×
17.02.2018
218.016.2bda

Результат интеллектуальной деятельности: Способ получения пленочного твердого электролита

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению тонкопленочного твердого электролита в виде газоплотной пленки оксида. На подложку из материала электрода наносят суспензию, приготовленную из раствора 1-8 мас.% оксидообразующих солей в этаноле и порошка–прекурсора, который получают путем термообработки раствора 1-8 мас.% оксидообразующих солей в этаноле при 550°С до образования порошка, при этом порошок–прекурсор вводят в раствор оксидообразующих солей в этаноле в соотношении 1 г порошка на 20-60 мл спиртового раствора, суспензию нагревают со скоростью не более 50°C/ч в интервале температур от комнатной до температуры полного разложения компонентов нанесенной на подложку суспензии, полученный после разложения компонентов слой подвергают термообработке при температуре от 1000 до 1200°C со скоростью нагрева 300°С/ч. Изобретение позволяет просто и экономично получить тонкие беспористые пленки оксидов, нанесенные на пористый электродный материал. 5 ил.

Изобретение относится к получению тонкопленочного твердого электролита в виде газоплотной пленки оксида, нанесенной на пористый электродный материал, и может быть использовано при изготовлении электрохимических устройств, таких, например, как водородные датчики, электролизеры, топливные элементы и т.п.

Известно, что при уменьшении толщины электролита увеличиваются мощностные характеристики электрохимического устройства за счет снижения омических потерь. Тонкие пленки электролита можно получать ионно-плазменным распылением. Известен способ получения твердого пленочного электролита, включающий изготовление мишени исходных материалов в виде механической смеси мелкодисперсных порошков чистых окислов, которые наносятся на высокочастотный электрод распылителя слоем в несколько миллиметров и последующим распылением приготовленной мишени ионами инертного газа в высокочастотном ионно-плазменном распылителе с последующей термообработкой осажденных пленок при температуре 600–1000°С в течение 1–20 часов (RU 1840832, публ. 27.07.2012) [1]. Для осаждения пленок ионно-плазменным методом требуется высокий вакуум и, соответственно, сложное и дорогостоящее вакуумное оборудование. Недостатками метода являются также трудности получения пленок сложного состава, сложность получения плотных пленок, так как для пленок, напыленных вакуумными методами, характерна столбчатая микроструктура с порами вдоль границ зерен.

Технически проще и экономичнее получать тонкие беспористые пленки путем нанесения суспензии на поверхность подложки методами окрашивания и окунания. Поэтому наиболее близким по технической составляющей к предлагаемому способу является способ получения тонкопленочного электролита для электротехнических устройств, основанный на нанесении на подложку из материала электрода смеси, состоящей из водного, спиртового или спиртово-водного растворов 1-8 мас.% оксидообразующих солей и не более 5 мас.% органического пленкообразователя, с последующим нагревом смеси со скоростью не более 50°C/ч в интервале температур от комнатной до температуры полного разложения компонентов нанесенной на подложку смеси, термообработки полученного слоя при температуре 1000 – 1200°C (RU 2570509, публ. 10.12.2015) [2]. Сущность данного способа заключается в использовании органического пленкообразователя – поливинилбутираля и поливинилового спирта – совместно с водным, спиртовым или спиртово-водным раствором оксидообразующих солей, которые после нанесения подвергаются термической обработке при 1000 – 1200°С. Существенным недостатком данного упрощенного и экономичного способа является наличие нанопор, образующихся в процессе выгорания органического пленкообразователя, которые ведут к понижению плотности пленки оксида, нанесенной на пористый электродный материал.

Задача настоящего изобретения заключается в технически простом и экономичном получении тонких беспористых пленок оксидов, нанесенных на пористый электродный материал.

Для этого предложен способ получения тонкопленочного электролита для электротехнических устройств, в котором, как и в прототипе, на подложку из материала электрода наносят суспензию на основе спиртового раствора 1-8 мас.% оксидообразующих солей, после чего смесь нагревают со скоростью не более 50°C/ч в интервале температур от комнатной до температуры полного разложения компонентов, далее полученный слой подвергают термообработке при температуре 1000 – 1200°C.

