×
04.04.2018
218.016.306d

Результат интеллектуальной деятельности: Способ пространственной селекции расстояний при решении задачи позиционирования мобильного средства дальномерным методом в наземной локальной радионавигационной системе

Вид РИД

Изобретение

Аннотация: Изобретение относится к радиотехнике и предназначено для повышения точности определения местоположения мобильных средств по сигналам опорных станций наземной локальной радионавигационной системы (ЛРНС). Достигаемый технический результат – повышение точности определения местоположения мобильного средства (МС). Указанный результат достигается за счет того, что способ пространственной селекции расстояний при решении задачи позиционирования МС дальномерным методом в наземной ЛРНС включает измерение расстояний r (i=1, 2, …, n) от МС с неизвестными координатами до опорных станций ЛРНС с известными координатами P, i=1, 2, …, n, фильтрацию измеренных расстояний в медианных фильтрах, вычисление погрешностей между исходными расстояниями и их оценкой после фильтрации с последующей передачей полученных погрешностей в блок управления селекцией для вычисления наибольшей погрешности и формирования команды управления ключом на отключение данной линии, предотвращающее передачу оценок расстояний с наибольшими погрешностями в блок расчета координат МС. 6 ил.

Изобретение относится к радиотехнике и предназначено для повышения точности определения местоположения мобильных средств по сигналам опорных станций наземной локальной радионавигационной системы (ЛРНС).

Известен дальномерный способ и устройство определения координат источника радиоизлучения [1] по данным измерений от не менее, чем трех взаимно удаленных друг от друга пунктах приема, в которых производят определение расстояний от источника радиоизлучения до каждого из пунктов приема и по полученным расстояниям вычисляют координаты местоположения источника радиоизлучения, в пассивном режиме в условиях отсутствия взаимной временной синхронизации пунктов приема в пунктах приема измеряют интенсивность сигнала в виде энергии сигнала, определяемой по максимуму отклика согласованного фильтра, а затем по величине интенсивностей сигналов вычисляют расстояния от источника радиоизлучения до каждого из пунктов приема по величине затухания сигнала на трассе распространения от источника радиоизлучения до точки приема.

Недостатком данного дальномерного способа определения координат является то, что в нем отсутствует возможность выбора оценок расстояний с наименьшими погрешностями.

Измерения расстояний сопровождаются погрешностями, приводящими к ошибкам в оценке местоположения. Погрешности могут быть обусловлены: неточностями исходных математических моделей, несовершенством методов измерений, условиями распространения радиоволн, движением мобильного средства (МС) в местности со сложным рельефом, воздействием преднамеренных и непреднамеренных помех и др. Неточности в исходных данных могут быть вызваны большим числом причин, действующих в каждом конкретном измерении различным образом. При этом в некоторых случаях погрешности могут быть достаточно велики и иметь статистически неустойчивые характеристики.

Целью изобретения является обеспечение высокой точности определения местоположения МС в условиях непредсказуемости погрешностей измеряемых расстояний с использованием предварительной обработки измеренных расстояний, обеспечивающей отсев грубых ошибок измерений. Поставленная цель достигается пространственной селекцией измеренных расстояний от МС до опорных станций ЛРНС с известными координатами и расчетом координат с использованием расстояний, измеренных с наименьшими погрешностями.

В общем случае метод определения координат можно сформулировать следующим образом. Имеются n опорных станций с известными координатами {xi, yi, i=1, 2, …, n}. Имеются n измеренных расстояний

ri=roi+vi, i=1, 2, …, n

от МС с неизвестными координатами до n опорных станций ЛРНС. Здесь roi - точное расстояние от МС до i-й опорной станции ЛРНС, vi - неизвестная погрешность измерений расстояний. Требуется определить координаты x и y мобильного средства в условиях априорной неопределенности в отношении погрешности измерений.

Для решения этой задачи рассмотрены:

- алгоритм расчета координат по измеренным расстояниям;

- способ пространственной селекции измеренных расстояний.

Алгоритм расчета координат по измеренным расстояниям

Для определения местоположения МС на плоскости необходимо знание расстояний не менее чем до 3-х опорных станций ЛРНС.

