×
27.06.2015
216.013.59ae

СПОСОБ ОПРЕДЕЛЕНИЯ КАТЕХОЛАМИНОВ И ИХ МЕТАБОЛИТОВ С ИСПОЛЬЗОВАНИЕМ ТВЕРДОФАЗНОГО ФЛУОРЕСЦЕНТНОГО БИОСЕНСОРА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002554499
Дата охранного документа
27.06.2015
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области медицины и может быть применено для определения катехоламинов их метаболитов в объектах на основе матриц сложного состава, в том числе нерастворимых в воде, без их дополнительной пробоподготовки. Способ осуществляют путем изменения принципиальной схемы формирования и измерения аналитического сигнала, регистрируемого в чувствительном слое биосенсора, - переходом к твердофазной флуоресценции. Действие биосенсора основано на реакции ферментативной дериватизации катехоламинов и их метаболитов с органическими аминами (o-фенилендиамин, этилендиамин) с образованием производных хиноксалина, флуоресцирующих в области 450-550 нм. При этом компоненты индикаторной реакции иммобилизованы в чувствительном слое на поверхности биосенсора, в результате флуоресцентный сигнал формируется и регистрируется непосредственно на твердой поверхности в режиме отражения. Наибольшую интенсивность флуоресцентного сигнала получают при использовании в качестве дериватизирующего агента o-фенилендиамина и проведении процесса при концентрации пероксидазы хрена - 10-25 нМ; концентрации пероксида водорода - 250-500 мкМ; концентрации o-фенилендиамина - 50-100 мкМ; концентрации катехоламинов и метаболитов - 5-2000 нМ. В качестве буферного раствора берут 5 мМ фосфатный буферный раствор pH 9.5-10.0. Чувствительный слой биосенсора представляет собой двухслойную пленку {хитозан - o-фенилендиамин/хитозан - пероксидаза}, нанесенную ровным слоем на поверхность стеклянной пластинки (14×40 мм). Изобретение обеспечивает простое и чувствительное определение катехоламинов и их метаболитов в объектах, анализ которых с использованием оптических методов детектирования по инструментальным причинам был ранее затруднен или невозможен вследствие мешающего влияния матрицы реального объекта, а также недостаточной чувствительности и воспроизводимости биосенсоров. 3 з.п. ф-лы, 4 ил.
Реферат Свернуть Развернуть

Изобретение относится к области медицины и может быть применено для определения катехоламинов и их метаболитов в объектах на основе матриц сложного состава, в том числе нерастворимых в воде, без их дополнительной пробоподготовки.

Определение катехоламинов (КА) (допамин (ДА), адреналин (АД)) и их метаболитов (гомованилиновая и ванилилминдальная кислоты (ГВК и ВМК соответственно)) в биологических жидкостях и тканях человека является актуальной задачей современного химического анализа. Значимая проблема при определении перечисленных соединений в реальных биообъектах заключается в необходимости проведения дополнительной пробоподготовки анализируемого образца (использование токсичных или агрессивных органических растворителей, фильтрование, разделение), что существенно увеличивает погрешность результатов измерений и усложняет процедуру анализа. Перспективный подход к решению перечисленных проблем заключается в создании твердофазных оптических сенсоров, основанных на формировании и измерении аналитического сигнала не в растворе, а непосредственно на поверхности - в чувствительном слое сенсора, содержащем распознающие элементы (компоненты индикаторной системы, в том числе ферменты). Согласно исследованиям в областях, смежных биохимическому анализу, катехоламины и их метаболиты необходимо определять на наномолярном уровне и ниже. По этой причине наибольший интерес представляет разработка твердофазных оптических сенсоров с высокочувствительным детектированием отклика чувствительного слоя методом флуориметрии.

