×
10.05.2018
218.016.3867

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАГНИТНОГО ПОЛЯ СКЕЛЕТНЫХ МЫШЦ ПРИ ОПРЕДЕЛЕНИИ МЫШЕЧНОЙ АКТИВНОСТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицинской технике, а именно к магнитомиографической регистрации сигналов биоэлектрической активности человека. Устройство для измерения магнитного поля скелетных мышц при определении мышечной активности содержит два измерительных канала, каждый из которых включает высокочувствительный магниторезистивный датчик, отличающееся тем, что в каждом из измерительных каналов к высокочувствительному магниторезистивному датчику последовательно подключены фильтр верхних частот с частотой среза 10 Гц, малошумящий прецизионный усилитель и фильтр нижних частот с частотой среза 500 Гц, при этом фильтр нижних частот одного канала подключен к неинвертирующему входу дифференциального операционного усилителя, а фильтр нижних частот другого канала - к инвертирующему входу дифференциального операционного усилителя. Использование изобретения позволяет расширить арсенал средств для регистрации мышечной активности. 2 ил.

Устройство для измерения магнитного поля скелетных мышц при определении мышечной активности

Изобретение относится к области магнитомиографической регистрации сигналов биоэлектрической активности человека и может использоваться для неинвазивной регистрации слабых магнитных полей, порождаемых электрическими токами в мышечных тканях при напряжении мышц в системах детектирования биоэлектрических сигналов, а также для исследований в области биомедицины и создания экзоскелетных систем управления на основе данных мышечной активности.

Магнитомиография, основанная на измерении биомагнитных полей мышц, является актуальной отраслью сложившегося в настоящее время научно-практического направления - биомагнетизма.

В регуляторных процессах организма принимают участие электрические токи и электромагнитные поля биологического происхождения. Благодаря успехам современной техники стало возможным регистрировать очень слабые магнитные поля, характеризующие определенный биологический процесс. Область науки на стыке биологии и физики, изучающая магнитные поля биологического происхождения, получила название биомагнетизм.

Основной ветвью современного биомагнетизма можно считать направление, связанное с регистрацией магнитных полей, порождаемых переменными биотоками. Почти все зарегистрированные в этом направлении биомагнитные феномены имеют аналоги в биоэлектрических явлениях - кардиография, миография, энцефалография и т.п. (см., например, книгу авторов Холодова Ю.А., Козлова А.Н. и Горбача A.M. «Магнитные поля биологических объектов». М., «Наука», 1987).

Главным преимуществом неинвазивной регистрации биомагнитных явлений в сравнении с биоэлектрическими является отсутствие необходимости в контакте с кожей человека. Данная особенность позволяет, в частности, проводить измерения биомагнитных полей сердца, мышц, мозга плода при беременности.

Уровень техники в области измерения магнитных полей скелетных мышц характеризуется ограниченным количеством научных публикаций. Измерение магнитных полей активно применяется при исследовании активности мозга и сердца, но значительно более редко в регистрации мышечной активности (см., например, статью на англ. яз. авторов Garcia М., Baffa О. «Magnetic fields from skeletal muscles: a valuable physiological measurement? » - Frontiers in physiology. 2015, v. 6, p. 228).

Регистрация мышечной активности, основанная на неинвазивном измерении электрической составляющей биоэлектрических сигналов в мышечной ткани с помощью бесконтактных емкостных датчиков (см., например, описание изобретения ((Differential non-contact biopotential sensor» по заявке US 20140249397, А61В 5/0492, 2014), в настоящем описании не рассматривается как выходящая за его рамки в связи с ограничением технической задачи предлагаемой группы изобретений методикой измерения магнитной составляющей биоэлектрических сигналов в мышечной ткани.

Известны метод и оборудование для его реализации, изложенные в описании изобретения на англ. яз. «agnetic study of bioelectric phenomena» по патенту US 3557777, A61B 5/04, A61B 5/10, H05K 9/00, G01R 33/02, 1971.

Этот метод основан на использовании для неинвазивного измерения магнитной составляющей биоэлектрических сигналов в мышечной ткани в качестве магнитного датчика сверхпроводящего квантового интерференционного датчика (СКВИДа - см., например, описание изобретения по патенту РФ 2133525, H01L 39/22, H01L 39/24, G01R 33/035, 1999), погруженного для повышения чувствительности и достижения состояния сверхпроводимости в жидкий гелий. Необходимость использования жидкого гелия и проведения измерений в магнитоэкранированной комнате являются недостатками данных метода и оборудования.

