×
04.04.2018
218.016.2f1b

Результат интеллектуальной деятельности: ОПТИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ ПОЛЯ ТОЛЩИНЫ ПРОЗРАЧНОЙ НАЛЕДИ НА ЛОПАСТЯХ ВЕТРОГЕНЕРАТОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области оптических измерений. Оптический способ измерения поля толщины прозрачной наледи на лопастях ветрогенератора заключается в освещении прозрачной наледи и фиксации видеокамерой изображения искаженного светового кольца, образованного на поверхности под наледью в результате полного внутреннего отражения света на границе раздела наледь-воздух. При реализации способа поверхность лопастей покрывают множеством светоотражающих элементов, которые при освещении наледи образуют на поверхности лопастей множество световых колец. При этом положение каждого светоотражающего элемента на поверхности лопастей четко задано, а также используют модуль синхронизации с движущейся поверхностью, который передает информацию о текущем фазовом положении лопастей в модуль накопления и фазового осреднения результатов. Технический результат изобретения – измерение поля толщины прозрачной наледи на лопастях ветрогенератора с низкой погрешностью измерения. 1 ил.

Изобретение относится к областям промышленности и научных исследований, где требуется проведение оптических, бесконтактных, непрерывных измерений толщин прозрачного слоя вещества. Предполагается использование способа для измерения поля толщины прозрачной наледи в ветроэнергетике при контроле обледенения лопастей ветрогенератора.

Известен способ и устройство для дистанционного измерения толщины листа или слоя (патент СА 2179847, B64D 15/20, G01B 11/06, 1996 г.), при котором направляют когерентный пучок света в область на слое таким образом, чтобы луч претерпевал частичное отражение от верхней части слоя и частичное отражение от нижней части слоя или подстилающей поверхности. Благодаря когерентности пучка воспроизводятся две спекл-структуры, которые приводят к возникновению интерференционной картины, имеющей интерференционные полосы. Изменения в спекл-структуре, вызванные сдвигом в поле зрения или сдвигом, определяемым числом проходящих интерференционных полос, используются для определения толщины слоя.

Недостатки способа:

1) требует использования сложного дополнительного оборудования (систему призм);

2) способ позволяет проводить измерение только неподвижного слоя в одной точке;

3) погрешность зависит от наклона измеряемого слоя, от погрешности установки угла лазера и камеры. На погрешность измерения сильно влияет шероховатость измеряемого слоя, и в случае большой шероховатости метод требует осреднения результата по нескольким измерениям.

Известен способ и устройство для удаленного детектирования и измерения толщины слоя твердого или жидкого материала (патент US 5541733, B64F 5/00; G01B 11/06, 1996 г.), который предназначен для обнаружения и оценки толщины скопившегося твердого вещества, то есть льда, или жидкости на твердой поверхности. Устройство содержит источник излучения с узким пучком и средство для удаленной оценки размера световой области, созданной на твердой поверхности пучком излучения. Способ основывается на измерении размеров световой области и определении толщины любого образовавшегося слоя, если он достаточно прозрачный, с использованием формулы, которая использует зависимость размера световой области от толщины слоя и показатель преломления среды. Выбор между льдом и жидкостью осуществляется путем оценки регулярности освещения в световой области. Недостатки данного способа:

1) способ не позволяет проводить измерения подвижного слоя;

2) высокая погрешность измерения.

Наиболее близким по технической сущности заявляемому способу является способ измерения мгновенного поля толщины прозрачной пленки (патент РФ №2506537, G01B 11/06, 2012 г.), который включает направленное воздействие лучей света на пленку, их полное внутреннее отражение на границе раздела сред и последующую компьютерную обработку отраженного света. В способе источник света помещают над пленкой или под пленкой, от которого образуются лучи света, направленные под углами, меньшими предельного угла отражения на границе пленка-воздух и большими предельного угла отражения на границе пленка-воздух, а затем фиксируют изображение искаженного светового пятна, образованного на твердой поверхности под пленкой в результате полного внутреннего отражения света на границе раздела пленка-воздух, на видеокамеру, обрабатывают на компьютере, измеряют геометрические размеры светового пятна.