Известен способ определения адреналина с помощью оптоволоконного флуоресцентного биосенсора на основе фермента - лакказы, иммобилизованной в матрице {тетрааминофталоцианин меди - Fe3O4} (Huang J., Fang H., Liu С., Gu E., Jiang D. A novel fiber optic biosensor for the determination of adrenaline based on immobilized laccase catalysis. Anal. Lett. 2008. V.41. №8. P.1430-1442). Сенсор представляет собой ячейку, в которую помещена матрица, содержащая иммобилизованную лакказу, а также отделенные от нее тефлоновой мембраной частицы додецилсульфата трис(4,7-дифенил-1,10-фенантролин) рутения (II). Через прозрачное окошко ячейка контактирует с оптическим волокном. Действие сенсора основано на реакции окисления фенола кислородом в присутствии лакказы до o-хинона, приводящей к потреблению кислорода в системе. Аналитическим сигналом служит уменьшение интенсивности флуоресценции комплекса рутения в присутствии кислорода. Аналитический сигнал регистрируют в режиме отражения непосредственно в растворе (λех=450 нм, λem=600 нм). Однако измерение аналитического сигнала непосредственно в растворе не позволяет анализировать непрозрачные и мутные среды без их дополнительной пробоподготовки (растворение в токсичных органических растворителях, экстракция, фильтрование).

Известен принятый за прототип способ определения фенола, простейших изомерных o- и n-дифенольных соединений и флавоноидов с использованием твердофазных спектрофотометрических биосенсоров на основе оптически прозрачных пленок {хитозан-пероксидаза}, закрепленных на поверхности стеклянных пластинок (I.A. Veselova, L.I. Malinina, P.V. Rodionov, T.N. Shekhovtsova. Properties and analytical application of self-assembled complex {peroxidase-chitosan}. Talanta 102 (2012) 101-109). Действие биосенсора основано на ферментативном окислении фенольного соединения (до соответствующего o- или n-хинона) и последующем взаимодействии продукта окисления с хитозаном с образованием аддукта Михаэля, характеризующегося максимумом поглощения в области 345-355 нм. Формирование чувствительного слоя биосенсора осуществляют равномерным нанесением смеси {хитозан-пероксидаза} на поверхность горизонтально расположенной стеклянной пластинки и ее последующем высушивании на воздухе при комнатной температуре. Для проведения индикаторной реакции биосенсор выдерживают необходимое время в реакционной системе. Для измерения аналитического сигнала биосенсор извлекают из раствора, высушивают на воздухе при комнатной температуре и далее закрепляют на фронтальной поверхности кюветного отделения спектрофотометра. Аналитический сигнал регистрируют в режиме поглощения относительно чистой стеклянной пластинки. Окисление пероксидом водорода (H2O2, 1 мМ) проводят в 5 мМ фосфатном буферном растворе pH 6.5 в присутсвии пероксидазы из корней хрена (10 нМ) при комнатной температуре в течение 24 ч. Однако низкая технологичность указанного процесса обусловливается длительностью времени проведения анализа, кроме того, описанный спектрофотометрический биосенсор позволяет определять фенольные соединения на уровне не ниже микромолярного, а также не позволяет определять катехоламины и их метаболиты.

Предлагаемое изобретение решает задачу простого и чувствительного определения катехоламинов и их метаболитов в объектах, анализ которых с использованием оптических методов детектирования по инструментальным причинам был ранее затруднен или невозможен вследствие мешающего влияния матрицы реального объекта, а также недостаточной чувствительности и воспроизводимости биосенсоров.

Поставленная задача решается изменением принципиальной схемы формирования и измерения аналитического сигнала - переходом к твердофазной флуоресценции. Новизна при этом заключается в том, что компоненты индикаторной реакции иммобилизованы в чувствительном слое на поверхности биосенсора, в результате флуоресцентный сигнал формируется и регистрируется непосредственно на твердой поверхности в режиме отражения. Действие предложенного авторами биосенсора основано на реакции ферментативной дериватизации катехоламинов и их метаболитов с органическими аминами (o-фенилендиамином, этилендиамином) с образованием производных хиноксалина, флуоресцирующих в области 450-550 нм.

