×
17.02.2018
218.016.2c8c

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА СВОБОДНОГО УГЛЕРОДА ПРИ КОНВЕРСИИ УГЛЕВОДОРОДОВ В КОНВЕРТОРАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам получения водорода в местах его применения, минуя стадию его хранения, и касается способа определения количества свободного углерода при конверсии углеводородов в конверторах. Способ включает отбор проб и определение количества углерода на катализаторе, отбор проб производят из газовой фазы на выходе из конвертора, затем анализируют состав отобранной газовой фазы, далее на основании содержания проб определяется массовая доля находящегося в них водорода и по формуле рассчитывается количество свободного углерода, по величине массовой доли водорода. Изобретение обеспечивает упрощение способа определения количества свободного углерода при конверсии углеводородов в конверторах, позволяет не только использовать способ в процессе непрерывной работы конвертора на любых режимах, но и с достаточной точностью дает определить массовые доли свободного углерода в составе синтез-газа. 2 ил., 1 табл.

Изобретение относится к способам получения водорода в местах его применения, минуя стадию его хранения, например, при организации процесса конверсии моторного углеводородного топлива.

При эксплуатации существующих конверторов для получения синтез-газа из моторного топлива их необходимо периодически останавливать для удаления из рабочего объема выделившегося свободного углерода (сажи) и замены потерявших активность катализаторов. В связи с этим возникает серьезная проблема, связанная с определением допустимой длительности непрерывной работы конверторов до их остановки.

В настоящее время наиболее распространенным способом определения закоксовывания катализаторов является взвешивание массы катализаторов до и после работы, что требует остановки конвертора и его разгрузки [Шигабиев Т.Н., Яновский Л.С., Галимов Ф.Н., Иванов В.Ф. Физический и химический хладоресурс углеводородных топлив. Казань: Мастер Лайн, 2000 г.].

Другим способом определения количества свободного углерода является оценка роста перепада давления на слое катализатора, но этот метод не имеет однозначной интерпретации, поскольку рост перепада давления на слое катализатора может быть вызван и разрушением гранул катализатора в процессе работы, поэтому также может потребоваться разгрузка конвертора [Шигабиев Т.Н., Яновский Л.С., Галимов Ф.Н., Иванов В.Ф. Физический и химический хладоресурс углеводородных топлив. Казань: Мастер Лайн, 2000 г.].

Известны способы определения количества свободного углерода в потоке газа на выходе из различных устройств по измерению ослабления параллельного пучка зондирующего оптического излучения [патент РФ №2441218 «Способ определения дисперсности и концентрации частиц в аэрозольном облаке», МПК G01N 15/02, опубл. 27.01.2012] или по степени почернения фильтровального материала [а.с. СССР №482659 «Способ определения концентрации сажи», МПК G01N 21/12, опубл. 30.08.1975]. Однако точность замера концентрации сажи этими способами является низкой, особенно в области высоких концентраций.

Способ определения концентрации сажи по а.с. «Устройство для определения концентрации сажи» [а.с. СССР №731356, МПК G01N 15/00, опубл. 30.04.1980] при сжигании сажи до CO2 выбирается в качестве прототипа, так как он имеет наибольшее число существенных признаков, совпадающих с существенными признаками заявляемого изобретения.

Серьезным недостатком способа определения свободного углерода прототипа является то, что невозможно определить содержание углерода в режиме реального времени в процессе работы конвертора. По данному способу требуется проведение длительных технологических операций: остановка конвертора, отбор пробы катализатора, помещение его в специально изготовленный реактор и нагрев его до температуры 500-600°С, проведение цикла дожигания углерода с обеспечением циркуляции воздуха с помощью насоса и с последующей подачей газа в газоанализатор для определения содержания CO2 и по концентрации CO2 определить количество углерода в катализаторе.

Технический результат заявляемого способа состоит в упрощении способа определения свободного углерода в конверторах, за счет определения, в режиме реального времени, наличия свободного углерода без разборки конвертора путем проведения газового анализа с использованием предлагаемой расчетной модели.

В предлагаемом способе определения количества свободного углерода при конверсии углеводородов в конверторах, включающем отбор проб и определение количества углерода на катализаторе, согласно настоящему изобретению отбор проб производят из газовой фазы на выходе из конвертора, затем анализируют состав отобранной газовой фазы, далее на основании содержания проб определяется массовая доля находящегося в них водорода и рассчитывается количество свободного углерода, по величине массовой доли водорода.

Таким образом, наш патентуемый способ позволяет не только использовать его в процессе непрерывной работы конвертора на любых режимах, но и, с достаточной точностью, дает определить массовые доли свободного углерода в составе синтез-газа.

