченных конусов, которые сопряжены своими верхними основаниями; при этом переход между конусами выполнен тороидальным с радиусом образующей окружности r=4…8 мм; углы при вершинах конусов конфузора и диффузора равны соответственно α=80°…96° и β=38°…48°, a диаметр наименьшего сечения канала равен D=15…18 мм; катод представляет собой медную водоохлаждаемую обойму с тугоплавкой вставкой и имеет на конце форму усеченного конуса с углом при вершине γ<α, катод установлен так, что его конический участок располагается в конфузоре анода, а торец его тугоплавкой вставки находится внутри тороидального перехода; узел ввода плазмообразующего газа представляет собой изоляционную втулку, расположенную над обоймой катода перед входом в канал анода; втулка имеет не менее двух рядов отверстий диаметром d=0,4…0,6 мм, каждый ряд содержит не менее 12 отверстий, распределенных равномерно по окружности, оси отверстий проходят через продольную ось плазмотрона и наклонены к этой оси под углом δ=(45…60)°.
ЭЛЕКТРОДУГОВОЙ ПЛАЗМОТРОН
ЭЛЕКТРОДУГОВОЙ ПЛАЗМОТРОН
ЭЛЕКТРОДУГОВОЙ ПЛАЗМОТРОН
Источник поступления информации: Роспатент

Показаны записи 1-5 из 5.
25.08.2017
№217.015.b725

Электродуговой плазмотрон

Изобретение относится к области плазменной техники. Предложен электродуговой плазмотрон. Электродуговой плазмотрон содержит корпус, в котором соосно установлены анод, катод и изоляционная втулка с отверстиями. Проточная часть анода выполнена в виде канала переменного поперечного сечения,...
Тип: Изобретение
Номер охранного документа: 0002614533
Дата охранного документа: 28.03.2017
20.01.2018
№218.016.0ed5

Способ измерения зазора в плазменной струе в производстве металлических порошков и гранул

Изобретение относится к области плазменной техники. Предложен способ измерения зазора в плазменной струе между плазмотроном и заготовкой в производстве металлических порошков и гранул. В заявленном способе измерения зазора в плазменной струе между плазмотроном и заготовкой в производстве...
Тип: Изобретение
Номер охранного документа: 0002633158
Дата охранного документа: 11.10.2017
25.06.2018
№218.016.671e

Способ намотки цилиндрических катушек с произвольным шагом из полосы прямоугольного сечения на ребро

Изобретение относится к электротехнике. Технический результат состоит в снижении трудоемкости изготовления и повышении качества. Полосу прямоугольного сечения шириной и высотой b навивают на вращающуюся цилиндрическую оправку. На поверхности оправки выполнен винтовой канал в виде прямоугольной...
Тип: Изобретение
Номер охранного документа: 0002658294
Дата охранного документа: 20.06.2018
09.08.2018
№218.016.79e2

Вакуумная индукционная плавильно-заливочная установка

Изобретение относится к области металлургии. Вакуумная индукционная плавильно-заливочная установка для получения отливок с направленной и монокристаллической структурой содержит камеру плавильную со сферической крышкой, шлюзовую камеру, блок откатной и охлаждаемый медный подъемный стол. Камера...
Тип: Изобретение
Номер охранного документа: 0002663025
Дата охранного документа: 01.08.2018
22.12.2019
№219.017.f112

Электронно-лучевая пушка с повышенным ресурсом эксплуатации

Изобретение относится к электронике и электротехнике в области термообработки металлов с целью их вакуумного плавления, испарения, наплавления, сварки, резки, для аддитивных технологий. Электронно-лучевая пушка содержит катодный каскад в корпусе с собирающей линзой, анод и лучевод с...
Тип: Изобретение
Номер охранного документа: 0002709793
Дата охранного документа: 20.12.2019
Показаны записи 1-10 из 23.
27.03.2013
№216.012.3088

Конфета

Изобретение относится к кондитерской пищевой промышленности и может быть использовано при производстве кондитерских изделий. Конфета представляет собой корпус, состоящий из оболочки, выполненной из молочной тянущейся массы, содержащей патоку, жировой компонент - заменитель молочного жира,...
Тип: Изобретение
Номер охранного документа: 0002477962
Дата охранного документа: 27.03.2013
10.11.2013
№216.012.7eee