Наибольшую интенсивность флуоресцентного сигнала получают при использовании в качестве дериватизирующего агента o-фенилендиамина и проведении процесса при концентрации пероксидазы хрена - 10-25 нМ; концентрации пероксида водорода - 250-500 мкМ; концентрации o-фенилендиамина - 50-100 мкМ; концентрации катехоламинов и метаболитов - 5-2000 нМ. В качестве буферного раствора берут 5 мМ фосфатный буферный раствор pH 9.5-10.0. Чувствительный слой биосенсора представляет собой двухслойную пленку {хитозан - o-фенилендиамин/хитозан - пероксидаза}, нанесенную ровным слоем на поверхность стеклянной пластинки (14×40 мм). Объем смеси {хитозан - o-фенилендиамин} - 100 мкл, объем смеси {хитозан - пероксидаза} - 150 мкл, объемная доля хитозана в пленке 95%. Биосенсор устанавливают в кюветном отделении флуориметра перед отражающей поверхностью (зеркальная пластинка 14×40 мм) под углом 75 градусов относительно источника возбуждения (ксеноновая лампа).

Нами впервые был предложен подход, заключающийся в иммобилизации дериватизирующих агентов (o-фенилендиамина, этилендиамина) в хитозановой пленке на поверхности стекла и регистрации флуоресцентного сигнала непосредственно на твердой поверхности в чувствительном слое сенсора, что позволяет проводить анализ в непрозрачных и мутных средах.

Технический результат предлагаемого изобретения при этом состоит в улучшении технологичности процесса из-за исключения необходимости проведения дополнительной пробоподготовки анализируемого образца (кроме разбавления); чувствительность по сравнению с аналогом и прототипом возрастает до 3-70 нМ; время анализа сокращается до 30 с.

Анализ известных технических решений позволяет сделать вывод о том, что предлагаемое изобретение не известно из уровня техники, что свидетельствует о его соответствии критерию "новизна".

Сущность настоящего изобретения для специалистов не следует явным образом из уровня техники, что позволяет сделать вывод о его соответствии критерию "изобретательский уровень".

Возможность проведения способа на традиционном оборудовании с достижением поставленной задачи свидетельствует о соответствии изобретения критерию "промышленная применимость".

На фиг.1 представлена схема формирования чувствительного слоя биосенсора.

На фиг.2 представлена схема проведения индикаторной реакции.

На фиг.3 представлена схема измерения аналитического сигнала с использованием оптического биосенсора.

На фиг.4 представлены спектры флуоресценции чувствительного слоя биосенсора в отсутствие (1) и в присутствии АД (2) (сАД - 0.5 мкМ; время реакции 30 с).

Приведенные примеры подтверждают, но не ограничивают заявляемое изобретение.

Пример 1. Способ получения в чувствительном слое биосенсора 2,3-бензо-7-метиламин-хиноксалина, флуоресцирующего производного катехоламинов, на примере ферментативной дериватизации ДА с o-фенилендиамином

В качестве производного катехоламинов был взят допамин (ДА). Реакцию дериватизации ДА с o-фенилендиамином проводили по следующей методике: в стеклянную пробирку последовательно вводили 4.8 мл 5 мМ фосфатного буферного раствора (pH 9.5), раствор ДА (0.2-2.0 мкМ в системе) и 0.100 мл 25 мМ раствора Н2О2 (0.5 мМ в системе). Реакционную смесь тщательно перемешивали и погружали в нее биосенсор, чувствительный слой которого содержал пероксидазу (25 нМ в системе) и o-фенилендиамин (100 мкМ в системе). Биосенсор выдерживали в реакционной системе в течение 30 с, извлекали и высушивали на воздухе при комнатной температуре. Для измерения аналитического сигнала биосенсор устанавливали в кюветном отделении флуориметра перед отражающей поверхностью (зеркальная пластинка) под углом 75 градусов относительно источника возбуждения (ксеноновая лампа) и регистрировали интенсивность флуоресценции чувствительного слоя (λех=440-450 нм, λem=520 нм). Предел обнаружения - 70 нМ.