В качестве прототипа заявляемого устройства для измерения магнитного поля скелетных мышц при определении мышечной активности выбрано лишенное указанных недостатков предыдущего аналога известное устройство, включающее измерительные каналы, каждый из которых включает высокочувствительный магниторезистивный датчик, усилитель, фильтр и дифференциальный датчик, изложенные в описании изобретения на англ. яз. «Systems, articles, and methods for gesture indentification in wearable electromyuography devaces» по патенту US 9367139, G06F 3/01, G06F 3/0346, 2016 (US 2015/169074 A1).

При этом актуальна разработка новых и эффективных устройств для измерения магнитного поля скелетных мышц при определении мышечной активности на основе магниторазностного определения мышечной активности, обеспечивающего повышение технологичности способа и доступности устройства за счет использования удобных в эксплуатации двух высокочувствительных магниторезистивных датчиков, снижающих габариты и стоимость устройства.

Поэтому техническим результатом предлагаемого изобретения послужило расширение арсенала средств регистрации мышечной активности.

Для достижения указанного технического результата в устройстве для измерения магнитного поля скелетных мышц при определении мышечной активности, содержащем два измерительных канала, каждый из которых включает высокочувствительный магниторезистивный датчик, в каждом из измерительных каналов к высокочувствительному магниторезистивному датчику последовательно подключены фильтр верхних частот с частотой среза 10 Гц, малошумящий прецизионный усилитель и фильтр нижних частот с частотой среза 500 Гц, при этом фильтр нижних частот одного канала подключен к неинвертирующему входу дифференциального операционного усилителя, а фильтр нижних частот другого канала - к инвертирующему входу дифференциального операционного усилителя.

На фиг. 1 представлена блок-схема предлагаемого устройства, осуществляющего метод магниторазностного определения регистрации мышечной активности; на фиг. 2 - пример записи мышечной активности, полученной в виде осциллограммы.

Предлагаемое устройство (см. фиг. 1) содержит образующие первый измерительный канал магниторезистивный датчик (далее сенсор) 1, подключенный через фильтр верхних частот 2 с частотой среза 10 Гц к входу операционного усилителя 3, подсоединенного своим выходом к входу фильтра нижних частот 4 с частотой среза 500 Гц, который (на выходе первого измерительного канала) своим выходом подключен к неинвертирующему входу дифференциального операционного усилителя 5, и образующие второй измерительный канал магниторезистивный датчик (далее сенсор) 6, подключенный через фильтр верхних частот 7 с частотой среза 10 Гц к входу операционного усилителя 8, подсоединенного своим выходом к входу фильтра нижних частот 9 с частотой среза 500 Гц, который (на выходе второго измерительного канала) подключен к инвертирующему входу дифференциального операционного усилителя 5, выход которого является выходом предлагаемого устройства.

Предлагаемое устройство функционирует следующим образом.

Магнитное поле скелетных мышц, создаваемое протекающими по мышечным волокнам ионными токами при сокращении мышц, детектируется магниторезистивными сенсорами 1 и 6, каждый из которых состоит из двух независимых резисторных мостов, а также имеет два дифференциальных выхода.

Причем магнитная ось моста В находится в плоскости корпуса микросхемы и направлена вдоль контактных ног микросхемы. Магнитная ось моста А также лежит в плоскости корпуса, но направлена под углом 45 градусов к оси моста В. Так как по особенностям устройства сенсора необходима только ось, лежащая вдоль контактных ног микросхемы, необходимости в использовании моста А нет.

На выходе магниторезистивных сенсоров 1 и 6 появляется зависимость напряжения от интенсивности поля вдоль магнитной оси моста, которая содержит в себе информацию о магнитном поле мышечных волокон, геомагнитном поле земли и электромагнитных помехах.

Сигнал с выхода магниторезистивных сенсоров 1 и 6 поступает на входы фильтров верхних частот 2 и 7 (с частотой среза 10 Гц), соответственно, которые удаляют из сигнала постоянную составляющую, обусловленную постоянным магнитным полем земли, и низкочастотные компоненты, вызванные смещением датчика относительно мышц.

Сигнал с выходов фильтров верхних частот 2 и 7 поступает на входы малошумящих прецизионных усилителей 3 и 8, соответственно, основная задача которых - предусиление сигналов. Сигнал с выходов малошумящих прецизионных усилителей 3 и 8 поступает на входы фильтров нижних частот 4 и 9 (с частотой среза 500 Гц) соответственно, основная задача которых состоит в уменьшении общего уровня шума на входах инструментального прецизионного усилителя (дифференциального операционного усилителя) 5. Сигнал с выхода фильтра нижних частот 4 поступает на неинвертирующий вход, а с выхода фильтра нижних частот 9 - на инвертирующий вход инструментального прецизионного усилителя 5, который усиливает разность между сигналами на своих входах. За счет вычисления разности из сигналов удаляется одинаковая компонента, содержащая информацию о магнитных полях, порожденных далекими источниками электромагнитного поля.

