×
04.04.2018
218.016.31e9

ПЕРОВСКИТНАЯ СОЛНЕЧНАЯ ЯЧЕЙКА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002645221
Дата охранного документа
19.02.2018
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к технологиям преобразования солнечной энергии в электрическую. Перовскитная солнечная ячейка представляет собой слоистую структуру, включающую, по меньшей мере, три слоя: два проводящих слоя - р-проводящий и n-проводящий, а также размещенный между ними светопоглощающий слой, при этом один из проводящих слоев выполнен пористым, а светопоглощающий слой имеет перовскитную структуру общей структурной формулой АВХ, где в качестве А используют Cs, или СНМН, или (NH)CH, в качестве В используют Pb или Sn, в качестве X используют I, или Br, или Cl. Техническим результатом, достигаемым при использовании изобретения, является обеспечение эффективности преобразования солнечной энергии перовскитными солнечными ячейками, изготовленными при помощи заявляемого способа, не менее 5%. 2 н. и 7 з.п. ф-лы, 2 ил.
Реферат Свернуть Развернуть

Область техники

Заявляемое изобретение относится к технологиям преобразования солнечной энергии в электрическую, а именно к способам получения т.н. «перовскитных» солнечных ячеек - устройств для преобразования энергии на основе гибридных органо-неорганических соединений на основе галогенидов свинца или олова.

Уровень техники

Из уровня техники известны способы изготовления «перовскитных» солнечных ячеек, представленные в следующих общедоступных источниках информации:

в публикации Salazar R. et al. Use of Anodic TiO 2 Nanotube Layers as Mesoporous Scaffolds for Fabricating CH 3 NH 3 Pbl 3 Perovskite-Based Solid-State Solar Cells // ChemElectroChem. 2015. Vol. 2, №6. P. 824-828. (1) описана перовскитная солнечная ячейка с пористым электрон-проводящим слоем, которую получают, заполняя пористый электрон-проводящий слой в одну стадию перовскитом посредством пропитки электрон-проводящего слоя раствором перовскита в органическом растворителе с последующим удалением растворителя путем высушивания;

в публикации Qin P. et al. Stable and Efficient Perovskite Solar Cells Based on Titania Nanotube Arrays // Small. 2015. №41. P. n/a-n/a. (2) описана перовскитная солнечная ячейка с пористым электрон-проводящим слоем, которую получают, заполняя пористый электрон-проводящий слой перовскитом в две стадии. На первой стадии электрон-проводящий слой пропитывают раствором иодида свинца в органическом растворителе с последующим удалением растворителя путем высушивания. На второй стадии полученную заготовку, представляющую собой пористый электрон-проводящий слой, в поры которого был на первой стадии нанесен иодид свинца, приводят во взаимодействие с раствором метиламмоний иодида, в результате чего иодид свинца в порах электрон-проводящего слоя превращается в перовскит, после чего полученную структуру нагревают для удаления растворителя и кристаллизации образовавшегося перовскита.

Однако оба приведенных способа характеризует трудность достижения высокой степени заполнения пор электрон-проводящего слоя перовскитом в силу низкой эффективной концентрации использованных растворов и неоднородности заполнения пор жидкими веществами - предшественниками. В первом случае (публикация (1)), при высыхании раствора перовскита в порах происходит уменьшение его объема и образовавшийся в порах перовскит заполняет их не полностью. Во втором случае (публикация (2)), данный эффект частично компенсируется тем, что при переходе иодида свинца в перовскит происходит незначительное увеличение объема вещества в порах за счет разницы в мольных объемах иодида свинца и перовскита.

Наиболее близким к заявляемому техническому решению является способ изготовления «перовскитных» солнечных ячеек с непористым электрон-проводящим слоем с использованием в качестве прекурсора перовскита металлического свинца (патент CN 104250723). Металлический свинец в виде ровного слоя напыляют магнетронным напылением на непористую поверхность электрон-проводящего слоя, после чего приводят во взаимодействие с органическим растворителем, содержащим молекулярный иод и метиламмоний иодид, в результате сплошной непористый слой свинца превращается в сплошной непористый слой перовскита. При превращении металлического свинца в перовскит толщина слоя увеличивается практически в 8 раз за счет большего мольного объема получаемого перовскита по сравнению с мольным объемом исходного металлического свинца.