Пример 2. Способ получения в чувствительном слое биосенсора 2,3-бензо-7-гидроксиметиламин-хиноксалина, флуоресцирующего производного катехоламинов, на примере ферментативной дериватизации АД с o-фенилендиамином

В качестве производного катехоламинов был взят адреналин (АД). Реакцию дериватизации АД с o-фенилендиамином проводили по следующей методике: в стеклянную пробирку последовательно вводили 4.8 мл 5 мМ фосфатного буферного раствора (pH 9.75), раствор АД (0.1-1.0 мкМ в системе) и 0.070 мл 25 мМ раствора H2O2 (0.35 мМ в системе). Реакционную смесь тщательно перемешивали и погружали в нее биосенсор, чувствительный слой которого содержал пероксидазу (25 нМ в системе) и o-фенилендиамин (100 мкМ в системе). Биосенсор выдерживали в реакционной системе в течение 30 с, извлекали и высушивали на воздухе при комнатной температуре. Для измерения аналитического сигнала биосенсор устанавливали в кюветном отделении флуориметра перед отражающей поверхностью (зеркальная пластинка) под углом 75 градусов относительно источника возбуждения (ксеноновая лампа) и регистрировали интенсивность флуоресценции чувствительного слоя (λex=440-450 нм, λem=540 нм). Предел обнаружения - 50 нМ.

Пример 3. Способ получения в чувствительном слое биосенсора 2,3-бензо-хиноксалин-7-уксусной кислоты, флуоресцирующего производного метаболитов катехоламинов, на примере ферментативной дериватизации ГВК с o-фенилендиамином

В качестве производного метаболитов катехоламинов была взята гомованилиновая кислота (ГВК). Реакцию дериватизации ГВК с o-фенилендиамином проводили по следующей методике: в стеклянную пробирку последовательно вводили 4.8 мл 5 мМ фосфатного буферного раствора (pH 10.0), раствор ГВК (10-100 нМ в системе) и 0.050 мл 25 мМ раствора H2O2 (0.25 мМ в системе). Реакционную смесь тщательно перемешивали и погружали в нее биосенсор, чувствительный слой которого содержал пероксидазу (10 нМ в системе) и o-фенилендиамин (100 мкМ в системе). Биосенсор выдерживали в реакционной системе в течение 30 с, извлекали и высушивали на воздухе при комнатной температуре. Для измерения аналитического сигнала биосенсор устанавливали в кюветном отделении флуориметра перед отражающей поверхностью (зеркальная пластинка) под углом 75 градусов относительно источника возбуждения (ксеноновая лампа) и регистрировали интенсивность флуоресценции чувствительного слоя (λех=440-450 нм, λem=540 нм). Предел обнаружения - 5 нМ.

Пример 4. Способ получения в чувствительном слое биосенсора 2,3-бензо-хиноксалин-7-гидроксиуксусной кислоты, флуоресцирующего производного метаболитов катехоламинов, на примере ферментативной дериватизации ВМК с o-фенилендиамином

В качестве производного метаболитов катехоламинов была взята ванилилминдальная кислота (ВМК). Реакцию дериватизации ВМК с o-фенилендиамином проводили по следующей методике: в стеклянную пробирку последовательно вводили 4.8 мл 5 мМ фосфатного буферного раствора (pH 9.5), раствор ВМК (5-75 нМ в системе) и 0.070 мл 25 мМ раствора H2O2 (0.35 мМ в системе). Реакционную смесь тщательно перемешивали и погружали в нее биосенсор, чувствительный слой которого содержал пероксидазу (10 нМ в системе) и o-фенилендиамин (50 мкМ в системе). Биосенсор выдерживали в реакционной системе в течение 30 с, извлекали и высушивали на воздухе при комнатной температуре. Для измерения аналитического сигнала биосенсор устанавливали в кюветном отделении флуориметра перед отражающей поверхностью (зеркальная пластинка) под углом 75 градусов относительно источника возбуждения (ксеноновая лампа) и регистрировали интенсивность флуоресценции чувствительного слоя (λex=440-450 нм, λem=530 нм). Предел обнаружения - 3 нМ.

Как видно из приведенных примеров, предлагаемое изобретение решает задачу получения флуоресцирующих производных катехоламинов и их метаболитов непосредственно в чувствительном слое твердофазного оптического биосенсора.