При этом:

В обоих каналах измерения фильтр верхних частот (2 и 7) предназначен для удаления из сигнала постоянной составляющей, возникающей в связи с особенностями конструкции магниточувствительного элемента, уменьшения влияния на схему постоянного магнитного поля земли, а так же артефактов движения (низкочастотных импульсов), обусловленных изменением геометрических размеров мышцы в результате ее сокращения, является фильтром верхних частот 2-го порядка и представляет собой две последовательно включенных Г-образных CR цепочки, причем данный фильтр имеет, как было указано, частоту среза 10 Гц по уровню -3 дБ;

В обоих каналах измерения фильтр нижних частот (4 и 9) предназначен для частичного ограничения полосы пропускания устройства (что необходимо для выделения полезного сигнала на фоне высокочастотных электромагнитных помех, обусловленных работой окружающей бытовой техникой, а также сигналами радиоэфира), является фильтром нижних частот 2-го порядка и представляет собой две последовательно включенных Г-образных RC цепочки, причем данный фильтр имеет, как было указано, частоту среза 500 Гц по уровню -3 дБ.

В результате применения указанных фильтров верхних и нижних частот полоса пропускания устройства составляет от 10 Гц до 500 Гц и соотношение сигнал/шум на выходе дифференциального операционного усилителя 5 составляет 6 дБ, что является достаточным для анализа и дальнейшего использования полезного сигнала. Частоты среза фильтров выбраны исходя из экспериментальных данных, представленных в статье на англ. яз. авторов Cohen D., Givler Е. «Magnetomyography: magnetic fields around the human body produced by skeletal muscles» - Appl. Phys. Lett. 1972, v. 21, №3, p. 116, fig.3.

Таким образом на выходе усилителя 5 содержится информация о магнитном поле скелетных мышц в виде напряжения, пропорционального величине магнитного поля, которое в свою очередь пропорционально силе ионных токов, вызванных сокращением мышечных волокон.

Осциллограмма, полученная в результате записи мышечной активности (см. фиг. 2) с помощью оборудования: осциллографа цифрового Tektronix DPO 4054 и лабораторного источника питания Matrix MPS-3005LK-3, хорошо согласуется с примером записи в статье на англ. яз. авторов Cohen D., Givler Е. «Magnetomyography: magnetic fields around the human body produced by skeletal muscles» - Appl. Phys. Lett. 1972, v. 21, №3, p. 115, fig. 2 и подтверждает работоспособность предлагаемого устройства, осуществляющего метод магниторазностного определения мышечной активности.

Устройство для измерения магнитного поля скелетных мышц при определении мышечной активности, содержащее два измерительных канала, каждый из которых включает высокочувствительный магниторезистивный датчик, отличающееся тем, что в каждом из измерительных каналов к высокочувствительному магниторезистивному датчику последовательно подключены фильтр верхних частот с частотой среза 10 Гц, малошумящий прецизионный усилитель и фильтр нижних частот с частотой среза 500 Гц, при этом фильтр нижних частот одного канала подключен к неинвертирующему входу дифференциального операционного усилителя, а фильтр нижних частот другого канала - к инвертирующему входу дифференциального операционного усилителя.
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАГНИТНОГО ПОЛЯ СКЕЛЕТНЫХ МЫШЦ ПРИ ОПРЕДЕЛЕНИИ МЫШЕЧНОЙ АКТИВНОСТИ
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАГНИТНОГО ПОЛЯ СКЕЛЕТНЫХ МЫШЦ ПРИ ОПРЕДЕЛЕНИИ МЫШЕЧНОЙ АКТИВНОСТИ
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАГНИТНОГО ПОЛЯ СКЕЛЕТНЫХ МЫШЦ ПРИ ОПРЕДЕЛЕНИИ МЫШЕЧНОЙ АКТИВНОСТИ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 90.
13.01.2017
№217.015.8166

Устройство для управления сходимостью рентгеновского пучка и способ изготовления дифракционного блока в составе указанного устройства (варианты)

Изобретение относится к устройству для управления сходимостью рентгеновского пучка. При осуществлении заявленной группы изобретений предусмотрено изменение температуры дифракционного блока, изготовленного с рабочим профилем его дифрагирующего элемента, соответствующим условию коллимации или...
Тип: Изобретение
Номер охранного документа: 0002601867
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.821b