Координаты МС можно определить из системы нелинейных уравнений, связывающих искомые координаты x и y с известными координатами xi, yi, i=1, 2, …, n, расстояниями Ri, i=1, 2, …, n от МС до опорных станций ЛРНС

Для решения системы нелинейных уравнений используют итеративную процедуру, базирующуюся на разложении нелинейных уравнений в ряд Тейлора и отбрасывании нелинейных членов [2, 3]. Эта процедура требует знания начального приближения и полученное решение чувствительно к неточности в его выборе.

Рассмотрим линеаризацию системы (1), основанную на тождественных преобразованиях и позволяющую получить прямое решение.

Введем векторные обозначения ; , i=1, 2, …, n и перепишем систему нелинейных уравнений (1) в матричном виде

Для линеаризации в каждую скобку правой части в качестве слагаемого введем нулевой вектор Р11 [3] и преобразуем систему уравнений (2) в систему из n-1 уравнений

Раскроем скобки в правой части системы уравнений (3), перегруппируем и перенесем в левую часть системы члены, содержащие неизвестный вектор Р, получим

или

Введем обозначения

Тогда вектор координат рассчитывается в виде [4]

Полученное уравнение (4) является прямым, неитеративным решением системы нелинейных уравнений (3), позволяющим рассчитывать координаты объекта по измеренным расстояниям.

Способ пространственной селекции измеренных расстояний

Сущность способа пространственной селекции поясняется следующими рисунками.

На фиг. 1 показана траектория движения МС без погрешностей, на фиг. 2 таблица координат опорных станций ЛРНС, используемых в фиг 1, на фиг. 3 показаны графики результатов расчета погрешностей и координат с погрешностями измеренных растояний, на фиг. 4 показаны графики результатов расчета погрешностей и координат с погрешностями измерений и ошибками из-за распространения радиоволн, на фиг. 5 показаны графики пространственной селекции расстояний с отбрасыванием расстояния от одной опорной станции ЛРНС, на фиг. 6 показана структурная схема алгоритма пространственной селекции расстояний.

При точно измеренных расстояниях от движущегося МС до опорных станций ЛРНС расчетная траектория движения, полученная с помощью (4), совпадает с исходной траекторией движения, приведенной на фиг. 1. Однако в реальных условиях в результате воздействия различных помех расстояния до опорных станций ЛРНС определяются с погрешностями. С одной стороны, измерения сопровождаются собственно приборными шумами, описываемыми обычно нормальным законом распределения. С другой стороны, ошибки в измерениях расстояний вызываются деструктивными влияниями распространения радиоволн, возникающими при движении МС в сильно пересеченной местности. Эти ошибки оказывают существенное влияние на точность определения местоположения МС.

На фиг. 3а приведены в виде графиков результаты расчета погрешностей координат с учетом приборных шумов измерений расстояний (Δx - сплошная линия и Δy - пунктирная линия). На фиг. 3б - траектория (координаты) движения МС с учетом погрешностей. Погрешность измерения расстояний представлена нормальным законом распределения со среднеквадратическим значением σ=10 м. Измерения расстояний проводились с интервалом времени 2 с.

В пределах времени движения менее 100 с погрешность расчета координат находится в пределах 10 м. Затем погрешность возрастает до 30-40 м. Это возрастание связано с удалением МС от опорных станций.

На фиг. 4а) показаны погрешности расчета координат с учетом шумов измерений и ошибками, обусловленными распространением радиоволн: Δx - сплошная линия и Δy - пунктирная линия; возрастание связано с удалением МС от опорных станций.

На фиг. 4б) приведены исходная траектория движения - пунктирная линия и рассчитанная траектория по измеренным расстояниям - сплошная линия. При этом ошибка измерений расстояний из-за распространения радиоволн распределена во времени случайно и равнялась 150 м. Погрешности расчета координат в этом случае увеличились до 400 м.

Из анализа указанных фигур следует, что рассматриваемый алгоритм расчета координат позволяет определять местоположение МС по измеренным расстояниям до опорных станций с известными координатами. При отсутствии шумов измерений предложенный алгоритм расчета координат дает хорошие результаты. Но измерение расстояний сопровождается различного рода погрешностями, приводящими зачастую к существенным ошибкам в определении местоположения МС. Поэтому необходима предварительная обработка и фильтрация данных, полученных непосредственно с навигационного приемника МС. Фильтрация должна заключатся в отсеве выбросов «плохих» измерений, которые приводят к искажениям данных и ошибкам в определении местоположения.

