×
17.02.2018
218.016.2d9b

Результат интеллектуальной деятельности: Способ измерения пороговой разности температур ИК МФПУ

Вид РИД

Изобретение

Правообладатели

№ охранного документа
0002643695
Дата охранного документа
05.02.2018
Аннотация: Изобретение относится к области оптико-электронного приборостроения и касается способа измерения пороговой разности температур инфракрасного матричного фотоприемного устройства. Измерения осуществляются с использованием снабженного оптическим модулятором абсолютно черного тела (АЧТ) с площадью излучающей площадки, не превышающей размеров матрицы фоточувствительных элементов. При осуществлении способа устанавливают заданную температуру АЧТ (T), измеряют интегральные шумы V всех ФЧЭ, измеряют спектр пропускания холодного светофильтра МФПУ, определяют его коротковолновую и длинноволновую границы пропускания λ и λ, измеряют сигналы всех ФЧЭ V и рассчитывают величину пороговой разности температур по формуле где с=2,998⋅10 см⋅с - скорость света; k=1,381⋅10 Вт⋅с⋅К - постоянная Больцмана; h=6,626⋅10 Вт⋅с - постоянная Планка; N(T; λ; λ), квантов⋅с⋅см - интеграл от функции Планка, определяющий квантовую облученность в телесном угле 2⋅π в спектральном интервале [λ; λ]; Z(T; λ; λ) - интеграл от производной функции Планка по температуре. Технический результат заключается в повышении точности и упрощении методики измерения. 1 ил.

Изобретение относится к способам измерения параметров инфракрасных фотоприемных устройств (ИК ФПУ), работающих в режиме накопления. Эти устройства являются сложными высокотехнологичными приборами. Они работают в диапазонах 1-2,8 мкм, 3-5 мкм, 8-12 мкм и далее вплоть до 100-150 мкм, включают матрицу фоточувствительных элементов (МФЧЭ), содержащую от 1000 (формат 4×288) фотодиодов до более чем 1000000 (формат 1280×1024) фотодиодов и более, состыкованных с таким же количеством ячеек кремниевого мультиплексора. Мультиплексор выполняет накопление фототоков фоточувствительных элементов (ФЧЭ) в ячейках, поэлементное считывание накопленных зарядов, преобразование их в напряжение, предварительное усиление и вывод сигналов, как правило, на несколько выходов с заданной частотой кадров. Современные мультиплексоры-процессоры кроме этого преобразуют выходной сигнал из аналоговой формы в цифровую форму и осуществляют предварительную цифровую обработку сигналов. При этом рабочая температура матрицы и мультиплексора может быть достаточно низкой, чтобы снизить обратные токи ФЧЭ. Это достигается расположением их в вакуумированном корпусе на холодном пальце микрокриогенной системы (МКС), представляющей собой сложное электронно-механическое устройство.

ИК ФПУ обязательно включает следующие составные части:

- светонепроницаемый корпус с входным окном;

- входное окно, просветленное в заданной части спектра;

- светонепроницаемый и охлаждаемый экран с окном (диафрагмой), соосной с входным окном (если необходим);

- светофильтр, расположенный в охлаждаемом экране, задающий рабочий спектр фоточувствительности (если необходим);

- МФЧЭ, соосная с диафрагмой и входным окном ФПУ, окруженная светонепроницаемым экраном с диафрагмой;

- интегральная схема мультиплексора, состыкованная поэлементно с МФЧЭ;

- плата с контактными дорожками (сапфир, кремний и т.д.), на которой закреплен мультиплексор с МФЧЭ и разварены его контакты;

- система охлаждения или фиксации рабочей температуры (если необходима), на которой закреплен экран, растр с контактными дорожками, со сборкой МФЧЭ-мультиплексор и с датчиком температуры.

При изготовлении ФПУ контролируются параметры всех его составных частей, т.к. от них зависят пороговые фотоэлектрические характеристики устройства, определяющие его качество.

