×
17.02.2018
218.016.2ae3

СПОСОБ УГЛОВОГО СВЕРХРАЗРЕШЕНИЯ ЦИФРОВЫМИ АНТЕННЫМИ РЕШЕТКАМИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области радиотехники, а именно к радиоэлектронным системам, применяющим цифровые антенные решетки. Способ заключается в том, что формирование в одноименных парциальных лучах многолучевой диаграммы направленности цифровой антенной решетки комплексных цифровых сигналов каналов виртуальной апертуры осуществляется из соответствующих комплексных цифровых сигналов каналов реальной апертуры путем их задержки во времени. Величину временных задержек в одноименных парциальных лучах априорно определяют по разности хода фазовых фронтов волн между соответствующими каналами реальной и виртуальной апертур, участвующими в формировании соответствующих сигналов каналов виртуальной апертуры. Технический результат заключается в достижении углового сверхразрешения и точности измерения угловых координат, определяемых суммой реальной апертуры цифровой антенной решетки и синтезированной виртуальной, при произвольном местоположении элементов групповой цели с разными ЭПР и различном положении ДН. 14 ил.
Реферат Свернуть Развернуть

Области техники, к которым относится изобретение

Заявляемый способ относится к области радиотехники, а именно к радиоэлектронным системам, применяющим цифровые антенные решетки.

Уровень техники

Описание аналогов заявляемого способа

Известны устройство синтеза апертур (раскрывов) антенных решеток (АР) (Variable aperture antenna system, патент США, кл. 343-100, №3267472, опубл. 16.08.1966 г.), а также способы как углового сверхразрешения мощных источников помех (В.Т. Ермолаев, А.Г. Флаксман. Методы оценивания параметров источников сигналов и помех, принимаемых антенной решеткой. - Н. Новгород: изд. Нижегородского государственного университета им. Н.И. Лобачевского, 2007, стр. 56; Радиоэлектронные системы: Основы построения и теория. Справочник. Изд. 2-е, перераб, и доп. / Я.Д. Ширман, С.Т. Багдасарян, А.С. Маляренко и др. / Под ред. Я.Д. Ширмана. - М.: Радиотехника, 2007, стр. 442 - стр. 445), так и обужения диаграмм направленности (ДН) АР при аналоговом ее формировании (Многофункциональная радиолокационная станция для летательных аппаратов, патент РФ, МПК G01S 13/90, №2319173, опубл. 10.03.2008 г.) или цифровом (Задорожный В.В., Ларин А.Ю., Литвинов А.В., Помыслов А.С. Метод обужения диаграмм направленности цифровой антенной решетки // Успехи современной радиоэлектроники. - 2013. - №8, стр. 94 - стр. 100).

Несмотря на возможность управления в аналогах диаграммами направленности, превысить угловое разрешение элементов групповой цели и точности измерения их угловых координат, определяемых реальной апертурой антенны, в приведенных аналогах невозможно.

Исходя из этого, общим недостатком приведенных аналогов является неосуществимость повышения углового разрешения элементов групповой цели и точности измерения их угловых координат без увеличения реальной апертуры антенны.

Описание ближайшего аналога (прототипа) заявляемого способа

Наиболее близким к заявляемому способу по максимальному количеству сходных признаков является способ углового сверхразрешения цифровыми антенными решетками, приведенный Лаговским Б.А. в статье «Сверхразрешение на основе синтеза апертуры цифровыми антенными решетками», опубликованной в журнале «Антенны» 2013 года, №6 на стр. 9 … стр. 15.

Действия в известном способе и их последовательность поясняются с помощью функциональной схемы, приведенной на фиг. 1.