Способ пространственной селекции погрешности при решении задачи позиционирования мобильного средства дальномерным методом в наземной локальной радионавигационной системе осуществляется за счет исключения из процедуры расчета координат «плохих» измерений. То есть повышение точности оценки координат возможно за счет пространственной селекции опорных станций ЛРНС, измерения расстояний до которых наименее искажены погрешностями.

В каждый момент времени известны измеренные расстояния

ri=roi+vi (i=1, 2, …, n)

от опорных станций ЛРНС до МС и координаты опорной станций Pi, i=1, 2, …, n. Здесь roi - точное расстояние от МС с неизвестными координатами до i-й опорной станции с известным местоположением, vi - неизвестные погрешности измерений. В условиях априорной неопределенности в отношении погрешностей измерений vi (i=1, 2, …, n) требуется определить наибольшую из них с тем, чтобы в дальнейшем исключить из процедуры расчета координат соответствующее ей измеренное расстояние.

Поскольку погрешности неизвестны, то непосредственное определение наибольшей помехи не представляется возможным. Поэтому ниже рассмотрим подход для косвенного решения этой задачи. Он заключается в следующем. Если для каждого момента измерений найти некое преобразование

обеспечивающее оценку зашумленных компонент вектора расстояний по измеренному вектору R=[r1, r2 …, rn]T на основе критерия минимума ошибки, то, составив разности , i=1, 2, …, n, можно найти наибольшую ошибку , а расстояние rm с номером m исключить из процедуры расчета и рассчитать более точные координаты.

В качестве преобразования, обеспечивающего оценку (5), используем медианный фильтр. Медианный фильтр представляет собой "скользящее окно" протяженностью K отсчетов, в котором центральный элемент заменяется медианой (т.е. средним элементом последовательности, упорядоченной в порядке возрастания значений измерений в "окне"). То есть операция медианной фильтрации К-последовательности значений расстояний ri(t1), ri(t2), …, ri(tN) характеризуется соотношением [5]

где фиксированное значение m определяет апертуру фильтра.

Предложенный способ пространственной селекции можно представить в виде структурной схемы, приведенной на фиг. 6. Она содержит:

- медианные фильтры 1i;

- блоки вычисления разностей 2i;

- блок управления селекцией 3;

- ключи 4i;

- блок расчета координат 5.

На входы этой схемы поступают отсчеты расстояний ri (i=1, 2, …, n), измеренные от МС с неизвестными координатами до опорных станций ЛРНС с известными координатами Pi, i=1, 2, …, n, которые поступают в медианные фильтры 1i, блоки вычисления разностей 2i и через ключи 4i в блок расчета координат 5.

В медианных фильтрах 1i осуществляется выделение расстояний наименее искаженных погрешностями. Эти расстояния передаются в блоки вычисления разностей 2i, где происходит вычисления погрешностей (i=1, 2, …, n) между исходными расстояниями и их оценкой после медианной фильтрации. Полученные погрешности передаются в блок управления селекцией 3, где вычисляются наибольшие погрешности и формируются команды управляющие ключами 4i. Управление ключами 4i заключается в том, что определив наибольшую погрешность, например, δmi, ключ прерывает поступление расстояния rm в блок расчета координат 5, исключая расстояния rm из процедуры расчета координат.

На фиг. 5 приведены результаты расчетов координат с ошибками, обусловленными распространением радиоволн, полученными при отбрасывании из расчетов расстояний, полученных от «плохих» опорных станций. Видно, что в большинстве случаев выбросы подавлены, но редкие из них все-таки остались.

Таким образом, предложен способ решения задачи позиционирования мобильного средства дальномерным методом в наземной локальной радионавигационной системе, построенный на селекции измеряемых расстояний при наличии избыточности опорных станций, позволяющий уменьшать погрешности в определении местоположения мобильных средств.