Недостатками данного способа являются:

1) сложность реализации способа, т.к. необходимо для каждого измерения создавать систему источников света под поверхностью или над поверхностью, что является проблематичным при измерении наледи на лопастях ветрогенератора;

2) расчет толщины наледи на лопасти ветрогенератора в конкретной точке лопасти таким способом справедлив только при условии, что луч лазера падает на лопасть вертикально, в противном случае измеренное значение толщины наледи не будет соответствовать месту падения луча лазера на границу раздела воздух-наледь. С увеличением отклонения падения луча лазера от вертикали указанное несоответствие будет увеличиваться и будет давать значительный вклад в погрешность измерения. Кроме того, измерение толщины наледи таким способом не позволяет однозначно привязать измеренную толщину к конкретной точке на лопасти.

Задачей изобретения является создание простого способа измерения поля толщины прозрачной наледи на лопастях ветрогенератора с низкой погрешностью измерения.

Поставленная задача решается тем, что в оптическом способе измерения поля толщины прозрачной наледи на лопастях ветрогенератора, при котором прозрачную наледь освещают, фиксируют на видеокамеру изображение искаженного светового кольца, образованного на поверхности под наледью в результате полного внутреннего отражения света на границе раздела наледь-воздух, производят компьютерную обработку отраженного света, согласно изобретению поверхность лопастей покрывают множеством светоотражающих элементов, которые при освещении наледи образуют на поверхности лопастей множество искаженных световых колец, при этом положение каждого светоотражающего элемента на поверхности лопастей четко задано, а также используют модуль синхронизации с движущейся поверхностью, который передает информацию о текущем фазовом положении лопастей в модуль накопления и фазового осреднения результатов.

Наличие поверхности со светоотражающими элементами упрощает процесс измерения толщины наледи, а наличие модуля синхронизации с движущейся поверхностью и модуля накопления и фазового осреднения результатов позволяет накапливать результаты измерения в точке на поверхности, тем самым уменьшая погрешность измерения.

Располагают светоотражающие элементы равномерно по всей поверхности лопасти, причем их количество должно быть максимальным. Расстояние между светоотражающими элементами выбирается таким образом, чтобы при увеличении толщины наледи на лопасти изображения световых колец не пересекались. Есть формула для измерения толщины (в соответствии с прототипом):

h=(D-d)/4tg(arcsin(n1/n2)),

где h - толщина наледи, D - диаметр светового кольца, d - диаметр светоотражающего элемента, n1 - показатель преломления воздуха, n2 - показатель преломления льда. Если максимальная допустимая толщина наледи, которую нужно измерить, hmax, то расстояние, на которое стоит отнести светоотражающие элементы, должно удовлетворять неравенству:

Dmax≥8hmax⋅tg(arcsin(n1/n2)+2d.

Например, если максимальная измеряемая толщина наледи не должна превышать hmax=5 мм, диаметр светоотражающего элемента d=0,1 мм, то расстояние между светоотражающими элементами должно быть не менее 45,8 мм.

В качестве светоотражающих элементов используют либо нанесенную через трафарет краску с измельченными кусочками стекла или металла, либо маленькие зеркала. Размер светоотражающих элементов составляет 0,05-0,5 мм.

На фиг. 1 представлена блок-схема оптического устройства для измерения поля толщины прозрачной наледи на лопастях ветрогенератора, где:

1 - статор;

2 - ротор;

3 - осветитель;

4 - модуль оптического детектирования;

5 - модуль синхронизации с движущейся поверхностью;

6 - модуль измерения толщины наледи;

7 - модуль накопления и фазового осреднения результатов.

Способ осуществляется следующим образом.