Однако известный способ получения перовскитных солнечных ячеек невозможно реализовать при необходимости получения перовскитных солнечных батарей с пористым электрон-проводящим слоем. Эффект увеличения мольного объема получаемого перовскита по сравнению с мольным объемом исходного металлического свинца может использоваться для контролируемого заполнения перовскитом пор электрон-проводящего слоя.

Таким образом, из уровня техники известны способы изготовления перовскитных солнечных ячеек с использованием пористого электрон-проводящего слоя, заполняемого светопоглощающим перовскитом, однако данные методы характеризуются трудностью достижения высокой степени заполнения пор, что характеризует такие ячейки как низкоэффективные.

Раскрытие изобретения

Задачей заявляемого технического решения является создание эффективной перовскитной солнечной ячейки, в том числе с пористым электрон-проводящим слоем, а также способа изготовления такой солнечной ячейки.

Техническим результатом, достигаемым при использовании заявляемого изобретения, является обеспечение эффективности преобразования солнечной энергии перовскитными солнечными ячейками, изготовленными при помощи заявляемого способа, не менее 5%.

Поставленная задача решается тем, что перовскитная солнечная ячейка согласно техническому решению представляет собой слоистую структуру, включающую, по меньшей мере, три слоя: два проводящих слоя - p-проводящий и n-проводящий, а также размещенный между ними светопоглощающий слой, при этом один из проводящих слоев выполнен пористым, а светопоглощающий слой имеет перовскитную структуру общей структурной формулой АВХ3, где в качестве А используют Cs+, СН3NH3+, (NH2)2CH+, в качестве В используют Pb2+ или Sn2+, в качестве X используют I-, Br-, Cl-. Толщина светопоглощающего слоя составляет не более 2000 нм, диаметр пор пористого проводящего слоя выбран из диапазона от 50 до 500 нм, толщина стенок пор составляет от 5 до 100 нм. Светопоглощающий слой расположен с заполнением пор пористого проводящего слоя и обеспечивает изоляцию одного проводящего слоя от другого. Перовскитная ячейка дополнительно может включать прозрачное и непрозрачное покрытия, расположенные, соответственно, по обе стороны от проводящих слоев ячейки, при этом прозрачное покрытие представляет собой внешний контактный слой из оптически прозрачного материала, например из стекла, с нанесенным электропроводящим слоем, а непрозрачное покрытие представляет собой внешний слой из алюминия или золота. Поры пористого проводящего слоя выполнены несвязанными сонаправленными, ориентированными преимущественно перпендикулярно плоскости слоя.

Поставленная задача решается также за счет применения заявляемого способа изготовления перовскитной солнечной ячейки, заключающегося в том, что изготавливают пористый p- или n-проводящий слой ячейки, в поры и на поверхность которого затем посредством электрохимического осаждения или термического вакуумного напыления помещают прекурсор светопоглощающего материала, в качестве которого используют металлический свинец или сплав металлического свинца и олова, при этом обеспечивают степень заполнения металлом объема пор от 5% до 100%, затем полученный проводящий слой с осажденным металлом помещают в органический растворитель на время, обеспечивающее выполнение реакции конверсии металла в светопоглощающий слой, в результате которой получают проводящий слой со светопоглощающим слоем, сформированным на поверхности и в объеме пор проводящего слоя, полученную структуру очищают от остатков реагентов конверсии, и наносят на светопоглощающий слой n- или p-проводящий слой в зависимости от типа проводимости слоя, на который проводилось осаждение металла. При помещении проводящего слоя с осажденным металлом в органический растворитель может быть предусмотрено соблюдение сольвотермальных условий, в качестве которых используют температуру 20-150°С. В качестве органического растворителя используют органические растворители, содержащие молекулярный йод или молекулярный бром, а также галогенид с формулой CsX, CH3NH3X или (NH2)2CHX, где X это I-, Br- или Cl-.