Электромагнитные волны, отраженные элементами групповой цели, принимают и обрабатывают в каждом из каналов 1 реальной апертуры цифровой антенной решетки (ЦАР), в результате чего на их выходах присутствуют комплексные цифровые сигналы реальной апертуры 7 (Справочник по радиолокации / Под ред. М.И. Сколника. Пер. с англ. В 2 книгах. Книга 2. - М.: Техносфера, 2015, стр. 1282 - стр. 1284, рис. 25.22). При этом каждый из парциальных лучей 9 многолучевой диаграммы направленности ЦАР формируют путем одновременного суммирования 3 согласованных во времени комплексных цифровых сигналов каналов реальной 8 и виртуальной 13 апертур, которые получают из сигналов каналов реальной 7 и виртуальной 12 апертур путем устранения у них в одноименных парциальных лучах взаимного временного рассогласования 2 (Справочник по радиолокации / Под ред. М.И. Сколника. Пер. с англ. В 2 книгах. Книга 2. - М.: Техносфера, 2015, стр. 1282 - стр. 1284, рис. 25.21).

Устранение временного рассогласования 2 для узкополосных сигналов в пространственно-временном смысле осуществляется путем цифрового сдвига фазы, а для широкополосных сигналов в пространственно-временном смысле - путем задержки цифровых отсчетов (Справочник по радиолокации / Под ред. М.И. Сколника. Пер. с англ. В 2 книгах. Книга 2. - М.: Техносфера, 2015, стр. 1282 - стр. 1284, рис. 25.21).

Причем комплексные цифровые сигналы каналов виртуальной апертуры 12 формируют из комплексных цифровых сигналов каналов реальной апертуры 7, для чего у них вначале оценивают 4 значения амплитуд и угловых координат каждого из источников сигналов 10, а затем полученные оценки 10 экстраполируют 5 и получают в соответствующих каналах виртуальной апертуры сигналы от каждого из источников 11, после этого формируют комплексные цифровые сигналы соответствующего канала виртуальной апертуры 12 путем суперпозиции 6 сигналов от каждого из источников 11.

В итоге этого ширина любого формируемого парциального луча 8 в многолучевой ДН цифровой антенной решетки с синтезированной виртуальной апертурой должна уменьшиться, по сравнению с ЦАР с N каналами реальной апертуры, в [(Q-1)N+N]/N=Q раз, где (Q-1)N - число каналов виртуальной апертуры.

Однако в известном способе угловое сверхразрешение и точность измерения угловых координат, определяемые суммой реальной апертуры цифровой антенной решетки и синтезированной виртуальной, достигаются только в частном случае, когда одновременно выполняются следующие условия: источники сигналов имеют равную эффективную поверхность рассеяния и равные начальные фазы, расположены симметрично относительно нормали к апертуре, угловое направление максимума ДН парциального луча совпадает с нормалью. Между тем в ЦАР формируют, как правило, многолучевые ДН, поскольку это одно из наиболее значимых преимуществ цифровых антенных решеток (Справочник по радиолокации / Под ред. М.И. Сколника. Пер. с англ. В 2 книгах. Книга 2. - М.: Техносфера, 2015, стр. 1282 - стр. 1284, рис. 25.22), что приводит к нарушению последнего условия. Кроме того, при функционировании радиоэлектронного средства с многолучевой ЦАР в реальных условиях остальные условия также будут нарушены.

Подтверждением нарушении указанных условий, приводящих к невыполнимости ожидаемых углового сверхразрешения и точности измерения угловых координат, являются итоги работы (Лаговский Б.А. Восстановление изображения групповой цели цифровыми антенными решетками // Антенны. - 2011. - №2, стр. 44 - стр. 45, рис. 4 - рис. 5) и математического моделирования, результаты которого приведены на фиг. 3 … фиг. 9.

Основными причинами снижения в известном способе углового сверхразрешения и точности измерения угловых координат являются не только низкая точность выбранного метода экстраполяции сигналов каналов виртуальной апертуры, но и тем, что исходные данные экстраполяции, определяемые апостериорной точностью оценок параметров сигналов на выходе каналов реальной апертуры, не могут быть установлены с высокой точностью.