Одной из важнейших характеристик является пороговая разность температур (NETD).

Пороговая разность температур (NETD) - величина приращения температуры излучения, падающего на фотоприемник, приводящего к изменению выходного сигнала на величину, равную интегральному шуму фотоприемника (отношение сигнал/шум равно единице). Эта характеристика определяет качество МФПУ.

В отечественной справочной литературе (ГОСТ 17772-88 Приемники излучения. Полупроводниковые фотоэлектрические и фотоприемные устройства. Методы измерения фотоэлектрических параметров и определения характеристик) отсутствует какое-либо описание метода измерения пороговой разности температур.

Аналогом заявляемого технического решения является способ измерения пороговой разности температур ИК МФПУ (A. Rogalski, Progress in focal plane array technologies, Progress in Quantum Electronics, Elsevier Ltd, 36, 2012, P. 383). Для реализации этого способа необходимо

- установить первую температуру АЧТ T1;

- измерить и запомнить первый массив интегральных шумов каждого ФЧЭ Vш1ij;

- измерить и запомнить первый массив выходных сигналов каждого ФЧЭ V1ij;

- установить вторую температуру АЧТ Т2;

- измерить и запомнить второй массив интегральных шумов каждого ФЧЭ Vш2ij;

- измерить и запомнить второй массив выходных сигналов каждого ФЧЭ V2ij;

- рассчитать NETD каждого ФЧЭ по следующей формуле:

где ΔТc21;

ΔVc=V2-V1.

Данный способ имеет следующие недостатки.

1. Измерение двух массивов выходных сигналов ФЧЭ ИК МФПУ при двух разных температурах АЧТ. При этом разность выходных сигналов каждого ФЧЭ должна быть не менее ΔVc=V2-V1=10⋅(Vш1+Vш2). В противном случае на эту величину будут слишком сильно влиять напряжения шумов ФЧЭ при первой и второй температурах АЧТ.

2. Измерение двух массивов шумов ФЧЭ при двух разных температурах АЧТ. При этом разность шумов для каждого ФЧЭ должна быть не более ΔVш=Vш2-Vш1≤0,1⋅Vш1. В противном случае выбор одного из значений Vш для последующего расчета будет давать результат, отличный от результата со вторым значением напряжения шума.

3. Необходимость установки двух отличающихся температур АЧТ с минимальной разницей напряжений шума и максимальной разницей напряжений сигнала. Фактически, это противоречит и первому, и второму условию, определяющему величину разницы выходных сигналов ИК МФПУ при первой и второй температурах АЧТ.

4. Неизвестность температуры АЧТ (первая или вторая), при которой необходимо измерять (выбирать) величину интегрального шума и рассчитывать NETD.

5. Пониженная точность измерения NETD, обусловленная перечисленными противоречиями.

Прототипом заявляемого технического решения выбран способ измерения пороговой разности температур ИК МФПУ, вытекающий из работы, описывающей теоретический расчет параметров устройства (А.И. Патрашин и др., Аналитическая модель для расчета параметров матричных фотоприемных устройств, Прикладная физика, №1, 2014 г., с. 35-45).

В данном способе измерения пороговой разности температур ИК МФПУ размещают перед АЧТ, площадь излучающей поверхности которого много больше площади МФЧЭ, устанавливают заданную температуру АЧТ Тсигн, измеряют интегральные сигналы ФЧЭ Vинт_ij, генерированные полезным излучением протяженного АЧТ, и «паразитными» излучениями входного окна МФПУ, светофильтра, светонепроницаемого экрана с окном (диафрагмой) и темновыми токами ФЧЭ, измеряют сумму сигналов ФЧЭ, генерированных «паразитными» излучениями, измеряют интегральные шумы Vш_ij всех ФЧЭ, рассчитывают разности интегральных сигналов и сумм «паразитных» сигналов, получая значения полезных фотосигналов Vсигн_ij, генерированных излучением протяженного АЧТ, измеряют спектр пропускания холодного светофильтра МФПУ, определяют его коротковолновую и длинноволновую границы пропускания λк и λд и рассчитывают величину NETDij по формуле