Под сольвотермальными условиями в контексте данной заявки понимают обработку в неводном растворителе при повышенной температуре.

Солнечные батареи на основе гибридных органо-неоргнанических перовскитов в настоящий момент являются одними из наиболее интенсивно развивающихся направлений альтернативной энергетики. В таких фотоэлементах в качестве поглотителя света выступают перовскиты состава АВХ3, где, как правило, А=СН33+, (NH2)2CH+; B=Pb2+, Sn2+; С=Cl-, Br-, I-. Особенностями таких соединений являются высокое поглощение в видимой области спектра и эффективный транспорт носителей заряда, что позволило повысить существенно эффективность перовскитных солнечных батарей. При этом потенциальная стоимость производства таких фотоэлементов гораздо ниже, чем у их аналогов по эффективности.

Краткое описание чертежей

Изобретение поясняется чертежами, где

на фиг. 1 представлена схема процесса заполнения пор электрон-проводящего слоя перовскитной солнечной ячейки перовскитом посредством конверсии металлического свинца.

На фиг. 2 схематично представлена перовскитная ячейка с дополнительными слоями.

Позициями на фигурах обозначены:

1 - n-проводящий слой,

2 - свинец, помещенный внутрь пор,

3 - светопоглощающий перовскитный слой,

4 - p-проводящий слой,

5 - дополнительный прозрачный проводящий слой,

6 - дополнительный непрозрачный металлический проводящий слой.

Осуществление изобретения

Заявляемая группа изобретений относится к отрасли солнечной энергетики и представляет определенный интерес в ракурсе увеличения КПД солнечных батарей. Перовскитная ячейка как элемент солнечной батареи имеет слоистую структуру, выполненную определенным образом. Ячейка состоит, по крайней мере, из трех обязательных слоев. Кроме того, она может быть снабжена дополнительными слоями.

Заявляемая ячейка содержит два проводящих слоя, на фиг. 2 показаны позициями (1) - n-проводящий слой (состоящий, например, из n-проводящего полимера PEDOT:PSS или анодного TiO2), проводящий только электроны и отсекающий фотоиндуцированые дырки, и (4) - p-проводящий слой (состоящий, например, из p-проводящего полимера Spiro-OMeTAD или анодного Al2O3 с нанесенным на внутренние стенки пор p-проводящим покрытием), проводящий только дырки и отсекающий фотоиндуцированые электроны. При этом один из этих слоев выполнен пористым (в представленном на фиг. 1 варианте осуществления изобретения пористым представлен n-проводящий слой) с протяженными порами длиной не более 2000 нм, диаметром от 50 до 500 нм, толщиной стенок пор от 5 до 100 нм. Поры выполнены сонаправленными, ориентированы преимущественно перпендикулярно плоскости слоя. На фиг. 1 и 2 представлено схематичное изображение этапов заявляемого способа, при этом поры представлены в виде параллельных углублений в проводящем слое. В реально изготовленной перовскитной солнечной ячейке (см. описание примера конкретного выполнения) поры выполнены не в строгом соответствии с представленной геометрией, однако присутствует их сонаправленность и общее направление размещения. Предпочтение выполнения пористым того или иного проводящего слоя отсутствует. Между двумя указанными слоями (1) и (2) расположен светопоглощающий слой (3), при этом слой расположен таким образом, что он заполняет поры одного из проводящих слоев (пористого), а также формирует прослойку определенной толщины между проводящими слоями (изолирует проводящие слои друг от друга). Светопоглощающий слой (3) выполнен из соединения состава АВХ3, где, как правило, A=СН3NH3+, (NH2)2CH; B=Pb2+, Sn2+; С=Сl-, Br-, I- с перовскитоподобной кристаллической структурой, толщиной 100 нм - 2000 нм, степень заполнения пор составляет 10-100%. Ячейка может быть снабжена дополнительными слоями, выполненными из (5) - прозрачного проводящего материала (например, слоя допированного фтором оксида олова (FTO) или допированного индием оксида олова (ITO), нанесенного на стекло) и (6) - непрозрачного материала - металла (например, золота, нанесенного термическим или магнетронным напылением).