Результаты численного моделирования показали высокую эффективность оценки координат мобильных средств прямым методом расчета координат и пространственной селекцией измеренных расстояний, особенно в канале с ошибками измерений, порождаемыми многолучевостью.

Источники информации

1. Патент №2506605 РФ, МПК G01S 5/00. Дальномерный способ и устройство определения координат источника радиоизлучения / Г.П. Бендерский, Е.А. Лаврентьев, А.А. Шаталов, В.А. Шаталова, А.Б. Ястребов, С.П. Фандющенко (РФ); Открытое акционерное общество «Научно-производственное объединение «Лианозовский электромеханический завод» (РФ). - №2011153139/07; Заявлено 26.12.2011; Опубл. 10.02.2014, Бюл. 4. - 10 с.: 2 ил.

2. Глобальная спутниковая радионавигационная система ГЛОНАСС. Под ред. В.Н. Харисова, А.И. Перова, В.А. Болдина. - 2-e изд. исправ. - М.: ИПРЖР, 1999. 560 с.

3. Кононыхина Н.А., Федоров Ю.П. Эффективный алгоритм и программа определения местонахождения объектов для системы многопозиционной радионавигации // Теория и техника радиосвязи, вып. 1, Воронеж, 1997, с. 61-73.

4. W. Murphy and W. Hereman, Determination of a position in three dimensions using trilateration and approximate distances, Technical Report MCS-95-07, Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, Colorado. 1995, 21 pages.

5. Прокис Дж. Цифровая связь. Пер. с англ. / Под ред. Д.Д. Кловского. - М.: Радио и связь. 2000. - 800 c.

Способ пространственной селекции расстояний в наземной локальной радионавигационной системе (ЛРНС) между мобильным средством (МС) и опорными станциями ЛРНС, заключающийся в том, что измеряют расстояния r (i=1, 2, … n) от мобильного средства с неизвестными координатами до опорных станций ЛРНС с известными координатами p (i=1, 2, … n,), отличающийся тем, что осуществляют фильтрацию измеренных расстояний в медианных фильтрах (i=1, 2, … n), передают их в блоки вычисления разностей, осуществляющие вычисление погрешностей (i=1, 2, … n) между исходными расстояниями и их оценкой после фильтрации, с последующей передачей полученных погрешностей в блок управления селекцией для вычисления наибольшей погрешности и формированием команды управления ключом на отключение данной i-й линии, предотвращающее передачу оценок расстояний с наибольшими погрешностями в блок расчета координат МС.
Способ пространственной селекции расстояний при решении задачи позиционирования мобильного средства дальномерным методом в наземной локальной радионавигационной системе
Способ пространственной селекции расстояний при решении задачи позиционирования мобильного средства дальномерным методом в наземной локальной радионавигационной системе
Способ пространственной селекции расстояний при решении задачи позиционирования мобильного средства дальномерным методом в наземной локальной радионавигационной системе
Способ пространственной селекции расстояний при решении задачи позиционирования мобильного средства дальномерным методом в наземной локальной радионавигационной системе
Способ пространственной селекции расстояний при решении задачи позиционирования мобильного средства дальномерным методом в наземной локальной радионавигационной системе
Способ пространственной селекции расстояний при решении задачи позиционирования мобильного средства дальномерным методом в наземной локальной радионавигационной системе
Способ пространственной селекции расстояний при решении задачи позиционирования мобильного средства дальномерным методом в наземной локальной радионавигационной системе
Источник поступления информации: Роспатент

Показаны записи 51-60 из 60.
06.02.2020
№220.017.ff8d

Способ межпозиционного отождествления результатов измерений и определения координат воздушных целей в многопозиционной радиолокационной системе

Изобретение относится к радиолокации и может быть использовано для межпозиционного отождествления результатов измерений и определения координат воздушных целей в многопозиционной радиолокационной системе (МПРЛС) в условиях многоцелевой обстановки. Достигаемый технический результат -...
Тип: Изобретение
Номер охранного документа: 0002713193
Дата охранного документа: 04.02.2020
27.02.2020
№220.018.0656