где с=2,998⋅1010 см⋅с-1 - скорость света;

kB=1,381⋅10-23 Вт⋅с⋅К-1 - постоянная Больцмана;

h=6,626⋅10-34 Вт⋅с2 - постоянная Планка;

N(Tсигн; λк; λд), квантов⋅с-1⋅см-2 - интеграл от функции Планка, определяющий квантовую облученность в телесном угле 2⋅π в спектральном интервале [λк; λд];

Z(Tсигн; λк; λд) - интеграл от производной функции Планка по температуре

Размерность пороговой разности температур - градусы Кельвина.

Недостатком настоящего технического решения является невозможность прямого определения фотосигналов ФЧЭ, Vсигн_ij, генерированных полезным излучением протяженного АЧТ, что существенно усложняет методику измерения NETD.

Действительно, для того чтобы в данной оптической схеме измерить полезные фотосигналы всех ФЧЭ, генерированные излучением протяженного АЧТ, необходимо измерить их интегральные фотосигналы и так называемые «паразитные» фотосигналы ФЧЭ от излучения входного окна МФПУ, от излучения светофильтра, от излучения светонепроницаемого экрана с окном (диафрагмой) и сигналы, генерируемые темновыми токами ФЧЭ. Затем из интегральных сигналов ФЧЭ необходимо вычесть сумму «паразитных» сигналов. Полученные величины будут являться полезными фотосигналами ФЧЭ, генерированными излучением протяженного АЧТ.

Измерение каждого из «паразитные» фотосигналов ФЧЭ или их суммарной величины, в отличие от теоретического расчета, является весьма непростой задачей, которая до сих пор корректно не решена. В силу этого способ-прототип экспериментально не проработан, точность измерения пороговой разности температур ИК МФПУ с его помощью будет, мягко говоря, низкой, методика будет достаточно сложной, а время измерения - продолжительным.

Целью заявляемого технического решения является повышение точности измерения при одновременном повышении его производительности и упрощении методики.

Поставленная цель достигается тем, что в известном способе измерения пороговой разности температур ФЧЭ ИК МФПУ, в котором ИК МФПУ размещают перед АЧТ, устанавливают заданную температуру АЧТ Тсигн, измеряют интегральные шумы Vш_ij всех ФЧЭ, измеряют спектр пропускания холодного светофильтра МФПУ, определяют его коротковолновую и длинноволновую границы пропускания λк и λд, рассчитывают величину NETDij по формуле

где с=2,998⋅1010 см⋅с-1 - скорость света;

kB=1,381⋅10-23 Вт⋅с⋅К-1 - постоянная Больцмана;

h=6,626⋅10-34 Вт⋅с2 - постоянная Планка;

N(Тсигн; λк; λд), квантов⋅с-1⋅см2 - интеграл от функции Планка, определяющий квантовую облученность в телесном угле 2⋅π в спектральном интервале [λк; λд];

Z(Tсигн; λк; λд) - интеграл от производной функции Планка по температуре

используют АЧТ с площадью излучающей площадки, не превышающей размеров МФЧЭ, между АЧТ и МФПУ, вблизи АЧТ устанавливают оптический модулятор, перекрывающий излучение АЧТ, включают модулятор с заданной частотой модуляции излучения, перед расчетом пороговой разности температур измеряют сигналы всех ФЧЭ Vсигн_ij, генерированные полезным излучением АЧТ, останавливают модулятор и проводят вычисление пороговой разности температур всех ФЧЭ.