Новый способ отличается тем, что на подложку наносят суспензию, приготовленную из раствора 1-8 мас.% оксидообразующих солей в этаноле и порошка–прекурсора, который получают путем термообработки раствора 1-8 мас.% оксидообразующих солей в этаноле при 550°С до образования порошка, при этом порошок–прекурсор вводят в раствор оксидообразующих солей в этаноле в соотношении 1 г порошка на 20-60 мл спиртового раствора.

В отличие от известного способа по прототипу, где на подложку из материала электрода наносят смесь из водного, спиртового или спиртово-водного растворов 1-8 мас.% оксидообразующих солей, таких как нитраты редкоземельных и щелочноземельных элементов, оксихлорид или оксинитрат циркония, а также органического пленкообразователя, в заявленном способе на подложку наносят суспензию, приготовленную из раствора оксидообразующих солей в этаноле и порошка–прекурсора, полученного термической обработкой раствора оксидообразующих солей в этаноле. Использование вместо раствора солей суспензии, в которой дисперсионной средой является раствор солей, а в качестве твердой дисперсионной фазы выступает порошок-прекурсор, полученный из этого же раствора путем высушивания и прокаливания при 550°С, обеспечивает образование кластеров разного размера – более мелких из раствора солей и более крупных из твердой дисперсной фазы и их более плотную упаковку при высушивании суспензии на поверхности подложки, вследствие чего формируется плотная пленка сложного оксида при синтезе. Выбор режима термообработки обусловлен тем, что при 550°С из раствора солей образуется мелкодисперсный порошок-прекурсор, содержащий катионы в соотношении, соответствующем номинальному составу пленки.

Концентрации оксидообразующих солей в растворе выбирают в зависимости от предельной растворимости солей в спирте. Концентрация порошка-прекурсора в суспензии определяется требуемой вязкостью суспензии, которая должна покрыть пористую поверхность электрода тонким бездефектным слоем. Чем больше концентрация порошка-прекурсора в суспензии, тем больше ее вязкость, а с увеличением вязкости суспензии увеличивается толщина покрытия. Таким образом, толщину полученного слоя можно варьировать от 200 нм до 1-2 мкм. Однако при соотношении порошка-прекурсора и спиртового раствора менее 1 г на 60 мл получается слишком тонкое покрытие, не закрывающее поры на поверхности подложки, а при соотношении порошка и спиртового раствора более 1 г на 20 мл из-за большой толщины покрытия происходит его растрескивание и отслоение. Использование органического пленкообразователя, являющегося источником нанопор при выгорании, в заявленном способе не требуется.

Новый технический результат, достигаемый заявленным способом, заключается в формировании на подложке из материала электрода плотной беспористой пленки сложного оксида без использования пленкообразователя.

Способ иллюстрируется следующими рисунками. На фиг. 1 приведена рентгенограмма пленки электролита CaZr0.9Y0.1O3-δ на подложке NiO-CaZr0.9Y0.1O3-δ; на фиг. 2 представлены микрофотографии поверхности пористого электродного материала NiO-CaZr0.9Y0.1O3-δ до нанесения пленки электролита; на фиг. 3–5 – микрофотографии поверхности пленки электролита CaZr0.9Y0.1O3-δ на пористом NiO-CaZr0.9Y0.1O3-δ, причем на фиг.3 - микрофотография поверхности пленки, полученной из суспензии с содержанием порошка-прекурсора 1 г на 20 мл спиртового раствора при температуре отжига 1000°С; на фиг.4 - микрофотография поверхности пленки, полученной из суспензии с содержанием порошка-прекурсора 1 г на 40 мл спиртового раствора при температуре отжига 1200°С; на фиг.5 - микрофотография поверхности пленки, полученной из суспензии с содержанием порошка-прекурсора 1 г на 60 мл спиртового раствора при температуре отжига 1100°С.