Конечное изделие характеризуется общей толщиной функциональных слоев не более 3 мкм, включая толщину дополнительных слоев, в случае их применения, в случае выращивания проводящего слоя анодного TiO2 или анодного Al2O3 на металлической титановой или алюминиевой фольге - гибкостью изделия.

Заявляемую ячейку изготавливают следующим образом, реализуя при этом заявляемый способ.

Изготавливают пористый p- или n-проводящий слой ячейки известным способом, например посредством наращивания TiO2 на поверхности титановой фольги анодированием или посредством покрытия n-проводящей сажей внутренних стенок пор Al2O3 полученного анодированием алюминиевой фольги. Способ создания p- или n-проводящего слоя не является предметом настоящего изобретения, поэтому в качестве средства и метода его (проводящего слоя) изготовления может быть использован любой из известных.

В поры полученного пористого слоя и на его поверхность затем посредством электрохимического осаждения или термического вакуумного напыления помещают металлический свинец или сплав металлических свинца и олова в качестве прекурсора светопоглощающего материала, обеспечивая совокупную толщину осажденного в поры слоя металла от 5% до 100% от глубины пор. Выбор металла в данном случае может быть обусловлен стремлением к экологичности материалов, снижению содержания тяжелого металла, однако не является определяющим признаком при реализации заявляемого способа.

Полученный проводящий слой с осажденным металлом помещают в реакционную среду при соблюдении сольвотермальных условий на время, обеспечивающее выполнение реакции конверсии металла в светопоглощающий слой. Время выдерживания проводящего слоя с осажденным металлом составляет от 15 мин до 120 минут, в зависимости от температуры реакционной среды. Температура реакционной среды 20-150°С. В качестве реакционной среды используют органический растворитель, например этанол или изопропанол, содержащий растворенные молекулярный йод или молекулярный бром в концентрации от 0 до 0.5 г/мл, а также галогенид с формулой CsX, CH3NH3X или (NH2)2CHX, где X это I-, Br- или Сl- в концентрации от 0.001 до 0.025 г/мл. В процессе сольвотермальной обработки проводящего слоя с осажденным в поры металлом происходит превращение металла в светопоглощающий материал состава АВХ3, где A=CH3NH3+, (NH2)2CH+; B=Pb2+, Sn2+; C=Cl-, Br-, I- в зависимости от состава использованной реакционной среды. Объем образовавшегося в порах светопоглощающего материала в 7-9 раз больше объема находившегося в порах до сольвотермальной обработки металла, в результате чего достигаются более плотное заполнение пор светопоглощающим материалом пор проводящего слоя, плотное прилегание светопоглощающего материала к внутренним стенкам пор проводящего слоя, большая площадь контакта светопоглощающего материала и проводящего слоя и улучшенная эффективность разделения фотоиндуцированных носителей заряда.

Полученную таким образом структуру очищают от остатков реагентов конверсии промыванием в избытке изопропанола.

Наносят на светопоглощающий слой n- или p-проводящий слой в зависимости от типа проводимости слоя, на который проводилось осаждение металла.

Дополнительный слой, в зависимости от его типа - органический или неорганический, наносят

- например, методом вращающейся подложки из растворов;

- например, методом вакуумного напыления.

Пример конкретного выполнения

В качестве примера конкретного выполнения приведены сведения о реализации заявляемого способа и получении перовскитной солнечной ячейки с КПД 5%.

В качестве пористого n-проводящего слоя с вертикальными порами был выбран диоксид титана, полученный анодированием нанесенного на поверхность FTO металлического титана по стандартной методике, описанной, например, в Qin P. et al. Stable and Efficient Perovskite Solar Cells Based on Titania Nanotube Arrays // Small. 2015. №41. P. n/a-n/a. Толщина полученного слоя диоксида титана на поверхности FTO составила 500-1200 нм, диаметр пор - 70-150 нм, толщина стенок пор 10-30 нм.