Поверхность лопастей ротора 2, установленного на статор 1, покрывают множеством светоотражающих элементов, положение на лопасти каждого из них четко задано. Поверхность, покрытую прозрачной наледью, освещают осветителем 3, запускаемым по синхросигналу от модуля синхронизации с движущейся поверхностью 5. На поверхности образуются световые пятна, служащие источниками света на поверхности. В результате полного внутреннего отражения света на границе раздела наледь-воздух на поверхности под наледью возникают изображения искаженных световых колец. Изображение каждого светового кольца фиксируется модулем оптического детектирования 4. Затем изображения световых колец обрабатывают в модуле измерения толщины наледи 6. По геометрическим размерам светового кольца определяется мгновенная толщина наледи в зоне измерения. Модуль синхронизации с движущейся поверхностью 5 определяет текущее фазовое положение ротора 2 ветрогенератора и подает синхронизирующий сигнал на осветитель 3, модуль оптического детектирования 4 и модуль измерения толщины наледи 6. Модуль измерения толщины наледи 6 принимает изображения от модуля оптического детектирования 4 и сигнал модуля синхронизации с движущейся поверхностью 5. Модуль накопления и фазового осреднения результатов 7 синхронно принимает сигнал от модуля измерения толщины наледи 6, кодирующий значение толщины наледи, и сигнал от модуля синхронизации с движущейся поверхностью 5, кодирующий фазовое смещение ротора. Каждое измерение толщины однозначно привязывается к точке лопасти, где расположен светоотражающий элемент. По измеренным толщинам наледи на лопасти производится интерполяция. Измеряя геометрические размеры последовательных изображений световых колец, получают информацию об изменении поля толщины наледи во времени. Для каждой лопасти ротора происходит накопление и фазовое осреднение поля измеренной толщины наледи. В результате модуль накопления и фазового осреднения результатов 7 формирует информацию о текущей форме наледи на лопасти ротора - зависимость расстояния от верхней кромки наледи до каждой точки профиля лопасти в зависимости от фазового положения ротора. Информация из модуля накопления и фазового осреднения результатов 7 может быть передана на экран оператора и в информационную систему электростанции.

Предлагаемый оптический способ измерения поля толщины прозрачной наледи на лопастях ветрогенератора является бесконтактным, не оказывает воздействия на измеряемую наледь, является дешевым и простым в использовании. Использование заявляемого изобретения обеспечивает возможность прямых непрерывных измерений меняющегося во времени поля толщин прозрачной наледи с низкой погрешностью.

Оптический способ измерения поля толщины прозрачной наледи на лопастях ветрогенератора, при котором прозрачную наледь освещают, фиксируют на видеокамеру изображение искаженного светового кольца, образованного на поверхности под наледью в результате полного внутреннего отражения света на границе раздела наледь-воздух, производят компьютерную обработку отраженного света, отличающийся тем, что поверхность лопастей покрывают множеством светоотражающих элементов, которые при освещении наледи образуют на поверхности лопастей множество световых колец, при этом положение каждого светоотражающего элемента на поверхности лопастей четко задано, а также используют модуль синхронизации с движущейся поверхностью, который передает информацию о текущем фазовом положении лопастей в модуль накопления и фазового осреднения результатов.
ОПТИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ ПОЛЯ ТОЛЩИНЫ ПРОЗРАЧНОЙ НАЛЕДИ НА ЛОПАСТЯХ ВЕТРОГЕНЕРАТОРА
ОПТИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ ПОЛЯ ТОЛЩИНЫ ПРОЗРАЧНОЙ НАЛЕДИ НА ЛОПАСТЯХ ВЕТРОГЕНЕРАТОРА
Источник поступления информации: Роспатент

Показаны записи 31-40 из 96.
20.04.2016
№216.015.3422

Способ охлаждения электронного оборудования с использованием конденсатора-пленкоформирователя

Изобретение относится к теплотехнике и может быть использовано при охлаждении электронного и микроэлектронного оборудования. Способ охлаждения электронного и микроэлектронного оборудования реализуется за счет использования конденсатора пара в качестве пленкоформирователя, обеспечивающего...
Тип: Изобретение
Номер охранного документа: 0002581522
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.35af