Способ каталитического пиролиза углеводородной смеси c-c в низшие олефины c-c

Предлагаемое изобретение относится к нефтехимии, касается способа каталитического пиролиза углеводородной смеси C-C в низшие олефины С-С, которые могут быть использованы в процессах полимеризации, алкилирования и этерификации. Способ каталитического пиролиза углеводородной смеси C-C в низшие...
Тип: Изобретение
Номер охранного документа: 0002601864
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.85c2

Катализатор для пиролиза углеводородной смеси с1-с4 и способ его получения

Изобретение относится к нефтехимии, касается катализатора для пиролиза углеводородной смеси С-С и способа его получения, который может быть использован для получения этилена и пропилена. Катализатор включает хромсодержащий компонент, нанесенный на поверхность полых микросфер алюмосиликатного...
Тип: Изобретение
Номер охранного документа: 0002603134
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.a32e

Солнечный оптический телескоп космического базирования (варианты)

Изобретение может быть использовано для измерений параметров активных областей солнечной фотосферы и хромосферы с высоким угловым разрешением в условиях ближнего и дальнего космоса. Солнечный оптический телескоп включает первичное вогнутое зеркало и полевое зеркало, установленное в его фокусе...
Тип: Изобретение
Номер охранного документа: 0002607049
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.aa9c

Композиция для визуализации и повреждения клеток-мишеней

Изобретение относится к фармацевтической промышленности, а именно к композиции для визуализации и повреждения опухолевых клеток-мишеней, содержащей неорганические наночастицы размером 10-100 нм и размерной дисперсностью до 6% состава NaYF, солегированные ионами иттербия (Yb) и эрбия (Er) или...
Тип: Изобретение
Номер охранного документа: 0002611653
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.b5b3

Способ получения наногидроксиапатита

Изобретение относится к неорганической химии и касается способа получения наногидроксиапатита, который может быть использован в медицине для производства медицинских материалов, стимулирующих восстановление дефектов костной ткани, в том числе в стоматологии. Способ получения наногидроксиапатита...
Тип: Изобретение
Номер охранного документа: 0002614772
Дата охранного документа: 29.03.2017
25.08.2017
№217.015.bde0

Способ контроля наличия глубоких дефектов матрицы gaas, связанных с встраиванием в неё слоя квантовых точек inas

Изобретение относится к технологии контроля качества полупроводниковых гетероструктур с квантовыми точками и может быть использовано для обнаружения глубоких дефектов, создаваемых слоем квантовых точек InAs в матрице GaAs. Технический результат изобретения - расширение технологических...
Тип: Изобретение
Номер охранного документа: 0002616876
Дата охранного документа: 19.04.2017
25.08.2017
№217.015.bf85

Способ получения загущающей присадки к смазочным маслам

Настоящее изобретение относится к способу получения загущающей присадки к смазочным маслам. Описан способ получения загущающей присадки к смазочным маслам, включающий компенсационную сополимеризацию композиции виниловых мономеров из алкил(мет)акрилата и стирола с винилалкиловым эфиром в...
Тип: Изобретение
Номер охранного документа: 0002617212
Дата охранного документа: 24.04.2017
25.08.2017
№217.015.c8ab

Способ управления работой гибкого ротора на электромагнитных подшипниках и система для его осуществления

Группа изобретений относится к машиностроению и может быть использована в конструкциях, включающих гибкий ротор на электромагнитных подшипниках (ЭМП). Технический результат - повышение надежности и ресурса работы гибкого ротора на ЭМП в результате увеличения степени компенсации остаточного...
Тип: Изобретение
Номер охранного документа: 0002618001
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.d11c

Применение вакуумного осаждения германия из газовой среды германа в качестве способа удаления диоксида кремния с рабочей поверхности кремниевой подложки и способ изготовления монокристаллической плёнки германия на кремниевой подложке, включающий указанное применение

Группа изобретений относится к технологии вакуумной эпитаксии германия или германия и кремния, включающей применение вакуумного осаждения германия из газовой среды германа в качестве способа удаления естественно образовавшегося или сформированного защитного слоя диоксида кремния с рабочей...
Тип: Изобретение
Номер охранного документа: 0002622092
Дата охранного документа: 09.06.2017
Показаны записи 1-1 из 1.
21.05.2023
№223.018.6868

Устройство для генерации нейроподобных колебаний с возбудимым и автоколебательным режимами и принцип его работы

Изобретение относится к области радиотехники и нелинейной динамики. Может использоваться в радиотехнических устройствах и системах связи. Кроме того, может использоваться для исследований в области нейродинамики и создания нейроподобных вычислительных систем. Технический результат – обеспечение...
Тип: Изобретение
Номер охранного документа: 0002794549
Дата охранного документа: 21.04.2023
+ добавить свой РИД