Металлический свинец осаждали в поры диоксида титана вакуумным термическим напылением, в результате чего поры диоксида титана заполнились свинцом на 10-30%.

Конверсию металлического свинца в порах диоксида титана проводили, выдерживая пластинку титана с выращенным на ее поверхности слоем пористого диоксида титана с осажденным в него свинцом. Пластинку помещали в емкость с изопропиловым спиртом, в котором был растворен молекулярный йод в концентрации 0.5 мг/мл и метиламмоний иодид в концентрации 8 мг/мл.

Спустя 40 минут, после завершения конверсии металлического свинца в перовскит, пластинку титана с выращенным на ее поверхности слоем пористого диоксида титана, заполненного светопоглощающим материалом на 60-100%, промыли изопропиловым спиртом для удаления непрореагировавших компонентов реакционной смеси, высушили в сушильном шкафу при температуре 60°С в течение 60 минут и подвергали температурной обработке при температуре 100°С в течение 10 минут.

После температурной обработки образцы были охлаждены в течение 10, после чего на образцы наносился раствор spiro-OMeTAD (70 мМ в хлорбензоле) методом спин коатинга (вращающейся подложки) со скоростью 4000 об/мин в течение 20 секунд. Spiro-OMeTAD был допирован следующими компонентами: бис(трифлюорометилсульфонил)имид литиевая соль (Li-TFSI), трис(2-(1Н-пиразол-1-ил)-4-трет-бутилпиридин)-кобальт(III) трис(бис(трифлюорометилсульфонил)имид) (FK209) и 4 трет бутилпиридин 4-tert-Butylpyridine (ТВР, Sigma-Aldrich). Молярное соотношение допантов составляло: 0.5, 0.03 и 3.3 для Li-TFSI, FK209 и ТВР соответственно.

Дополнительный токопроводящий электрод в виде слоя золота толщиной 70-80 нм наносился методом термического испарения в вакууме.

Совокупная толщина нанесенных таким образом слоев составляет 1.5 мкм.

Полученную ячейку освещали светом AM1.5G, полученным с помощью симулятора солнечного света. Интенсивность падающего излучения калибровалась с помощью кремниевого фотодиода. Вольт-амперные характеристики ячейки были определены при приложении к освещаемой ячейке внешнего потенциала с одновременным измерением протекающего тока с помощью измерителя тока Keithley 2400. На основе полученной вольт-амперной кривой был рассчитан КПД ячейки, который составил 5%.


ПЕРОВСКИТНАЯ СОЛНЕЧНАЯ ЯЧЕЙКА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 1-8 из 8.
20.02.2014
№216.012.a265

Способ получения чернил на основе наночастиц диоксида олова легированного сурьмой для микропечати

Изобретение относится к области неорганической химии, а именно к композиции для получения сенсорных покрытий на основе водных суспензий наночастиц диоксида олова. Согласно изобретению композиция для получения сенсорных покрытий содержит диоксид олова, легированный сурьмой, состава SbSnO, где...
Тип: Изобретение
Номер охранного документа: 0002507288
Дата охранного документа: 20.02.2014
10.01.2015
№216.013.1c09

Способ получения нитевидных кристаллов активного материала положительного электрода литий-воздушного аккумулятора

Изобретение относится к активному материалу положительного электрода литий-воздушного аккумулятора в виде нитевидных кристаллов состава KMnO(x=0,1-0,15) длиной от 0,1 мкм до 2 мм и диаметром от 20 до 30 нм для обратимого восстановления кислорода на положительном электроде. А также относится к...
Тип: Изобретение
Номер охранного документа: 0002538605
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.3ab6

Способ анализа мембраносвязанного гемоглобина в эритроцитах с помощью спектроскопии гигантского комбинационного рассеивания на наноструктурированных покрытиях