Это вытекает из того, что точность оценок фаз, обусловливаемых угловыми координатами источников сигналов, и амплитуд определяется отношением сигнал/помеха (Радиоэлектронные системы: Основы построения и теория. Справочник. Изд. 2-е, перераб. и доп. / Я.Д. Ширман, С.Т. Багдасарян, А.С. Маляренко и др. / Под ред. Я.Д. Ширмана. - М.: Радиотехника, 2007, стр. 326). Между тем в известном способе на выходе каналов реальной апертуры в качестве помехи рассматривают только собственный шум и поэтому, в качестве борьбы с ним, увеличивают отношение сигнал/шум путем «коллективной» обработки. Однако на выходе каналов реальной апертуры помехой является не только шум, но и другие полезные сигналы, находящиеся в разрешаемом объеме, определяемом реальной апертурой (Радиоэлектронные системы: Основы построения и теория. Справочник. Изд. 2-е, перераб. и доп. / Я.Д. Ширман, С.Т. Багдасарян, А.С. Маляренко и др. / Под ред. Я.Д. Ширмана. - М.: Радиотехника, 2007, стр. 282, формула (18.38)). В результате этого точности оценок параметров сигналов на выходе каналов реальной апертуры, являющихся исходными данными экстраполяции, будут низкими, ввиду негативного влияния других сигналов, находящихся в разрешаемом объеме, определяемом реальной апертурой. Устранить их отрицательное влияние на точность апостериорных оценок параметров сигналов на выходе каналов реальной апертуры в известном способе невозможно, хотя их негативное действие на точности будет большим, чем воздействие шума.

Все это вызывает низкую точность исходных данных экстраполяции сигналов виртуальной апертуры.

Кроме того, в результате низкой точности формирования сигналов виртуальной апертуры, вероятны случаи пропадания сигналов и появление ложных.

Все вышеизложенное свидетельствует о недостатке известного способа, заключающегося в том, что при произвольном пространственном местоположении элементов групповой цели с разными ЭПР и различном положении ДН угловое сверхразрешение и точность измерения угловых координат, которые должны определяться суммой реальной апертуры цифровой антенной решетки и синтезированной виртуальной, не достигаются. Кроме того вероятны случаи пропадания сигналов и появление ложных.

Раскрытие предлагаемого способа

В основу изобретения положена задача, заключающаяся в разработке способа углового сверхразрешения цифровыми антенными решетками, лишенного вышеизложенных недостатков, в котором при произвольном местоположении элементов групповой цели с разными ЭПР и различном положении ДН достигаются угловое сверхразрешение и точность измерения угловых координат, определяемые суммой реальной апертуры цифровой антенной решетки и синтезированной виртуальной, и исключаются случаи пропадания сигналов и появления ложных.

Указанный технический результат достигается тем, что в известном способе углового сверхразрешения цифровыми антенными решетками электромагнитные волны, отраженные элементами групповой цели, принимают и обрабатывают в каждом из каналов реальной апертуры цифровой антенной решетки, в результате чего на их выходах присутствуют комплексные цифровые сигналы реальной апертуры, при этом каждый из парциальных лучей многолучевой диаграммы направленности цифровой антенной решетки формируют путем одновременного суммирования согласованных во времени комплексных цифровых сигналов каналов реальной и виртуальной апертур, которые получают из сигналов каналов реальной и виртуальной апертур путем устранения у них в одноименных парциальных лучах взаимного временного рассогласования, в котором комплексные цифровые сигналы каналов виртуальной апертуры формируют из комплексных цифровых сигналов каналов реальной апертуры путем их задержки во времени, причем задержки во времени в одноименных парциальных диаграммах направленности априорно определяют по разности хода фазового фронта волны между каналами реальной и виртуальной апертур, участвующими в формировании соответствующих сигналов каналов виртуальной апертуры, чем обеспечивают угловое сверхразрешение и точность измерения угловых координат, определяемые суммой реальной апертуры цифровой антенной решетки и синтезированной виртуальной.

Благодаря введению в известный способ совокупности существенных отличительных признаков, обеспечиваются угловое сверхразрешение и точность измерения угловых координат, определяемые суммой реальной апертуры цифровой антенной решетки и синтезированной виртуальной, при произвольном местоположении элементов групповой цели с разными ЭПР и различном положении ДН.