В заявляемом способе, измеряемыми величинами являются полезный сигнал ФЧЭ Vсигн_ij, зависящий от границ кривой спектральной чувствительности, [λк; λд], от температуры АЧТ, Тсигн, и от номера ij ФЧЭ, и интегральный шум ФЧЭ Vш_ij, определяемый температурами фона, входного окна, корпуса, холодного экрана и холодного светофильтра, также зависящий от границ кривой спектральной чувствительности [λк; λд], от температуры АЧТ, Тсигн, и от номера ij ФЧЭ. Функции (3) и (4), как и множитель , являются точными расчетными величинами, зависящими лишь от температуры сигнала (АЧТ) Tсигн и ширины спектральной полосы чувствительности МФПУ [λк; λд], которые достаточно точно устанавливаются и измеряются.

При использовании заявляемого способа отпадает необходимость измерения нескольких «паразитных» сигналов и последующего вычисления полезного фотосигнала, и мы проводим измерение одного шума и одного сигнала ФЧЭ МФПУ и последующий расчет по указанной выше формуле [1]. Измерение спектра пропускания холодного светофильтра для определения длин волн λк и λд является необходимым в заявляемом способе для подтверждения заданного спектрального интервала фоточувствительности. Это измерение обязательно проводится в технологическом маршруте изготовления любого МФПУ.

Заявляемый способ, в отличие от прототипа, может быть реализован в стандартной оптической схеме стенда измерения, соответствующей ГОСТ 17772-88.

Данная оптическая схема стенда измерения (фиг. 1) включает АЧТ с малым диаметром диафрагмы, ∅(2-10) мм, и температурой, например, 500 К, соответствующей вышеуказанному ГОСТу.

При ее реализации на МФПУ попадает модулированное сигнальное излучение от АЧТ и стационарные излучения, создающие, наряду с темновым током ФЧЭ, поэлементный шум устройства. Это излучения от окружающего фона, от корпуса, от входных окон, от холодных светофильтров и экранов, имеющих фиксированные температуры и излучающих, вследствие этого, в соответствии с законом Планка. Полезный сигнал ФЧЭ измеряется прямым образом на заданной частоте модуляции. Шум ФЧЭ измеряется при остановленном модуляторе и закрытой шторке АЧТ, как среднеквадратичное отклонение от среднего выходного напряжения. При его измерении должен учитываться и вычитаться собственный шум стенда измерений. Измерение NETD возможно во всем диапазоне температур АЧТ и требует только одной его температуры. Отсутствие необходимости предварительных измерений нескольких «паразитных» сигналов упрощает методику измерения, снижая трудозатраты, повышая производительность способа и точность измерения заданного параметра.


Способ измерения пороговой разности температур ИК МФПУ
Способ измерения пороговой разности температур ИК МФПУ
Способ измерения пороговой разности температур ИК МФПУ
Способ измерения пороговой разности температур ИК МФПУ
Способ измерения пороговой разности температур ИК МФПУ
Способ измерения пороговой разности температур ИК МФПУ
Источник поступления информации: Роспатент

Показаны записи 1-9 из 9.
10.08.2013
№216.012.5e57

Способ измерения квантовой эффективности и темнового тока фоточувствительных элементов матричных инфракрасных фотоприемных устройств

Изобретение относится к способам измерения параметров инфракрасных матричных фотоприемных устройств (ИК ФПУ), работающих в режиме накопления. Способ измерения квантовой эффективности и темнового тока фоточувствительных элементов матричных ИК ФПУ включает установку ФПУ на заданном расстоянии от...
Тип: Изобретение
Номер охранного документа: 0002489772
Дата охранного документа: 10.08.2013
10.06.2014
№216.012.d005

Многоэлементный ик фотоприемник

Изобретение относится к многоэлементным или матричным фотоприемникам (МФП) на основе антимонида индия, чувствительным в спектральном диапазоне 3-5 мкм. Конструкция МФП позволяет повысить выход годных и улучшить однородность параметров МФП в серийном производстве за счет увеличения квантовой...
Тип: Изобретение
Номер охранного документа: 0002519024
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d84c