Способ изготовления системы охлаждения электронного и микроэлектронного оборудования

Изобретение относится к области микроструктурных технологий. Способ включает нанесение множества наноструктурных областей с гидрофобными свойствами на поверхность 2 микроканала. Наноструктурные области выполняют в виде гидрофобных полос 1 шириной L. Наносят наноструктурные области поперек...
Тип: Изобретение
Номер охранного документа: 0002581342
Дата охранного документа: 20.04.2016
27.05.2016
№216.015.42c6

Вихревая топка

Изобретение относится к теплоэнергетике, а именно к топочным устройствам, работающим, в том числе, на низкосортном пылеугольном топливе, и может быть использовано в котельных установках на тепловых электростанциях. Вихревая топка содержит горизонтальную вихревую камеру горения с направляющим...
Тип: Изобретение
Номер охранного документа: 0002585347
Дата охранного документа: 27.05.2016
27.08.2016
№216.015.4d95

Способ оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки

Изобретение относится к теплоэнергетике, а более конкретно к способу оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки. Способ включает использование в режиме запуска энергетической установки угля микропомола с размерами частиц не более 10 мкм,...
Тип: Изобретение
Номер охранного документа: 0002595304
Дата охранного документа: 27.08.2016
12.01.2017
№217.015.57bd

Способ синтеза наночастиц диоксида титана

Изобретение может быть использовано в химической промышленности. Для получения наночастиц диоксида титана проводят откачивание вакуумной камеры, наполнение ее инертным газом, зажигание электрической дуги постоянного тока между графитовым электродом и металл-углеродным композитным электродом....
Тип: Изобретение
Номер охранного документа: 0002588536
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.629a

Устройство для формирования ручейкового течения жидкости в микро- и мини-каналах (варианты)

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники, которые обеспечивают высокие значения коэффициента теплопередачи при течении жидкостей в относительно небольших объемах. В устройстве для формирования...
Тип: Изобретение
Номер охранного документа: 0002588917
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6ca0

Способ синтеза порошка суперпарамагнитных наночастиц feo

Изобретение может быть использовано при получении контрастирующих веществ в магниторезонансной диагностике, суспензий для магнитной сепарации белков и фрагментов молекул ДНК и РНК, для адресной доставки лекарственных средств. Синтез порошка суперпарамагнитных наночастиц FeOпроводят в два этапа....
Тип: Изобретение
Номер охранного документа: 0002597093
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.73cc

Сетчатый комбинированный термоприемник и способ измерения температурного поля газового потока в каналах

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры движущихся газовых сред на выходе из реакторов и теплообменных аппаратов с различной структурой теплообменных поверхностей. Предложен сетчатый комбинированный термоприемник, содержащий...
Тип: Изобретение
Номер охранного документа: 0002597956
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.899e

Способ визуализации ограниченных (замкнутых) нестационарных вихревых течений

Изобретение относится к контрольно-измерительной технике и позволяет исследовать ограниченные (замкнутые) вихревые потоки жидкости. Изобретение может использоваться в фундаментальных и прикладных исследованиях в экспериментальной гидродинамике. Возможно применение в экологии, технологиях...
Тип: Изобретение
Номер охранного документа: 0002602495
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9b5b

Триангуляционный способ измерения отклонения объекта и определения его ориентации в пространстве

Триангуляционный способ измерения отклонения объекта и определения его ориентации в пространстве содержит этап, на котором источник излучения формирует на поверхности исследуемого объекта световое пятно в виде двух пересекающихся световых линий за счет освещения исследуемого объекта засветкой в...
Тип: Изобретение
Номер охранного документа: 0002610009
Дата охранного документа: 07.02.2017
Показаны записи 31-40 из 66.
20.04.2016
№216.015.35af

Способ изготовления системы охлаждения электронного и микроэлектронного оборудования