Сущность заявляемого способа заключается в том, что при формировании комплексных цифровых сигналов каналов виртуальной апертуры исключается негативное влияние не только шумов, но и других полезных сигналов, находящихся в разрешаемом объеме, определяемом реальной апертурой. Это достигается исключением операции оценки исходных данных, определяемых с низкой точностью и приводящих к неточной экстраполяции сигналов каналов виртуальной апертуры. Вместо этих действий комплексные цифровые сигналы каналов виртуальной апертуры формируются путем задержки во времени соответствующих комплексных цифровых сигналов каналов реальной апертуры. Данная задержка априорно безошибочно определяется по разности хода фазового фронта волны между каналами реальной и виртуальной апертур в одноименных парциальных диаграммах направленности, участвующими в формировании соответствующих сигналов каналов виртуальной апертуры.

Использование новой совокупности операций, позволяющей точно априорно формировать сигналы каналов виртуальной апертуры, обеспечивает при произвольном пространственном местоположении элементов групповой цели с разными ЭПР и различном положении ДН угловое сверхразрешение и точность измерения угловых координат, определяемые суммой реальной апертуры цифровой антенной решетки и синтезированной виртуальной.

Краткое описание чертежей

На фиг. 1 приведена функциональная схема устройства, реализующего известный способ сверхразрешения на основе синтеза апертуры цифровыми антенными решетками.

На фиг. 2 приведена функциональная схема устройства, реализующего предлагаемый способ углового сверхразрешения путем синтеза апертуры цифровыми антенными решетками.

На фиг. 3 … фиг. 9 приведены результаты моделирования нормированных диаграмм направленности по мощности линейной ЦАР с 64 реальными каналами Fr64(θ) (точки), с 640 реальными каналами Fr640(θ) (сплошная линия с символом «ромб»), с 640 каналами, из которых 64 реальных, а 576 виртуальных канала сформировано, как и в известном способе, в результате прогноза по методу Берга FV640(θ) (пунктир).

На фиг. 3 приведены результаты моделирования диаграмм направленности по мощности линейной ЦАР при приеме сигналов от двух источников равной мощности и равными начальными фазами. Ось ДН реальной ЦАР совпадает с направлением нормали к апертуре, источники сигналов расположены на угловых направлениях θ1=-0,2°, θ2=0,2° относительно оси.

На фиг. 4 приведены результаты моделирования диаграмм направленности по мощности линейной ЦАР при приеме сигналов от трех источников равной мощности и равными начальными фазами. Ось ДН реальной ЦАР совпадает с направлением нормали к апертуре, источники сигналов расположены на угловых направлениях θ1=-0,2°, θ2=0,2°, θ3=0,65° относительно оси.

На фиг. 5 приведены результаты моделирования диаграмм направленности по мощности линейной ЦАР при приеме сигналов от двух источников равной мощности и равными начальными фазами. Ось ДН реальной ЦАР смещена на 1° относительно нормали к апертуре, источники сигналов расположены на угловых направлениях θ1=-0,2°, θ2=0,15° относительно оси.

На фиг. 6 приведены результаты моделирования диаграмм направленности по мощности линейной ЦАР при приеме сигналов от двух источников с одинаковыми начальными фазами. Мощность первого сигнала в два раза меньше второго. Ось ДН реальной ЦАР смещена на 1° относительно нормали к апертуре, источники сигналов расположены на угловых направлениях θ1=-0,2°, θ2=0,15° относительно оси.

На фиг. 7 приведены результаты моделирования диаграмм направленности по мощности линейной ЦАР при приеме сигналов от двух источников с равными мощностями. Начальная фаза второго сигнала отличается от начальной фазы первого сигнала на 3π/4. Ось ДН реальной ЦАР смещена на 1° относительно нормали к апертуре, источники сигналов расположены на угловых направлениях θ1=-0,2°, θ2=0,15° относительно оси.