Изобретение относится к области медицинской диагностики и биоаналитических исследований и может быть использовано для анализа мембраносвязанного гемоглобина в эритроцитах с помощью спектроскопии гигантского комбинационного рассеивания (ГКР). Для этого используют наноструктурированные покрытия в...
Тип: Изобретение
Номер охранного документа: 0002546518
Дата охранного документа: 10.04.2015
10.07.2015
№216.013.5b67

Способ получения гибридного материала (варианты) для перезаряжаемых химических источников тока

Изобретение относится к катодному органо-неорганическому гибридному материалу для вторичных литий-ионных источников тока состава (CHN)*xVO*yHO, где х=0.10-0.12, y=0.7-0.9 в виде наносвитков длиной от 100 до 500 нм и диаметром от 10 до 20 нм с площадью поверхности 60 м/г и диаметром пор 20-30...
Тип: Изобретение
Номер охранного документа: 0002554940
Дата охранного документа: 10.07.2015
20.01.2016
№216.013.a0c7

Химически модифицированный планарный оптический сенсор, способ его изготовления и способ анализа полиароматических гетероциклических серосодержащих соединений с его помощью

Группа изобретений относится к области аналитических исследований и может быть использована в нефтехимической промышленности для качественного и количественного обнаружения полиароматических гетероциклических серосодержащих соединений в нефтепродуктах. Химически модифицированный планарный...
Тип: Изобретение
Номер охранного документа: 0002572801
Дата охранного документа: 20.01.2016
27.05.2016
№216.015.427d

Способ анализа цитохрома с в интактных митохондриях с помощью спектроскопии гигантского комбинационного рассеивания на наноструктурированных покрытиях

Настоящее изобретение относится к области биоаналитических исследований и представляет собой способ анализа цитохрома С в интактных митохондриях с помощью спектроскопии гигантского комбинационного рассеяния (ГКР), включающий подготовку митохондрий и их нанесение на подложку на основе...
Тип: Изобретение
Номер охранного документа: 0002585118
Дата охранного документа: 27.05.2016
26.08.2017
№217.015.eac7

Композиция, обладающая гкр-активностью для определения полиароматических гетероциклических серосодержащих соединений в углеводородных продуктах, способ получения композиции, планарный твердофазный оптический сенсор на ее основе и способ его получения, применение сенсора для анализа полиароматических гетероциклических серосодержащих соединений

Настоящее изобретение относится к области технологий материалов и материаловедческих и аналитических исследований. Композиция, обладающая ГКР-активностью, для определения полиароматических гетероциклических серосодержащих соединений (ПАГС) в углеводородных продуктах представляет собой...
Тип: Изобретение
Номер охранного документа: 0002627980
Дата охранного документа: 14.08.2017
17.02.2018
№218.016.2cc5

Способ получения композитных наноструктур: диоксид кремния - серебро

Изобретение относится к нанотехнологии получения композитных наноструктур - упорядоченных мультислоев микросфер диоксида кремния и наночастиц серебра. Наноструктуры подобного типа в перспективе могут служить элементами так называемых lab-on-chip, позволяющих проводить исследование живых клеток...
Тип: Изобретение
Номер охранного документа: 0002643697
Дата охранного документа: 05.02.2018
Показаны записи 1-10 из 176.
20.02.2014
№216.012.a265

Способ получения чернил на основе наночастиц диоксида олова легированного сурьмой для микропечати

Изобретение относится к области неорганической химии, а именно к композиции для получения сенсорных покрытий на основе водных суспензий наночастиц диоксида олова. Согласно изобретению композиция для получения сенсорных покрытий содержит диоксид олова, легированный сурьмой, состава SbSnO, где...
Тип: Изобретение
Номер охранного документа: 0002507288
Дата охранного документа: 20.02.2014
10.01.2015
№216.013.1c09

Способ получения нитевидных кристаллов активного материала положительного электрода литий-воздушного аккумулятора