Экспериментальную проверку способа осуществляли в лабораторных условиях путем получения пленки электролита состава CaZr0.9Y0.1O3-δ на пористой керамической подложке из композитного электродного материала NiO-CaZr0.9Y0.1O3-δ c открытой пористостью 8 – 26 %. Для этого готовили суспензию из порошка-прекурсора и раствора оксидообразующих солей в этаноле. Раствор готовили путем смешения 100 мл спиртового раствора нитрата кальция с титром 0.061 г/мл и 105 мл спиртового раствора оксихлорида циркония с титром 0.12 г/мл и 15.7 мл спиртового раствора нитрата иттрия с титром 0.08 г/мл. Порошок-прекурсор готовили путем высушивания и прокаливания раствора оксидообразующих солей в этаноле при температуре 550°С до образования порошка. Порошок-прекурсор дезагрегировали путем механического перетирания в ступке с добавлением этилового спирта в течение 1 часа, высушивали и соединяли с раствором солей в этаноле в соотношении 1 г порошка на 20-60 мл спиртового раствора оксидообразующих солей.

Суспензию наносили на шлифованную поверхность подложки методом окунания и высушивали на воздухе. Нагрев полученного покрытия на пористой подложке вели со скоростью 50°/час до 600°C, то есть до температуры полного разложения всех вышеуказанных солей, далее полученный слой подвергали термообработке при 1000°C, 1100°C, 1200°C в течение 1 часа. Получили оксидную пленку электролита заданного состава толщиной порядка 2 мкм. Нанесенную на электродный субстрат суспензию медленно нагревают со скоростью нагрева не более 50°С/ч в интервале от комнатной до температуры полного разложения компонентов, которая устанавливается с помощью термогравиметрического исследования, после чего со скоростью 300°С/ч нагревают до температуры 1000-1200°С, при которой происходит синтез сложного оксида. Согласно данным рентгенофазового анализа на рентгенограмме присутствуют только рефлексы от фазы CaZrO3 и NiO, что указывает на отсутствие химического взаимодействия между пленкой и подложкой. Таким образом, данные рентгенофазового анализа и сканирующей электронной микроскопии доказывают получение однофазной, плотной и беспористой пленки CaZrO3.

Таким образом, заявленный способ позволяет сформировать на подложке из материала электрода плотную беспористую пленку сложного оксида без использования пленкообразователя.


Способ получения пленочного твердого электролита
Способ получения пленочного твердого электролита
Способ получения пленочного твердого электролита
Способ получения пленочного твердого электролита
Источник поступления информации: Роспатент

Показаны записи 31-40 из 96.
27.02.2015
№216.013.2d53

Способ изготовления электродов электрохимических устройств с твердым электролитом

Изобретение относится к области электротехники, а именно к способу изготовления электродов электрохимических устройств с твердым электролитом. Снижение поляризационного сопротивления электрода, а также улучшение протекания электродных реакций газообмена является техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002543071
Дата охранного документа: 27.02.2015
20.04.2015
№216.013.42dc

Способ определения коэффициента диффузии горючих газов в азоте

Изобретение направлено на высокоточное измерение коэффициентов диффузии горючих газов в азоте или иных инертных газах в широком температурном диапазоне посредством кислородпроводящего твердого электролита. Способ заключается в пропускании электрического тока через электрохимическую ячейку,...
Тип: Изобретение
Номер охранного документа: 0002548614
Дата охранного документа: 20.04.2015
20.08.2015
№216.013.6f9b

Способ определения химического коэффициента обмена и химического коэффициента диффузии кислорода в оксидных материалах

Изобретение относится к физической химии и электрохимии твердых электролитов и может быть использовано для определения химического коэффициента обмена и химического коэффициента диффузии кислорода в оксидных материалах со смешанной электронной и кислород-ионной проводимостью. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002560141
Дата охранного документа: 20.08.2015
20.09.2015
№216.013.7bf0