СПОСОБ ОПРЕДЕЛЕНИЯ КАТЕХОЛАМИНОВ И ИХ МЕТАБОЛИТОВ С ИСПОЛЬЗОВАНИЕМ ТВЕРДОФАЗНОГО ФЛУОРЕСЦЕНТНОГО БИОСЕНСОРА
СПОСОБ ОПРЕДЕЛЕНИЯ КАТЕХОЛАМИНОВ И ИХ МЕТАБОЛИТОВ С ИСПОЛЬЗОВАНИЕМ ТВЕРДОФАЗНОГО ФЛУОРЕСЦЕНТНОГО БИОСЕНСОРА
СПОСОБ ОПРЕДЕЛЕНИЯ КАТЕХОЛАМИНОВ И ИХ МЕТАБОЛИТОВ С ИСПОЛЬЗОВАНИЕМ ТВЕРДОФАЗНОГО ФЛУОРЕСЦЕНТНОГО БИОСЕНСОРА
СПОСОБ ОПРЕДЕЛЕНИЯ КАТЕХОЛАМИНОВ И ИХ МЕТАБОЛИТОВ С ИСПОЛЬЗОВАНИЕМ ТВЕРДОФАЗНОГО ФЛУОРЕСЦЕНТНОГО БИОСЕНСОРА
Источник поступления информации: Роспатент

Показаны записи 1-4 из 4.
27.08.2014
№216.012.ef2f

Способ биокаталитической конверсии дибензотиофена

Изобретение относится к способу биокаталитической конверсии дибензотиофена, который включает окисление исходного соединения пероксидом водорода в присутствии в качестве биокатализатора гемоглобина в смеси буферного раствора с ацетонитрилом, новизна которого заключается в том, что в качестве...
Тип: Изобретение
Номер охранного документа: 0002527050
Дата охранного документа: 27.08.2014
10.04.2015
№216.013.3b50

Способ получения флуоресцирующих производных катехоламинов и их метаболитов методом дериватизации

Изобретение относится к новому способу получения флуоресцирующих катехоламинов, выбранных из допамина и адреналина, и их метаболитов, выбранных из гомованилиновой и ванилилминдальной кислот, методом дериватизации. Соединения могут быть использованы в качестве высокочувствительных и селективных...
Тип: Изобретение
Номер охранного документа: 0002546672
Дата охранного документа: 10.04.2015
20.01.2016
№216.013.a0c7

Химически модифицированный планарный оптический сенсор, способ его изготовления и способ анализа полиароматических гетероциклических серосодержащих соединений с его помощью

Группа изобретений относится к области аналитических исследований и может быть использована в нефтехимической промышленности для качественного и количественного обнаружения полиароматических гетероциклических серосодержащих соединений в нефтепродуктах. Химически модифицированный планарный...
Тип: Изобретение
Номер охранного документа: 0002572801
Дата охранного документа: 20.01.2016
26.08.2017
№217.015.eac7

Композиция, обладающая гкр-активностью для определения полиароматических гетероциклических серосодержащих соединений в углеводородных продуктах, способ получения композиции, планарный твердофазный оптический сенсор на ее основе и способ его получения, применение сенсора для анализа полиароматических гетероциклических серосодержащих соединений

Настоящее изобретение относится к области технологий материалов и материаловедческих и аналитических исследований. Композиция, обладающая ГКР-активностью, для определения полиароматических гетероциклических серосодержащих соединений (ПАГС) в углеводородных продуктах представляет собой...
Тип: Изобретение
Номер охранного документа: 0002627980
Дата охранного документа: 14.08.2017
Показаны записи 1-10 из 163.
27.08.2014
№216.012.ef2f

Способ биокаталитической конверсии дибензотиофена

Изобретение относится к способу биокаталитической конверсии дибензотиофена, который включает окисление исходного соединения пероксидом водорода в присутствии в качестве биокатализатора гемоглобина в смеси буферного раствора с ацетонитрилом, новизна которого заключается в том, что в качестве...
Тип: Изобретение
Номер охранного документа: 0002527050
Дата охранного документа: 27.08.2014
10.04.2015
№216.013.3b50