На фиг. 8 приведены результаты моделирования диаграмм направленности по мощности линейной ЦАР при приеме сигналов от трех источников равной мощности и с одинаковыми начальными фазами. Ось ДН реальной ЦАР смещена на 1° относительно нормали к апертуре, источники сигналов расположены на угловых направлениях θ1=-0,2°, θ2=0,15°, θ3=0,65° относительно оси.

На фиг. 9 приведены результаты моделирования диаграмм направленности по мощности линейной ЦАР при приеме сигналов от трех источников равной мощности. Начальные фазы второго и третьего сигналов отличаются от начальной фазы первого сигнала на (-π/4) и (-3π/4), соответственно. Ось ДН реальной ЦАР смещена на 1° относительно нормали к апертуре, источники сигналов расположены на угловых направлениях θ1=-0,2°, θ2=0,15°, θ3=0,65° относительно оси.

На фиг. 10 … фиг. 14 приведены результаты моделирования нормированных диаграмм направленности по мощности линейной ЦАР с 64 реальными каналами Fr64(θ) (точки), с 640 реальными каналами Fr640(θ) (сплошная линия с символом «ромб»), с 640 каналами FV640(θ), из которых 64 реальных, а 576 виртуальных каналов сформировано предлагаемым способом (пунктир).

На фиг. 10 приведены результаты моделирования диаграмм направленности по мощности линейной ЦАР при приеме сигналов от двух источников равной мощности и одинаковыми начальными фазами. Ось ДН реальной ЦАР смещена на 1° относительно нормали к апертуре, источники сигналов расположены на угловых направлениях θ1=-0,2°, θ2=0,15° относительно оси.

На фиг. 11 приведены результаты моделирования диаграмм направленности по мощности линейной ЦАР, при приеме сигналов от двух источников с одинаковыми начальными фазами, мощность первого сигнала в два раза меньше второго. Ось ДН реальной ЦАР смещена на 1° относительно нормали к апертуре, источники сигналов расположены на угловых направлениях θ1=-0,2°, θ2=0,15° относительно оси.

На фиг. 12 приведены результаты моделирования диаграмм направленности по мощности линейной ЦАР при приеме сигналов от двух источников равной мощности. Начальная фаза второго сигнала отличается от начальной фазы первого сигнала на (3π/4). Ось ДН реальной ЦАР смещена на 1° относительно нормали к апертуре, источники сигналов расположены на угловых направлениях θ1=-0,2°, θ2=0,15° относительно оси.

На фиг. 13 приведены результаты моделирования диаграмм направленности по мощности линейной ЦАР при приеме сигналов от трех источников равной мощности и равными начальными фазами. Ось ДН реальной ЦАР смещена на 1° относительно нормали к апертуре, источники сигналов расположены на угловых направлениях θ1=-0,2°, θ2=0,15°, θ3=9,65° относительно оси.

На фиг. 14 приведены результаты моделирования диаграмм направленности по мощности линейной ЦАР при приеме сигналов от трех источников равной мощности. Начальные фазы второго и третьего сигналов отличаются от начальной фазы первого сигнала на (-π/4) и (-3π/4), соответственно. Ось ДН реальной ЦАР смещена на 1° относительно нормали к апертуре, источники сигналов расположены на угловых направлениях θ1=-0,2°, θ2=0,15°, θ3=0,65° относительно оси.

Осуществление изобретения

Действия в заявленном способе и их последовательность поясняются с помощью функциональной схемы, приведенной на фиг. 2.

Заявленный способ углового сверхразрешения цифровыми антенными решетками, заключающийся в том, что электромагнитные волны, отраженные элементами групповой цели, принимают и обрабатывают в каждом из каналов 1 реальной апертуры цифровой антенной решетки, в результате чего на их выходах присутствуют комплексные цифровые сигналы реальной апертуры 7. Каждый из парциальных лучей 9 многолучевой диаграммы направленности цифровой антенной решетки формируют путем одновременного суммирования согласованных во времени комплексных цифровых сигналов каналов реальной 8 и виртуальной 13 апертур. Их получают из сигналов каналов реальной 7 и виртуальной 12 апертур путем устранения у них в одноименных парциальных лучах взаимного временного рассогласования 2. Для определения временного рассогласования 2 сигналов каналов реальной 7 и виртуальной 12 апертур используют информацию о направлении парциальных диаграмм направленности 9 многолучевой диаграммы направленности θk, которая поступает от процессора управления ЦАР.