Суть предлагаемого способа состоит в отборе газовой пробы из конвертора в процессе его работы и составлении материального баланса компонентов, находящихся в газовой пробе, на основании которого расчетным путем оценивается количество выделившегося углерода. Для определения состава газовой пробы может использоваться, например, хроматографический, масс-спектрометрический и другие методы. Как показали эксперименты, массовая доля водорода в составе газовых проб в случае появления в конверторе углерода всегда превышает массовую долю водорода, которая должна бы образоваться из топлива, участвующего в процессе паровой конверсии. Это объясняется тем, что некоторая часть топлива подвергается термическому разложению с выделением из него водорода совместно с углеродом.

Определение содержания углерода в конверторе производится следующим образом. По данным анализа газовой пробы оцениваются объемные доли всех газовых компонентов ri. С их помощью определяется величина среднего молекулярного веса газовой пробы как μm=Σriμi, где μi - молекулярные веса компонентов и определяются массовые доли компонентов gi как

При реализации паровой конверсии дизельного топлива и керосина выделение водорода определяется его наличием в воде и топливе, вступившем в реакцию паровой конверсии. При этом кислород, содержащийся в воде и топливе, входит в состав окислов CO и CO2, в которые также поступает и углерод из топлива. При использовании массовых долей gCO и определяются находившиеся в них массовые доли кислорода go2 и углерода gc как:

На основании полученной величины определяется массовая доля воды , участвовавшая в процессе паровой конверсии как , которая дает возможность оценить массовую долю водорода , поступившего из воды в газовую пробу.

При производившейся оценке количества водорода, выделившегося из топлива при паровой конверсии , использовалась брутто-формула летнего дизельного топлива Л-02-62 ГОСТ 305-82 и керосина ТС-1, которые для расчетов можно принять одинаковыми и соответствующими СН2. В этом случае массовая доля топлива, участвующего в реализации паровой конверсии оценивалась как , а массовая доля образовавшегося при этом водорода определялась как

Таким образом, суммарная доля водорода, выделившегося в результате паровой конверсии равна

Как уже отмечалось, массовая доля водорода в составе газовых проб в случае появления в конверторе свободного углерода (кокса) всегда превышала

Количество этого топлива и углерода определялись величиной разности , где - массовая доля водорода в синтез-газе.

С использованием величины оценивалась доля топлива, подвергавшегося термическому разложению, и количество выделившегося при этом из него твердого углерода как и

Сущность заявляемого изобретения и возможность его практической реализации поясняется приведенным ниже описанием и чертежами.

Фиг. 1 - схема опытного конвертора.

Фиг. 2 - поверхность ленточного гофрированного катализатора (а) и гранулы катализатора НИАП 04-02 с частицами кокса после 90 минут испытаний (б).

1 - конвертор с катализатором;

2 - ленточный электронагреватель;

3 - наружная теплоизоляция;

4 - внутренняя теплоизоляция;

5 - узлы подачи смеси паров топлива с водяным паром и выхода синтез-газа;

6 - каналы подачи смеси паров топлива с парами воды;

7 - термопара.

Экспериментальная проверка предлагаемого способа оценки количества свободного углерода, выделяющегося в продуктах конверсии углеводородов при непрерывной работе конверторов без их остановки, осуществлялась с использованием созданного для этой цели опытного конвертора (см. Фиг. 1)

Нагрев теплопередающей стенки конвертора 1 производился ленточным электронагревателем 2, намотанным на внешнюю поверхность стенки. На наружную поверхность конвертора 1 поверх ленточного электронагревателя 2 была нанесена высокотемпературная изоляция 3. Аналогичная теплоизоляция была размещена во внутреннем канале 4 конвертора. Входные и выходные узлы 5 конвертора по своей конструкции не отличаются друг от друга. Любые из них могли использоваться как для подачи смеси паров топлива с парами воды через два тангенциальных канала 6, так и для удаления образовавшегося синтез-газа. В каждом из указанных узлов были установлены хромель-алюмелевые термопары 7.

При проведении экспериментов с использованием рассмотренного опытного конвертора 1 подача в него топлива и воды производилась в виде их паровой смеси, которая предварительно готовилась в испарителе (на чертеже не указан). Чтобы исключить наличие неиспаренных капель топлива в паровой смеси, ее нагрев в испарителе осуществлялся до температур не ниже 400°С, так как для применяемого дизельного топлива марки Л-02-62 ГОСТ 305 конец его кипения соответствует 365°С.