Способ получения флуоресцирующих производных катехоламинов и их метаболитов методом дериватизации

Изобретение относится к новому способу получения флуоресцирующих катехоламинов, выбранных из допамина и адреналина, и их метаболитов, выбранных из гомованилиновой и ванилилминдальной кислот, методом дериватизации. Соединения могут быть использованы в качестве высокочувствительных и селективных...
Тип: Изобретение
Номер охранного документа: 0002546672
Дата охранного документа: 10.04.2015
10.05.2015
№216.013.4a8b

Способ определения следовых компонентов методом лазерно-искровой эмиссионной спектроскопии

Изобретение относится к аналитической атомной спектрометрии и может быть использовано в спектральном анализе для экспрессного способа определения элементного состава вещества. Способ основан на действии двух последовательных коллинеарных лазерных импульсов, направленных в одну точку поверхности...
Тип: Изобретение
Номер охранного документа: 0002550590
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4b9f

Способ синтеза сополимеров акрилонитрила с акриловой кислотой

Изобретение относится к получению сополимеров акрилонитрила, которые широко используются в производстве углеродного волокна. Способ синтеза сополимеров, содержащих мономерные звенья акрилонитрила и акриловой кислоты, включает смешение мономеров в среде растворителя с добавлением инициатора...
Тип: Изобретение
Номер охранного документа: 0002550873
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.5153

Наночастицы антиоксидантного фермента супероксиддисмутазы в виде полиэлектролитного комплекса состава фермент-поликатион-полианион и способ их получения

Изобретение относится к химической энзимологии, в частности к созданию наночастиц антиоксидантного фермента супероксиддисмутазы для медицинского применения в виде полиэлектролитного комплекса типа фермент/поликатион/полианион, характеризующихся тем, что фермент покрыт внутренней оболочкой из...
Тип: Изобретение
Номер охранного документа: 0002552340
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.55a7

Катализатор паровой конверсии углеводородов и способ его получения

Изобретение относится к области химии и химической технологии, а именно, к процессам переработки газообразного углеводородного сырья и получения технического водорода для химической, металлургической, автомобильной, авиационной и прочих отраслей промышленности, научных исследований, точного...
Тип: Изобретение
Номер охранного документа: 0002553457
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.55aa

Катодные материалы для твердооксидных топливных элементов на основе никельсодержащих слоистых перовскитоподобных оксидов

Изобретение относится к катодному материалу для твердооксидного топливного элемента (ТОТЭ) на основе никельсодержащих перовскитоподобных слоистых оксидов. При этом в качестве перовскитоподобного оксида взято соединение с общей формулой PrSrNiCoO, где 0.0
Тип: Изобретение
Номер охранного документа: 0002553460
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.5810

Способ нагрева электродов и создания самостоятельного дугового разряда с поджигом от тонкой металлической проволочки в свободном пространстве в магнитном поле

Изобретение относится к области исследования физических свойств вещества, в частности к исследованию процессов в газоразрядных приборах и плазме. Технический результат - возможность зажигания самостоятельного дугового разряда в открытом свободном пространстве. Между электродами при...
Тип: Изобретение
Номер охранного документа: 0002554085
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.59af

Способ лечения ишемического инсульта

Группа изобретений относится к медицине, а именно к неврологии, и касается лечения ишемического инсульта. Для этого осуществляют инъекционное, преимущественно внутривенное, введение убидекаренона. Такое введение препарата обеспечивает уменьшение зоны поражения ткани мозга и уменьшение...
Тип: Изобретение
Номер охранного документа: 0002554500
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a1f

Высокочастотный сверхпроводящий элемент памяти

Технический результат изобретения состоит в увеличении изменения амплитуды критического тока перехода под действием малого магнитного потока по сравнению с предыдущими геометриями, что открывает возможности для миниатюризации сверхпроводящих элементов памяти. Дополнительный технический...
Тип: Изобретение
Номер охранного документа: 0002554612
Дата охранного документа: 27.06.2015
+ добавить свой РИД