Изобретение относится к активному материалу положительного электрода литий-воздушного аккумулятора в виде нитевидных кристаллов состава KMnO(x=0,1-0,15) длиной от 0,1 мкм до 2 мм и диаметром от 20 до 30 нм для обратимого восстановления кислорода на положительном электроде. А также относится к...
Тип: Изобретение
Номер охранного документа: 0002538605
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.3ab6

Способ анализа мембраносвязанного гемоглобина в эритроцитах с помощью спектроскопии гигантского комбинационного рассеивания на наноструктурированных покрытиях

Изобретение относится к области медицинской диагностики и биоаналитических исследований и может быть использовано для анализа мембраносвязанного гемоглобина в эритроцитах с помощью спектроскопии гигантского комбинационного рассеивания (ГКР). Для этого используют наноструктурированные покрытия в...
Тип: Изобретение
Номер охранного документа: 0002546518
Дата охранного документа: 10.04.2015
10.05.2015
№216.013.4a8b

Способ определения следовых компонентов методом лазерно-искровой эмиссионной спектроскопии

Изобретение относится к аналитической атомной спектрометрии и может быть использовано в спектральном анализе для экспрессного способа определения элементного состава вещества. Способ основан на действии двух последовательных коллинеарных лазерных импульсов, направленных в одну точку поверхности...
Тип: Изобретение
Номер охранного документа: 0002550590
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4b9f

Способ синтеза сополимеров акрилонитрила с акриловой кислотой

Изобретение относится к получению сополимеров акрилонитрила, которые широко используются в производстве углеродного волокна. Способ синтеза сополимеров, содержащих мономерные звенья акрилонитрила и акриловой кислоты, включает смешение мономеров в среде растворителя с добавлением инициатора...
Тип: Изобретение
Номер охранного документа: 0002550873
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.5153

Наночастицы антиоксидантного фермента супероксиддисмутазы в виде полиэлектролитного комплекса состава фермент-поликатион-полианион и способ их получения

Изобретение относится к химической энзимологии, в частности к созданию наночастиц антиоксидантного фермента супероксиддисмутазы для медицинского применения в виде полиэлектролитного комплекса типа фермент/поликатион/полианион, характеризующихся тем, что фермент покрыт внутренней оболочкой из...
Тип: Изобретение
Номер охранного документа: 0002552340
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.55a7

Катализатор паровой конверсии углеводородов и способ его получения

Изобретение относится к области химии и химической технологии, а именно, к процессам переработки газообразного углеводородного сырья и получения технического водорода для химической, металлургической, автомобильной, авиационной и прочих отраслей промышленности, научных исследований, точного...
Тип: Изобретение
Номер охранного документа: 0002553457
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.55aa

Катодные материалы для твердооксидных топливных элементов на основе никельсодержащих слоистых перовскитоподобных оксидов

Изобретение относится к катодному материалу для твердооксидного топливного элемента (ТОТЭ) на основе никельсодержащих перовскитоподобных слоистых оксидов. При этом в качестве перовскитоподобного оксида взято соединение с общей формулой PrSrNiCoO, где 0.0
Тип: Изобретение
Номер охранного документа: 0002553460
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.5810

Способ нагрева электродов и создания самостоятельного дугового разряда с поджигом от тонкой металлической проволочки в свободном пространстве в магнитном поле

Изобретение относится к области исследования физических свойств вещества, в частности к исследованию процессов в газоразрядных приборах и плазме. Технический результат - возможность зажигания самостоятельного дугового разряда в открытом свободном пространстве. Между электродами при...
Тип: Изобретение
Номер охранного документа: 0002554085
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.59ae

Способ определения катехоламинов и их метаболитов с использованием твердофазного флуоресцентного биосенсора

Изобретение относится к области медицины и может быть применено для определения катехоламинов их метаболитов в объектах на основе матриц сложного состава, в том числе нерастворимых в воде, без их дополнительной пробоподготовки. Способ осуществляют путем изменения принципиальной схемы...
Тип: Изобретение
Номер охранного документа: 0002554499
Дата охранного документа: 27.06.2015
+ добавить свой РИД