Для выполнения поставленной задачи использовались 5 различных типов катализаторов, которые охватывают весь диапазон данных по выделению свободного углерода в зависимости от типов применявшихся катализаторов, среди которых были промышленные катализаторы, созданные в НИАП и ГИАП, и в РНЦ «Прикладная химия». Параметры режимов испытаний образцов промышленных катализаторов и состав полученного синтез-газа приведены в Таблице 1.

Применявшийся опытный конвертор, схема которого представлена на Фиг. 1, был изготовлен из стали 12X18Н10Т с применением стандартных труб 63,5×2 и 50×3,5. При этом общая длина конвертора составляла 500 мм. Анализируя полученные экспериментальные результаты, следует учитывать, что при применении хроматографического метода определения составов газовых проб статистическая погрешность не превышала 2%.

Анализируя результаты, приведенные в Таблице 1, следует отметить данные, относящиеся к испытаниям катализатора, изготовленного из никелевой сетки. Они свидетельствуют, что зафиксированное с использованием этого катализатора количество свободного углерода в составе синтез-газа не превышает статистической погрешности, равной 2%. Самые лучшие результаты, которые были получены при исследовании всех образцов катализаторов относятся к гофрированному ленточному катализатору. Этот катализатор был изготовлен с использованием ленты из нержавеющей стали марки Х15Ю5 с толщиной 0,1 мм. На нее наносилась подложка из окиси алюминия, а на подложку - каталитическое никелевое покрытие. После специальной термообработки лента гофрировалась и разрезалась на нужную ширину. Ленточный гофрированный катализатор обладал высокой теплопроводностью и высокой жаростойкостью, высокой стойкостью к тепловым ударным нагрузкам и высокой каталитической активностью. Результаты испытаний ленточного гофрированного катализатора представлены в Таблице 2. Все испытания осуществлялись без разборки конвертора и без замены катализатора.

Анализируя приведенные в Таблице 2 результаты испытаний, необходимо отметить, что только при испытаниях ленточного гофрированного катализатора метод оценки наличия в конверторе углерода (кокса) зафиксировал его отсутствие. Только в данном случае разность , определявшая появление водорода совместно с углеродом в результате термического разложения части топлива оказалась не только незначительной, но и отрицательной. Доказательство отсутствия углерода в конверторе было получено после окончания испытаний ленточного гофрированного катализатора при его визуальном осмотре.

На Фиг. 2 представлена фотография участка поверхности ленточного гофрированного катализатора (а) и для сравнения приведена фотография (б) катализатора НИАП 04-02, гранулы которого покрыты коксом, а в свободном пространстве между гранулами образовалось большое количество углерода.

Результаты, полученные при экспериментальных исследованиях, проведенных с применением опытного конвертора с целью доказательства возможности практического использования патентуемого способа определения количества свободного углерода в конверторах с использованием газового анализа, позволяют сделать следующие выводы:

1. Величины массовых концентраций свободного углерода, которые можно определить с использованием предлагаемого нового способа в составе синтез-газа при выходе конверторов на стационарный режим, позволяют оценить активность выбранных катализаторов, а также их влияние на выделение нежелательного углерода.

2. Определение количества, выделяющегося свободного углерода в процессе непрерывной работы конверторов без их остановки, позволяют оценить допустимые периоды их эксплуатации без замены потерявших активность катализаторов.

Таким образом, достигается технический результат заявляемого способа, а именно упрощение способа определения количества свободного углерода при конверсии углеводородов в конверторах.


СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА СВОБОДНОГО УГЛЕРОДА ПРИ КОНВЕРСИИ УГЛЕВОДОРОДОВ В КОНВЕРТОРАХ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА СВОБОДНОГО УГЛЕРОДА ПРИ КОНВЕРСИИ УГЛЕВОДОРОДОВ В КОНВЕРТОРАХ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА СВОБОДНОГО УГЛЕРОДА ПРИ КОНВЕРСИИ УГЛЕВОДОРОДОВ В КОНВЕРТОРАХ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА СВОБОДНОГО УГЛЕРОДА ПРИ КОНВЕРСИИ УГЛЕВОДОРОДОВ В КОНВЕРТОРАХ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА СВОБОДНОГО УГЛЕРОДА ПРИ КОНВЕРСИИ УГЛЕВОДОРОДОВ В КОНВЕРТОРАХ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА СВОБОДНОГО УГЛЕРОДА ПРИ КОНВЕРСИИ УГЛЕВОДОРОДОВ В КОНВЕРТОРАХ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА СВОБОДНОГО УГЛЕРОДА ПРИ КОНВЕРСИИ УГЛЕВОДОРОДОВ В КОНВЕРТОРАХ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА СВОБОДНОГО УГЛЕРОДА ПРИ КОНВЕРСИИ УГЛЕВОДОРОДОВ В КОНВЕРТОРАХ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА СВОБОДНОГО УГЛЕРОДА ПРИ КОНВЕРСИИ УГЛЕВОДОРОДОВ В КОНВЕРТОРАХ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА СВОБОДНОГО УГЛЕРОДА ПРИ КОНВЕРСИИ УГЛЕВОДОРОДОВ В КОНВЕРТОРАХ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА СВОБОДНОГО УГЛЕРОДА ПРИ КОНВЕРСИИ УГЛЕВОДОРОДОВ В КОНВЕРТОРАХ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 27.
25.08.2017
№217.015.b9cf