Комплексные цифровые сигналы каналов виртуальной апертуры 12 данного парциального луча формируют из комплексных цифровых сигналов каналов реальной апертуры 7 их задержкой во времени 14, причем задержки во времени в одноименных парциальных диаграммах направленности априорно определяют разностью хода фазового фронта волны между каналами реальной 7 и виртуальной 12 апертур, участвующими в формировании соответствующих сигналов каналов виртуальной апертуры 12. Как и при устранении временного рассогласования 2 для сигналов реальной апертуры, узкополосных в пространственно-временном смысле, задержка осуществляется путем цифрового сдвига фазы, а в случае их широкополосности в пространственно-временном смысле - задержкой цифровых отсчетов.

В результате этого обеспечивают угловое сверхразрешение и точность измерения угловых координат, которые определяются суммой реальной апертуры цифровой антенной решетки и синтезированной виртуальной для любых реальных условий.

Правомерность такого формирования комплексных цифровых сигналов каналов виртуальной апертуры возможности можно обосновать следующим образом.

Множитель k-го парциального луча линейной ЦАР fr(θ) с реальной апертурой, максимум излучения которого направлен под углом θk, описывают следующим выражением (Вендик О.Г., Парнес М.Д. Антенны с электрическим сканированием. Ведение в теорию / Под ред. Л.Д. Бахраха. - М.: Сайнс-Пресс. 2001, стр. 76, форм. (3.1.3))

где - номер канала реальной апертуры; QN - число каналов реальной апертуры; λ - длина волны; d, τфr=dsinθk/с - расстояние между смежными каналами реальной апертуры и разность хода фазового фронта волны между ними; - фазовое запаздывание фазового фронта волны в n-м элементе k-го парциального луча; с - скорость света.

Выражение (1) показывает, что множитель k-го парциального луча линейной ЦАР frk(θ) с QN каналами можно представить в виде слагаемых, каждое из которых описывает множитель парциального луча с N канальной апертурой.

Из соотношения (1) вытекает возможность эквивалентного представления QN канальной реальной апертуры в виде N канальной реальной апертуры и (Q-1)N канальную виртуальной, которая, согласно (1), должна иметь такие же фазовые набеги фазового фронта, как у реальной апертуры такого же размера. В итоге, если сигналы каналов виртуальной апертуры будут иметь такие же фазовые набеги фазового фронта, как реальная апертура такого же размера, то множитель апертуры k-го парциального луча fνk(θ) можно представить суммой множителей N канальной реальной апертуры frkN(θ) и (Q-1)N канальной виртуальной fνk(Q-1)N(θ)

где - множитель k-го парциального луча N канальной ЦАР с реальной апертурой;

- множитель k-го парциального луча (Q-1)N канальной виртуальной апертуры с (Q-1) итерациями N канальной реальной апертуры.

Из выражение (2) следует, что для формирования сигналов каналов виртуальной апертуры требуется вводить соответствующие фазовые сдвиги для каналов виртуальной апертуры, определяемые местоположением канала в виртуальной апертуре. Поскольку фазовые сдвиги определяются разностью хода фазового фронта волны, то априорная разность хода фазового фронта волны в одноименном парциальном луче τфrν, между nν-м и nr-м каналами виртуальной и реальной апертур, участвующими в формировании соответствующих сигналов каналов виртуальной апертуры, будет равна τфrν=(nν-nr)dsinθk/c. Тогда, после ввода дополнительных задержек по времени в сигнал nr-го канала реальной апертуры, равного τфrν, получают фазовые сдвиги сигналов каналов виртуальной апертуры, которые будут совпадать с фазовыми сдвигами сигналов канала реальной апертуры, размер которой равен виртуальной.