Амперометрический способ измерения концентрации горючих газов в азоте

Изобретение направлено на возможность измерения горючего газа в смеси с азотом или другим инертным газом. Способ заключается в том, что в поток анализируемого горючего газа помещают электрохимическую ячейку с полостью, образованной герметично соединенными между собой двумя дисками из твердого...
Тип: Изобретение
Номер охранного документа: 0002563325
Дата охранного документа: 20.09.2015
20.11.2015
№216.013.92b2

Способ определения концентрации протонов в протон-проводящих оксидных материалах

Изобретение относится к физической химии и электрохимии твердых электролитов и может быть использовано для определения концентрации протонов в протон-проводящих оксидных материалах в атмосфере сухого водорода. Способ определения концентрации протонов в протон-проводящих оксидах заключается в...
Тип: Изобретение
Номер охранного документа: 0002569172
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.97e9

Способ получения тонкоплёночного твердого электролита для электрохимических устройств

Изобретение относится к области электротехники, а именно к получению оксидной пленки электролита толщиной, соизмеримой с размером пор материала электрода, более простым и технологичным, а также более экономичным способом, чем ионно-плазменный. Тонкую газоплотную оксидную пленку электролита...
Тип: Изобретение
Номер охранного документа: 0002570509
Дата охранного документа: 10.12.2015
27.01.2016
№216.014.bc91

Батарея элементов тепловых химических источников тока

Изобретение относится к области электротехники, а именно к термоактивируемым химическим источникам тока. Батарея содержит внутреннюю и внешнюю герметичные оболочки с полостью между ними и два слоя теплоизоляции, образующих корпус, в котором расположена сборка из электрохимических элементов,...
Тип: Изобретение
Номер охранного документа: 0002573860
Дата охранного документа: 27.01.2016
10.03.2016
№216.014.bf06

Способ тонкослойного электролитического получения свинца

Изобретение относится к способу получения свинца. Способ включает электролиз в расплаве галогенидов солей с использованием жидкометаллических катода и анода из чернового свинца. При этом электролиз ведут с использованием пропитанной расплавом галогенидов солей керамической диафрагмы,...
Тип: Изобретение
Номер охранного документа: 0002576409
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.dd29

Электрохимический способ получения сложных гибридных каталитических систем на основе модифицированного углерода, содержащих на поверхности оксидные вольфрамовые бронзы

Изобретение относится к электрохимическому способу получения сложных гибридных каталитических систем на основе модифицированного углерода, содержащих на поверхности оксидные вольфрамовые бронзы, в котором каталитические системы получают из расплава 30 мол.% KWO, 25 мол.% LiWO и 45 мол.% WO в...
Тип: Изобретение
Номер охранного документа: 0002579119
Дата охранного документа: 27.03.2016
10.04.2016
№216.015.2ba8

Способ получения наноультрадисперсного порошка оксида металла

Изобретение относится к области химической промышленности. Способ включает обработку исходной смеси, содержащей хлорид металла, в токе водяного пара при повышенной температуре. В исходную смесь вводят хлорид натрия. Соотношение хлорид металла: хлорид натрия =1÷2:1. Обработку проводят при...
Тип: Изобретение
Номер охранного документа: 0002579632
Дата охранного документа: 10.04.2016
Показаны записи 31-40 из 59.
20.04.2015
№216.013.42dc

Способ определения коэффициента диффузии горючих газов в азоте

Изобретение направлено на высокоточное измерение коэффициентов диффузии горючих газов в азоте или иных инертных газах в широком температурном диапазоне посредством кислородпроводящего твердого электролита. Способ заключается в пропускании электрического тока через электрохимическую ячейку,...
Тип: Изобретение
Номер охранного документа: 0002548614
Дата охранного документа: 20.04.2015
20.08.2015
№216.013.6f9b

Способ определения химического коэффициента обмена и химического коэффициента диффузии кислорода в оксидных материалах