Способ получения перфтор-3-метоксипропионилфторида

Изобретение относится к способу получения перфтор-3-метоксипропионилфторида, который является исходным продуктом получения перфтор-3-метоксипропилвинилового эфира (мономера М-60МП), обеспечивающего его сополимерам - фторкаучукам повышенную морозостойкость за счет снижения их температуры...
Тип: Изобретение
Номер охранного документа: 0002615148
Дата охранного документа: 04.04.2017
26.08.2017
№217.015.e360

Способ получения бисфенолов

Настоящее изобретение относится к способу получения бисфенолов, которые используют в производстве эпоксидных смол и поликарбонатов. Способ включает взаимодействие фенола или его производных с кетоном или альдегидом при температуре 30-80°C в присутствии катализатора и промотора – сероводорода....
Тип: Изобретение
Номер охранного документа: 0002626005
Дата охранного документа: 21.07.2017
10.05.2018
№218.016.4079

Способ получения пероксида водорода

Изобретение относится к химической технологии неорганических веществ, конкретно к способу получения пероксида водорода, включающему окисление изопропанола кислородсодержащим газом. Способ получения пероксида водорода включает стадии каталитического гидрирования ацетона и окисления изопропанола....
Тип: Изобретение
Номер охранного документа: 0002648887
Дата охранного документа: 28.03.2018
09.06.2018
№218.016.5daf

Способ получения 2-(фторметокси)-1,1,1,3,3,3-гексафторизопропана (севофлурана)

Настоящее изобретение относится к способу получения 2-(фторметокси)-1,1,1,3,3,3-гексафторизопропана (севофлурана), являющегося ингаляционным анестетиком. Способ заключается в гидрофторировании 2-(хлорметокси)-1,1,1,3,3,3-гексафторизопропана (севохлорана), которое проводят гидрофторидом в...
Тип: Изобретение
Номер охранного документа: 0002656210
Дата охранного документа: 01.06.2018
09.06.2018
№218.016.5f35

Способ обезвреживания нитрата гидроксиламина в сточных водах

Изобретение может быть использовано в топливной промышленности при переработке отработанного ядерного топлива методом жидкостной экстракции. Способ включает обработку сточных вод, содержащих нитрат гидроксиламина, гидроксидом натрия в массовом соотношении (3-4,8):1 соответственно, в...
Тип: Изобретение
Номер охранного документа: 0002656663
Дата охранного документа: 06.06.2018
20.03.2019
№219.016.e778

Способ получения ректификованного спирта

Изобретение относится к спиртовой промышленности, а именно получению ректификованного этилового спирта. Способ предусматривает очистку спирта-сырца или бражного дистиллята от головных примесей в эпюрационной колонне, ректификацию эпюрата в ректификационной колонне с отбором фракций сивушного...
Тип: Изобретение
Номер охранного документа: 0002412252
Дата охранного документа: 20.02.2011
20.03.2019
№219.016.e83f

Плазмохимический способ обезвреживания хлорорганических веществ

Изобретение относится к способам безопасного обезвреживания хлорорганических веществ, в том числе полихлорбифенилов, которые являются стойкими органическими загрязнителями 1 и 2 класса опасности, а также являются источниками токсичных веществ, таких как диоксины и дибензофураны....
Тип: Изобретение
Номер охранного документа: 0002455568
Дата охранного документа: 10.07.2012
20.03.2019
№219.016.e923

Способ получения спирта этилового абсолютированного

Настоящее изобретение относится к способу получения абсолютированного этилового спирта, который может быть использован в химической, электронной и фармацевтической промышленности. Способ включает подачу спирта-сырца или водно-спиртового раствора в колонну предварительного абсолютирования,...
Тип: Изобретение
Номер охранного документа: 0002449979
Дата охранного документа: 10.05.2012
27.04.2019
№219.017.3cfa