Преимущество заявляемого способ состоит в том, что сигналы виртуальной апертуры в ЦАР формируют из комплексных цифровых сигналов каналов реальной апертуры с исключением негативного влияния не только шумов, но и других полезных сигналов, находящихся в разрешаемом объеме, определяемом реальной апертурой. Этим, при произвольном пространственном местоположении элементов групповой цели с разными ЭПР и различном положении ДН, обеспечивают угловое сверхразрешение и точность измерения угловых координат, определяемые суммой реальной апертуры цифровой антенной решетки и синтезированной виртуальной, а также исключают как пропадание сигналов, так и появление ложных.

Подтверждение получения указанного заявителем технического результата

Для подтверждения ожидаемого технического результата заявленного способа формирования сигналов виртуальной апертуры было проведено моделирование. Моделирование проводилось для условий, аналогичных условиям моделирования нормированных диаграмм направленности по мощности известным способом (фиг. 5 … фиг. 9). Итоги математического моделирования нормированных диаграмм направленности по мощности заявляемым способом представлены на фиг. 10 … фиг. 14.

Результаты моделирования подтвердили возможность обеспечить заявляемым способом угловое сверхразрешение и точность измерения угловых координат, определяемые суммой реальной апертуры цифровой антенной решетки и синтезированной виртуальной, при произвольном пространственном местоположении элементов групповой цели с разными ЭПР и различном положении ДН, а также исключить как пропадание сигналов, так и появление ложных.

Способ углового сверхразрешения цифровыми антенными решетками, заключающийся в том, что электромагнитные волны, отраженные элементами групповой цели, принимают и обрабатывают в каждом из каналов реальной апертуры цифровой антенной решетки, в результате чего на их выходах присутствуют комплексные цифровые сигналы реальной апертуры, при этом каждый из парциальных лучей многолучевой диаграммы направленности цифровой антенной решетки формируют путем одновременного суммирования согласованных во времени комплексных цифровых сигналов каналов реальной и виртуальной апертур, которые получают из сигналов каналов реальной и виртуальной апертур путем устранения у них в одноименных парциальных лучах взаимного временного рассогласования, отличающийся тем, что комплексные цифровые сигналы каналов виртуальной апертуры формируют из комплексных цифровых сигналов каналов реальной апертуры путем их задержки во времени, причем задержки во времени в одноименных парциальных диаграммах направленности априорно определяют по разности хода фазового фронта волны между каналами реальной и виртуальной апертур, участвующими в формировании соответствующих сигналов каналов виртуальной апертуры, чем обеспечивают угловое сверхразрешение и точность измерения угловых координат, определяемые суммой реальной апертуры цифровой антенной решетки и синтезированной виртуальной.
СПОСОБ УГЛОВОГО СВЕРХРАЗРЕШЕНИЯ ЦИФРОВЫМИ АНТЕННЫМИ РЕШЕТКАМИ
СПОСОБ УГЛОВОГО СВЕРХРАЗРЕШЕНИЯ ЦИФРОВЫМИ АНТЕННЫМИ РЕШЕТКАМИ
СПОСОБ УГЛОВОГО СВЕРХРАЗРЕШЕНИЯ ЦИФРОВЫМИ АНТЕННЫМИ РЕШЕТКАМИ
СПОСОБ УГЛОВОГО СВЕРХРАЗРЕШЕНИЯ ЦИФРОВЫМИ АНТЕННЫМИ РЕШЕТКАМИ
СПОСОБ УГЛОВОГО СВЕРХРАЗРЕШЕНИЯ ЦИФРОВЫМИ АНТЕННЫМИ РЕШЕТКАМИ
СПОСОБ УГЛОВОГО СВЕРХРАЗРЕШЕНИЯ ЦИФРОВЫМИ АНТЕННЫМИ РЕШЕТКАМИ
СПОСОБ УГЛОВОГО СВЕРХРАЗРЕШЕНИЯ ЦИФРОВЫМИ АНТЕННЫМИ РЕШЕТКАМИ
Источник поступления информации: Роспатент