Изобретение относится к физической химии и электрохимии твердых электролитов и может быть использовано для определения химического коэффициента обмена и химического коэффициента диффузии кислорода в оксидных материалах со смешанной электронной и кислород-ионной проводимостью. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002560141
Дата охранного документа: 20.08.2015
20.09.2015
№216.013.7bf0

Амперометрический способ измерения концентрации горючих газов в азоте

Изобретение направлено на возможность измерения горючего газа в смеси с азотом или другим инертным газом. Способ заключается в том, что в поток анализируемого горючего газа помещают электрохимическую ячейку с полостью, образованной герметично соединенными между собой двумя дисками из твердого...
Тип: Изобретение
Номер охранного документа: 0002563325
Дата охранного документа: 20.09.2015
20.11.2015
№216.013.92b2

Способ определения концентрации протонов в протон-проводящих оксидных материалах

Изобретение относится к физической химии и электрохимии твердых электролитов и может быть использовано для определения концентрации протонов в протон-проводящих оксидных материалах в атмосфере сухого водорода. Способ определения концентрации протонов в протон-проводящих оксидах заключается в...
Тип: Изобретение
Номер охранного документа: 0002569172
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.97e9

Способ получения тонкоплёночного твердого электролита для электрохимических устройств

Изобретение относится к области электротехники, а именно к получению оксидной пленки электролита толщиной, соизмеримой с размером пор материала электрода, более простым и технологичным, а также более экономичным способом, чем ионно-плазменный. Тонкую газоплотную оксидную пленку электролита...
Тип: Изобретение
Номер охранного документа: 0002570509
Дата охранного документа: 10.12.2015
27.01.2016
№216.014.bc91

Батарея элементов тепловых химических источников тока

Изобретение относится к области электротехники, а именно к термоактивируемым химическим источникам тока. Батарея содержит внутреннюю и внешнюю герметичные оболочки с полостью между ними и два слоя теплоизоляции, образующих корпус, в котором расположена сборка из электрохимических элементов,...
Тип: Изобретение
Номер охранного документа: 0002573860
Дата охранного документа: 27.01.2016
10.03.2016
№216.014.bf06

Способ тонкослойного электролитического получения свинца

Изобретение относится к способу получения свинца. Способ включает электролиз в расплаве галогенидов солей с использованием жидкометаллических катода и анода из чернового свинца. При этом электролиз ведут с использованием пропитанной расплавом галогенидов солей керамической диафрагмы,...
Тип: Изобретение
Номер охранного документа: 0002576409
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.dd29

Электрохимический способ получения сложных гибридных каталитических систем на основе модифицированного углерода, содержащих на поверхности оксидные вольфрамовые бронзы

Изобретение относится к электрохимическому способу получения сложных гибридных каталитических систем на основе модифицированного углерода, содержащих на поверхности оксидные вольфрамовые бронзы, в котором каталитические системы получают из расплава 30 мол.% KWO, 25 мол.% LiWO и 45 мол.% WO в...
Тип: Изобретение
Номер охранного документа: 0002579119
Дата охранного документа: 27.03.2016
10.04.2016
№216.015.2ba8

Способ получения наноультрадисперсного порошка оксида металла

Изобретение относится к области химической промышленности. Способ включает обработку исходной смеси, содержащей хлорид металла, в токе водяного пара при повышенной температуре. В исходную смесь вводят хлорид натрия. Соотношение хлорид металла: хлорид натрия =1÷2:1. Обработку проводят при...
Тип: Изобретение
Номер охранного документа: 0002579632
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2be7

Способ определения коэффициента диффузии газов в твердых электролитах

Изобретение относится к аналитической технике и может быть использовано для измерения значений коэффициентов диффузии в твердых электролитах, обладающих проводимостью по ионам исследуемых газов, таких, например, как водород, кислород, фтор, хлор и некоторые другие. Согласно изобретению в...
Тип: Изобретение
Номер охранного документа: 0002579183
Дата охранного документа: 10.04.2016
+ добавить свой РИД