Способ получения 2-перфторметилпентена-2

Изобретение относится к способу получения 2-перфторметилпентена-2 димеризацией гексафторпропена, который подают 0,15 - 0,5 л/мин при температуре 200 - 350°С на катализатор. Причем димеризацию проводят при избыточном давлении 100 - 700 кПа, а упомянутый катализатор представляет собой активный...
Тип: Изобретение
Номер охранного документа: 0002686316
Дата охранного документа: 25.04.2019
09.05.2019
№219.017.492b

Способ получения несимметричного диметилгидразина

Изобретение относится к способу получения несимметричного диметилгидразина, включающему получение метиламинов, выделение диметиламина, его нитрозирование, выделение полученного нитрозодиметиламина с последующим его гидрированием и выделением товарного НДМГ, при этом стадию получения...
Тип: Изобретение
Номер охранного документа: 0002687064
Дата охранного документа: 07.05.2019
Показаны записи 11-18 из 18.
27.08.2015
№216.013.7465

Способ получения концентрированных растворов нитрата гидроксиламина

Изобретение относится к области синтеза солей гидроксиламина, в частности нитрата гидроксиламина, концентрированные водные растворы которого являются энергичными окислителями и составляют основу ряда топлив. Способ получения концентрированных растворов нитрата гидроксиламина включает...
Тип: Изобретение
Номер охранного документа: 0002561372
Дата охранного документа: 27.08.2015
13.01.2017
№217.015.85ff

Способ получения пероксида бария

Изобретение может быть использовано в электровакуумной промышленности, черной металлургии, химической промышленности, в частности в производстве пиротехнических составов. Способ получения пероксида бария включает нагревание азотнокислого бария с последующим охлаждением и выгрузкой. Азотнокислый...
Тип: Изобретение
Номер охранного документа: 0002603371
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9a9a

Способ извлечения сульфата натрия и нитратов металлов

Изобретение относится к переработке минеральных отходов химических производств. Для извлечения сульфата натрия и нитратов металлов из водных растворов сульфата натрия, содержащего в качестве примесей нитрат натрия и нитрит натрия, осуществляют взаимодействие растворов с бисульфатом натрия или...
Тип: Изобретение
Номер охранного документа: 0002610076
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.a50a

Способ получения перфторэтилизопропилкетона

Изобретение относится к способу получению перфторэтилизопропилкетона, который является пожаротушащим веществом нового поколения. Способ включает взаимодействие оксида гексафторпропена и гексафторпропена в присутствии катализатора, содержащего CsF и последующую стадию выделения. При этом способ...
Тип: Изобретение
Номер охранного документа: 0002607897
Дата охранного документа: 11.01.2017
25.08.2017
№217.015.b9cf

Способ получения перфтор-3-метоксипропионилфторида

Изобретение относится к способу получения перфтор-3-метоксипропионилфторида, который является исходным продуктом получения перфтор-3-метоксипропилвинилового эфира (мономера М-60МП), обеспечивающего его сополимерам - фторкаучукам повышенную морозостойкость за счет снижения их температуры...
Тип: Изобретение
Номер охранного документа: 0002615148
Дата охранного документа: 04.04.2017
26.08.2017
№217.015.e360

Способ получения бисфенолов

Настоящее изобретение относится к способу получения бисфенолов, которые используют в производстве эпоксидных смол и поликарбонатов. Способ включает взаимодействие фенола или его производных с кетоном или альдегидом при температуре 30-80°C в присутствии катализатора и промотора – сероводорода....
Тип: Изобретение
Номер охранного документа: 0002626005
Дата охранного документа: 21.07.2017
20.03.2019
№219.016.e83f

Плазмохимический способ обезвреживания хлорорганических веществ

Изобретение относится к способам безопасного обезвреживания хлорорганических веществ, в том числе полихлорбифенилов, которые являются стойкими органическими загрязнителями 1 и 2 класса опасности, а также являются источниками токсичных веществ, таких как диоксины и дибензофураны....
Тип: Изобретение
Номер охранного документа: 0002455568
Дата охранного документа: 10.07.2012
29.06.2019
№219.017.a193

Способ стабилизации объемного разряда в hf/df импульсно-периодическом химическом лазере

Способ включает подачу импульсного напряжения на барьерные электроды, связанные с металлическими электродами. Импульсное напряжение подают при плотности тока объемной фазы разряда не менее 1 кА/см на барьерные электроды, обладающие полупроводниковыми свойствами, сочетающими активное и емкостное...
Тип: Изобретение
Номер охранного документа: 0002465697
Дата охранного документа: 27.10.2012
+ добавить свой РИД