Способ измерения шума узлов мфпу

Изобретение относится к измерительной технике. Сущность: способ измерения шума узлов фотоприемного устройства (ФПУ) включает измерение напряжения шума с выключенным напряжением питания ФПУ, измерение напряжения шума с включенным напряжением питания ФПУ и заданным временем накопления ФПУ,...
Тип: Изобретение
Номер охранного документа: 0002521150
Дата охранного документа: 27.06.2014
27.09.2014
№216.012.f783

Способ измерения квантовой эффективности и темнового тока фоточувствительных элементов в матрице ик фпу

Изобретение относится к способам измерения параметров инфракрасных фотоприемных устройств (ИК ФПУ), работающих в режиме накопления. Технический результат - повышение производительности измерения. Способ измерения квантовой эффективности и темнового тока фоточувствительного элемента (ФЧЭ)...
Тип: Изобретение
Номер охранного документа: 0002529200
Дата охранного документа: 27.09.2014
20.12.2015
№216.013.9b81

Матрица фоточувствительных элементов

Изобретение относится к матрицам фоточувствительных элементов (МФЧЭ), используемых в матричных фотоприемных устройствах (МФПУ) для тепловизионных систем обзора. МФЧЭ включает широкозонную полупроводниковую подложку, толщина которой не менее чем на порядок превышает диффузионную длину...
Тип: Изобретение
Номер охранного документа: 0002571434
Дата охранного документа: 20.12.2015
12.01.2017
№217.015.5ee4

Способ повышения безотказности матричных фотоэлектронных модулей

Изобретение предназначено для повышения безотказности матричных фотоэлектронных модулей (ФЭМ), работающих в условиях космического пространства или предназначенных для работы в других условиях, требующих высокой безотказности устройств регистрации и невозможности их замены в течение длительного...
Тип: Изобретение
Номер охранного документа: 0002590214
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.834b

Узел установки уровня и спектрального состава регистрируемого излучения в ик мфпу

Изобретение относится к области производства фотоприемных устройств и касается узла установки уровня и спектрального состава регистрируемого излучения в ИК МФПУ. Узел расположен в корпусе с оптическим входным окном и содержит охлаждаемый светоограничительный экран, включающий в себя...
Тип: Изобретение
Номер охранного документа: 0002601384
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.a66f

Способ сварки металлических деталей

Изобретение относится к способу сварки металлических деталей в специальной области электротехники и может применяться для изготовления сварных соединений тонкостенных деталей, работающих в условиях значительной разницы температур и давлений по обе стороны сварного соединения. Способ...
Тип: Изобретение
Номер охранного документа: 0002608154
Дата охранного документа: 16.01.2017
20.01.2018
№218.016.12c4

Сканирующее матричное фотоприемное устройство

Изобретение относится к сканирующим матричным фотоприемным устройствам (МФПУ) - устройствам, преобразующим входное оптическое изображение, формируемое объективом, в заданный спектральный диапазон, а затем в выходной электрический видеосигнал с помощью сканирования изображения. МФПУ включает N...
Тип: Изобретение
Номер охранного документа: 0002634376
Дата охранного документа: 26.10.2017
Показаны записи 1-10 из 14.
10.08.2013
№216.012.5e57

Способ измерения квантовой эффективности и темнового тока фоточувствительных элементов матричных инфракрасных фотоприемных устройств

Изобретение относится к способам измерения параметров инфракрасных матричных фотоприемных устройств (ИК ФПУ), работающих в режиме накопления. Способ измерения квантовой эффективности и темнового тока фоточувствительных элементов матричных ИК ФПУ включает установку ФПУ на заданном расстоянии от...
Тип: Изобретение
Номер охранного документа: 0002489772
Дата охранного документа: 10.08.2013
10.06.2014
№216.012.d005