Изобретение относится к области микроструктурных технологий. Способ включает нанесение множества наноструктурных областей с гидрофобными свойствами на поверхность 2 микроканала. Наноструктурные области выполняют в виде гидрофобных полос 1 шириной L. Наносят наноструктурные области поперек...
Тип: Изобретение
Номер охранного документа: 0002581342
Дата охранного документа: 20.04.2016
27.05.2016
№216.015.42c6

Вихревая топка

Изобретение относится к теплоэнергетике, а именно к топочным устройствам, работающим, в том числе, на низкосортном пылеугольном топливе, и может быть использовано в котельных установках на тепловых электростанциях. Вихревая топка содержит горизонтальную вихревую камеру горения с направляющим...
Тип: Изобретение
Номер охранного документа: 0002585347
Дата охранного документа: 27.05.2016
27.08.2016
№216.015.4d95

Способ оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки

Изобретение относится к теплоэнергетике, а более конкретно к способу оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки. Способ включает использование в режиме запуска энергетической установки угля микропомола с размерами частиц не более 10 мкм,...
Тип: Изобретение
Номер охранного документа: 0002595304
Дата охранного документа: 27.08.2016
12.01.2017
№217.015.57bd

Способ синтеза наночастиц диоксида титана

Изобретение может быть использовано в химической промышленности. Для получения наночастиц диоксида титана проводят откачивание вакуумной камеры, наполнение ее инертным газом, зажигание электрической дуги постоянного тока между графитовым электродом и металл-углеродным композитным электродом....
Тип: Изобретение
Номер охранного документа: 0002588536
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.629a

Устройство для формирования ручейкового течения жидкости в микро- и мини-каналах (варианты)

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники, которые обеспечивают высокие значения коэффициента теплопередачи при течении жидкостей в относительно небольших объемах. В устройстве для формирования...
Тип: Изобретение
Номер охранного документа: 0002588917
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6ca0

Способ синтеза порошка суперпарамагнитных наночастиц feo

Изобретение может быть использовано при получении контрастирующих веществ в магниторезонансной диагностике, суспензий для магнитной сепарации белков и фрагментов молекул ДНК и РНК, для адресной доставки лекарственных средств. Синтез порошка суперпарамагнитных наночастиц FeOпроводят в два этапа....
Тип: Изобретение
Номер охранного документа: 0002597093
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.73cc

Сетчатый комбинированный термоприемник и способ измерения температурного поля газового потока в каналах

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры движущихся газовых сред на выходе из реакторов и теплообменных аппаратов с различной структурой теплообменных поверхностей. Предложен сетчатый комбинированный термоприемник, содержащий...
Тип: Изобретение
Номер охранного документа: 0002597956
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.899e

Способ визуализации ограниченных (замкнутых) нестационарных вихревых течений

Изобретение относится к контрольно-измерительной технике и позволяет исследовать ограниченные (замкнутые) вихревые потоки жидкости. Изобретение может использоваться в фундаментальных и прикладных исследованиях в экспериментальной гидродинамике. Возможно применение в экологии, технологиях...
Тип: Изобретение
Номер охранного документа: 0002602495
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9b5b

Триангуляционный способ измерения отклонения объекта и определения его ориентации в пространстве

Триангуляционный способ измерения отклонения объекта и определения его ориентации в пространстве содержит этап, на котором источник излучения формирует на поверхности исследуемого объекта световое пятно в виде двух пересекающихся световых линий за счет освещения исследуемого объекта засветкой в...
Тип: Изобретение
Номер охранного документа: 0002610009
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.ab29

Способ ввода пучка электронов в среду с повышенным давлением

Изобретение относится к способу ввода пучка электронов в среду с повышенным давлением, при котором подачу газа осуществляют через систему напуска в сопловой блок, состоящий из двух кольцевых сопел (внутреннего и внешнего, по оси внутреннего кольцевого сопла имеется отверстие для прохождения...
Тип: Изобретение
Номер охранного документа: 0002612267
Дата охранного документа: 03.03.2017
+ добавить свой РИД