Показаны записи 1-7 из 7.
05.02.2019
№219.016.b721

Способ фильтрации сигналов при обнаружении цели и устройство для его осуществления

Изобретение относится к области радиолокации и может быть использовано для стабилизации уровня ложных тревог при обнаружении сигналов. Технический результат - повышение уровня правильного обнаружения малозаметных целей, уменьшение количества ложных помех и ложных обнаружений. Технический...
Тип: Изобретение
Номер охранного документа: 0002678822
Дата охранного документа: 04.02.2019
07.02.2019
№219.016.b75f

Способ компенсации импульсных помех при обнаружении протяженных сигналов и устройство для его осуществления

Изобретение относится к области радиолокации и может быть использовано для компенсации помех при обнаружении протяженных сигналов. Техническим результатом изобретения является повышение уровня правильного обнаружения малозаметных целей, компенсация импульсных помех до применения согласованной...
Тип: Изобретение
Номер охранного документа: 0002679010
Дата охранного документа: 05.02.2019
27.04.2019
№219.017.3c0d

Способ и устройство фильтрации частотно-модулированных сигналов

Изобретение относится к области цифровой обработки сигналов и других отраслей техники, в которых может быть использована цифровая согласованная фильтрация (сжатие) сигналов с внутриимпульсной модуляцией. Технический результат заключается в повышении эффективности обработки реальных...
Тип: Изобретение
Номер охранного документа: 0002685972
Дата охранного документа: 23.04.2019
19.07.2019
№219.017.b694

Мобильная трехкоординатная радиолокационная станция

Изобретение относится к области радиолокации, в частности к универсальным по транспортировке передвижным радиолокационным станциям (РЛС). Мобильная трехкоординатная радиолокационная станция содержит автомобильное шасси (АШ) с рамой, на которой смонтирована аппаратура системы электроснабжения...
Тип: Изобретение
Номер охранного документа: 0002694711
Дата охранного документа: 16.07.2019
03.08.2019
№219.017.bbcf

Адаптивная антенная решетка с предварительным формированием диаграмм направленности каналов

Предлагаемое устройство относится к антенным решеткам и может быть использовано в радиолокации, радиосвязи. Адаптивная антенная решетка с предварительным формированием диаграмм направленности каналов, содержащая излучатели, многоканальную диаграммообразующую схему и адаптивный процессор,...
Тип: Изобретение
Номер охранного документа: 0002696366
Дата охранного документа: 01.08.2019
05.02.2020
№220.017.fe60

Способ формирования диаграммы направленности передающей активной антенной решетки и осесимметричная активная фазированная антенная решетка на его основе

Предлагаемое изобретение относится к антенной технике и может быть использовано в передающих активных антенных решетках в радиолокации и радиосвязи. Достигается наибольший потенциал активной антенной решетки. В способе формирования многолепестковой диаграммы направленности передающей активной...
Тип: Изобретение
Номер охранного документа: 0002713103
Дата охранного документа: 03.02.2020
24.07.2020
№220.018.3786

Полосковая щелевая линейная антенная решетка

Изобретение относится к радиотехнике, в частности к антенным решеткам. Полосковая линейная антенная решетка содержит коллинеарные щелевые излучатели, и делитель мощности на симметричной полосковой линии, выходные полосковые проводники которого замкнуты проводящими перемычками на один из...
Тип: Изобретение
Номер охранного документа: 0002727348
Дата охранного документа: 21.07.2020
Показаны записи 1-1 из 1.
29.05.2019
№219.017.68da

Способ передачи и приема сигналов

Изобретение относится к области радиотехники и может быть использовано в радиосвязи. Достигаемый технический результат - повышение скрытности передачи информации. Способ заключается в одновременном излучении манипулированных по амплитуде и фазе нескольких полезных сигналов и маскирующего...
Тип: Изобретение
Номер охранного документа: 0002438250
Дата охранного документа: 27.12.2011
+ добавить свой РИД