Многоэлементный ик фотоприемник

Изобретение относится к многоэлементным или матричным фотоприемникам (МФП) на основе антимонида индия, чувствительным в спектральном диапазоне 3-5 мкм. Конструкция МФП позволяет повысить выход годных и улучшить однородность параметров МФП в серийном производстве за счет увеличения квантовой...
Тип: Изобретение
Номер охранного документа: 0002519024
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d84c

Способ измерения шума узлов мфпу

Изобретение относится к измерительной технике. Сущность: способ измерения шума узлов фотоприемного устройства (ФПУ) включает измерение напряжения шума с выключенным напряжением питания ФПУ, измерение напряжения шума с включенным напряжением питания ФПУ и заданным временем накопления ФПУ,...
Тип: Изобретение
Номер охранного документа: 0002521150
Дата охранного документа: 27.06.2014
27.09.2014
№216.012.f783

Способ измерения квантовой эффективности и темнового тока фоточувствительных элементов в матрице ик фпу

Изобретение относится к способам измерения параметров инфракрасных фотоприемных устройств (ИК ФПУ), работающих в режиме накопления. Технический результат - повышение производительности измерения. Способ измерения квантовой эффективности и темнового тока фоточувствительного элемента (ФЧЭ)...
Тип: Изобретение
Номер охранного документа: 0002529200
Дата охранного документа: 27.09.2014
20.12.2015
№216.013.9b81

Матрица фоточувствительных элементов

Изобретение относится к матрицам фоточувствительных элементов (МФЧЭ), используемых в матричных фотоприемных устройствах (МФПУ) для тепловизионных систем обзора. МФЧЭ включает широкозонную полупроводниковую подложку, толщина которой не менее чем на порядок превышает диффузионную длину...
Тип: Изобретение
Номер охранного документа: 0002571434
Дата охранного документа: 20.12.2015
12.01.2017
№217.015.5ee4

Способ повышения безотказности матричных фотоэлектронных модулей

Изобретение предназначено для повышения безотказности матричных фотоэлектронных модулей (ФЭМ), работающих в условиях космического пространства или предназначенных для работы в других условиях, требующих высокой безотказности устройств регистрации и невозможности их замены в течение длительного...
Тип: Изобретение
Номер охранного документа: 0002590214
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.834b

Узел установки уровня и спектрального состава регистрируемого излучения в ик мфпу

Изобретение относится к области производства фотоприемных устройств и касается узла установки уровня и спектрального состава регистрируемого излучения в ИК МФПУ. Узел расположен в корпусе с оптическим входным окном и содержит охлаждаемый светоограничительный экран, включающий в себя...
Тип: Изобретение
Номер охранного документа: 0002601384
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.a66f

Способ сварки металлических деталей

Изобретение относится к способу сварки металлических деталей в специальной области электротехники и может применяться для изготовления сварных соединений тонкостенных деталей, работающих в условиях значительной разницы температур и давлений по обе стороны сварного соединения. Способ...
Тип: Изобретение
Номер охранного документа: 0002608154
Дата охранного документа: 16.01.2017
20.01.2018
№218.016.12c4

Сканирующее матричное фотоприемное устройство

Изобретение относится к сканирующим матричным фотоприемным устройствам (МФПУ) - устройствам, преобразующим входное оптическое изображение, формируемое объективом, в заданный спектральный диапазон, а затем в выходной электрический видеосигнал с помощью сканирования изображения. МФПУ включает N...
Тип: Изобретение
Номер охранного документа: 0002634376
Дата охранного документа: 26.10.2017
09.06.2018
№218.016.5c75

Инфракрасное крупноформатное сканирующее матричное фотоприемное устройство

Изобретение относится к инфракрасным сканирующим матричным фотоприемным устройствам (МФПУ) - устройствам большого формата, преобразующим входное оптическое изображение, формируемое объективом и сканером, в заданный спектральный диапазон, а затем в выходной электрический видеосигнал. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002655947
Дата охранного документа: 30.05.2018
+ добавить свой РИД