Корреляционно-фазовый пеленгатор

Изобретение относится к области радионавигации и может быть использовано для определения угловых координат источников фазоманипулированных (ФМ) радиосигналов с известными законами кодирования при наличии радиопомех. Достигаемый технический результат – повышение отношения сигнал/помеха,...
Тип: Изобретение
Номер охранного документа: 0002715057
Дата охранного документа: 25.02.2020
27.02.2020
№220.018.0674

Способ определения координат воздушного судна в спутниковой-псевдоспутниковой многопозиционной системе наблюдения

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного пространства для определения координат воздушного судна (ВС), используя для подсветки ВС навигационные сигналы глобальной навигационной спутниковой системы (ГНСС) и сигналы псевдоспутников (ПС)....
Тип: Изобретение
Номер охранного документа: 0002715059
Дата охранного документа: 25.02.2020
09.03.2020
№220.018.0aaf

Устройство компенсации прямого радиолокационного сигнала радиопередатчика в приемнике двухпозиционной радиолокационной системы

Изобретение относится к радиолокации и может быть использовано для создания приемника радиолокационной системы (РЛС), использующей в качестве сигнала подсвета воздушных целей зондирующий радиосигнал наземного передатчика. Достигаемый технический результат - компенсация радиолокационного...
Тип: Изобретение
Номер охранного документа: 0002716154
Дата охранного документа: 06.03.2020
30.05.2020
№220.018.222c

Способ определения координат воздушных целей в многопозиционной радиолокационной системе в условиях малого значения отношения сигнал/шум

Изобретение относится к радиолокации и может быть использовано для определения координат воздушных целей в многопозиционной радиолокационной системе (МПРЛС) в условиях малого отношения сигнал/шум, что и является достигаемым техническим результатом. Технический результат достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002722209
Дата охранного документа: 28.05.2020
30.05.2020
№220.018.2282

Способ определения координат наземной цели радиолокационной системой, состоящей из двух многолучевых радиопередатчиков и приемника

Изобретение относится к области радиотехники и может быть использовано для расчета двумерных координат наземной цели дальномерным методом радиолокационной системой (РЛС), состоящей из двух многолучевых радиопередатчиков с известными координатами, излучающих кодированные радиолокационные сигналы...
Тип: Изобретение
Номер охранного документа: 0002722224
Дата охранного документа: 28.05.2020
31.05.2020
№220.018.22d8

Устройство пространственного разделения сигналов

Изобретение относится к радиотехнике и может быть использовано в аппаратуре потребителей для разделения сигналов, излучаемых с различных направлений. Целью предлагаемого изобретения является разработка устройства пространственного разделения нескольких сигналов с известными направлениями на их...
Тип: Изобретение
Номер охранного документа: 0002722413
Дата охранного документа: 29.05.2020
01.07.2020
№220.018.2d7f

Симметричная вибраторная антенна с симметрирующим устройством

Изобретение относится к области радиотехники, а именно к антенной технике, и может быть использовано в качестве приемопередающей антенны. Целью изобретения является создание вибраторной антенны для не горизонтального расположения с компактным симметрирующим устройством для формирования без...
Тип: Изобретение
Номер охранного документа: 0002724963
Дата охранного документа: 29.06.2020
24.07.2020
№220.018.359a

Способ выпекания теста

Изобретение относится к пищевой промышленности. Способ выпекания теста включает помещение тестовой заготовки в предварительно нагретую нижнюю выпекающую плиту (3), опускание верхней выпекающей плиты (5) и выпекание. Перед опусканием верхней выпекающей плиты (5) происходит формование теста с...
Тип: Изобретение
Номер охранного документа: 0002727674
Дата охранного документа: 22.07.2020
10.05.2023
№223.018.532a

Радиопередающее устройство с автоматической регулировкой параметров спектра радиосигнала

Изобретение относится к области радиотехники, а именно к радиопередающим устройствам, осуществляющим автоматическую регулировку параметров спектра радиосигнала в интересах обеспечения электромагнитной совместимости (ЭМС) с радиоэлектронными средствами, работающими одновременно с радиопередающим...
Тип: Изобретение
Номер охранного документа: 0002795268
Дата охранного документа: 02.05.2023
Показаны записи 61-68 из 68.
24.07.2020
№220.018.359a