Холодильно-технологический комплекс для предварительного охлаждения и временного хранения рыбы

Установка для производства бинарного льда содержит замкнутый контур хладагента, включающий последовательно соединенные трубопроводом первый компрессор, маслоотделитель, конденсатор, ресивер, отделитель жидкости, первый электромагнитный клапан, четыре параллельные линии, каждая из которых...
Тип: Изобретение
Номер охранного документа: 0002498167
Дата охранного документа: 10.11.2013
10.04.2014
№216.012.b1f8

Способ производства сбивной кондитерской массы

Изобретение относится к кондитерской промышленности и может быть использовано при производстве сбивных масс для кондитерских изделий. Способ предусматривает уваривание агаросахаропаточного сиропа, приготовленного смешением агара, предварительно замоченного в воде, с сахаром и патокой, его...
Тип: Изобретение
Номер охранного документа: 0002511276
Дата охранного документа: 10.04.2014
20.07.2015
№216.013.6413

Шоколадная конфета типа "ассорти"

Изобретение относится к кондитерской промышленности. Шоколадная конфета типа «Ассорти» представляет собой корпус, состоящий из оболочки, выполненной из шоколадной глазури, и расположенной в ней начинки, выполненной из конфетных масс в виде двух слоев. При этом шоколадная глазурь дополнительно...
Тип: Изобретение
Номер охранного документа: 0002557166
Дата охранного документа: 20.07.2015
10.10.2015
№216.013.81d9

Кондитерское изделие "ломтишка"

Изобретение относится к пищевой промышленности, в частности к кондитерской. Кондитерское изделие включает корпус, выполненный из слоев, изготовленных из бисквитного полуфабриката, состоящего из муки пшеничной в/с, сахара-песка, меланжа, масла растительного, сухого обезжиренного молока,...
Тип: Изобретение
Номер охранного документа: 0002564838
Дата охранного документа: 10.10.2015
27.02.2016
№216.014.be71

Агрегат высокого давления для очистки поверхностей металлических изделий от керамических остатков литейной формы

Изобретение относится к литейному производству. Агрегат высокого давления для очистки поверхностей металлических изделий от керамических остатков литейной формы содержит контейнер 1 с охлаждаемыми стенками 2 и закрытый с торцов пробками 6 и 7, рабочую камеру 14, снабженную нагревателем 13 и...
Тип: Изобретение
Номер охранного документа: 0002576276
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c44b

Устройство для получения титановых гранул

Изобретение относится к получению титановых гранул. Устройство содержит рабочую камеру, выполненную с возможностью заполнения ее инертным рабочим газом, плазмотрон для плавления вращающейся заготовки с обеспечением центробежного распыления капель расплавленного материала, компрессор с...
Тип: Изобретение
Номер охранного документа: 0002574906
Дата охранного документа: 10.02.2016
25.08.2017
№217.015.b725

Электродуговой плазмотрон

Изобретение относится к области плазменной техники. Предложен электродуговой плазмотрон. Электродуговой плазмотрон содержит корпус, в котором соосно установлены анод, катод и изоляционная втулка с отверстиями. Проточная часть анода выполнена в виде канала переменного поперечного сечения,...
Тип: Изобретение
Номер охранного документа: 0002614533
Дата охранного документа: 28.03.2017
26.08.2017
№217.015.e34e

Способ нанесения износостойкого железоникелевого покрытия на прецизионные детали из низколегированных сталей

Изобретение относится к области нанесения металлических покрытий и может быть использовано для получения износостойких покрытий при восстановлении и упрочнении прецизионных деталей из низколегированных сталей дорожно-строительных, почвообрабатывающих, сельскохозяйственных, лесозаготовительных...
Тип: Изобретение
Номер охранного документа: 0002626126
Дата охранного документа: 21.07.2017
19.01.2018
№218.015.ff74

Подводное судно для обслуживания подводных добычных комплексов на арктическом шельфе и других подводно-технических работ

Изобретение относится к области судостроения, в частности к подводным судам для подводно-технических работ. Предложено подводное судно для обслуживания подводных добычных комплексов на арктическом шельфе и других подводно-технических работ, выполненное в виде разделенной на отсеки двухкорпусной...
Тип: Изобретение
Номер охранного документа: 0002629625
Дата охранного документа: 30.08.2017
+ добавить свой РИД