Способ выпекания теста

Изобретение относится к пищевой промышленности. Способ выпекания теста включает помещение тестовой заготовки в предварительно нагретую нижнюю выпекающую плиту (3), опускание верхней выпекающей плиты (5) и выпекание. Перед опусканием верхней выпекающей плиты (5) происходит формование теста с...
Тип: Изобретение
Номер охранного документа: 0002727674
Дата охранного документа: 22.07.2020
12.04.2023
№223.018.468d

Передатчик мультиполяризационных помех с повышенной энергетической эффективностью

Изобретение относится к области радиотехники и может быть использовано при разработке средств создания преднамеренных помех радиоэлектронным средствам различного функционального назначения, в частности приемным устройствам аппаратуры потребителей (АП) глобальных навигационных спутниковых систем...
Тип: Изобретение
Номер охранного документа: 0002772572
Дата охранного документа: 23.05.2022
12.04.2023
№223.018.4699

Полосовой усилитель мощности увч- и свч- диапазонов с автобалансировкой плеч выходного каскада с квадратурным сумматором

Изобретение относится к радиотехнике и может быть использовано в полосовых усилителях мощности ультракоротковолнового (УКВ) и сверхвысокочастотного (СВЧ) диапазонов. Технический результат заключается в повышении КПД усилителя мощности УВЧ- и СВЧ-диапазонов с автобалансировкой плеч выходного...
Тип: Изобретение
Номер охранного документа: 0002766324
Дата охранного документа: 15.03.2022
12.04.2023
№223.018.46d7

Многодиапазонная антенная система круговой направленности на основе полуволновых вибраторов с устройствами симметрирования и согласования

Изобретение относится к области радиотехники и может быть применено в системах передачи/приема сигналов с применением нескольких передатчиков/приемников (каналов передачи/приема сигналов), работающих в различных диапазонах (разнесенных полосах) частот, в том числе в системах сотовой,...
Тип: Изобретение
Номер охранного документа: 0002763113
Дата охранного документа: 27.12.2021
10.05.2023
№223.018.532a

Радиопередающее устройство с автоматической регулировкой параметров спектра радиосигнала

Изобретение относится к области радиотехники, а именно к радиопередающим устройствам, осуществляющим автоматическую регулировку параметров спектра радиосигнала в интересах обеспечения электромагнитной совместимости (ЭМС) с радиоэлектронными средствами, работающими одновременно с радиопередающим...
Тип: Изобретение
Номер охранного документа: 0002795268
Дата охранного документа: 02.05.2023
15.05.2023
№223.018.5763

Способ локальной радионавигации по сигналам несинхронизированных отечественных средств радиоэлектронного подавления глобальных навигационных спутниковых систем

Изобретение относится к области радионавигации в условиях радиоэлектронной борьбы и может быть использовано при разработке системы локальной радионавигации (ЛРН) по сигналам несинхронизированных отечественных средств радиоэлектронного подавления глобальных навигационных спутниковых систем...
Тип: Изобретение
Номер охранного документа: 0002770127
Дата охранного документа: 14.04.2022
16.05.2023
№223.018.6324

Способ определения плановых координат воздушного судна по измерениям пеленга неизвестного источника помехового излучения

Изобретение относится к области радионавигации воздушных судов. Сущность способа заключается в определении координат неизвестного источника помех по измерениям его пеленга на борту воздушного судна в двух точках с координатами, измеренными спутниковой навигационной системой в условиях, когда ее...
Тип: Изобретение
Номер охранного документа: 0002771439
Дата охранного документа: 04.05.2022
16.05.2023
№223.018.632d

Навигационная аппаратура санкционированного потребителя с возможностью локальной навигации по сигналам несинхронизированных отечественных средств радиоэлектронного подавления глобальных навигационных спутниковых систем

Изобретение относится к области радионавигации в условиях радиоэлектронной борьбы. Заявленная аппаратура функционирует в условиях радиоподавления глобальных навигационных спутниковых систем (ГНСС), формируемого станциями радиопомех, не синхронизированных между собой и с навигационной...
Тип: Изобретение
Номер охранного документа: 0002771435
Дата охранного документа: 04.05.2022
+ добавить свой РИД