×
13.02.2018
218.016.2662

Результат интеллектуальной деятельности: Способ определения временного интервала при проведении натурных теплофизических исследований наружных стен зданий, выполненных из кирпича, при котором в толще стенового ограждения возникают условия квазистационарного режима теплопередачи

Вид РИД

Изобретение

Аннотация: Использование в строительстве для оценки теплозащитных свойств по результатам теплофизических испытаний в натурных условиях. Сущность способа определения временного интервала при проведении натурных теплофизических исследований наружных стен зданий, выполненных из кирпича, при котором в толще стенового ограждения возникают условия квазистационарного режима теплопередачи, включает измерение температуры наружного и внутреннего воздуха, температуры внутренней и наружной поверхности стены, температуры в 5 точках путем размещения датчиков на равных расстояниях в толще стены. По результатам измерений строится график, на котором выделяются промежутки времени t, в период которых амплитуда колебаний температуры наружного воздуха не более 2°С и длительность которых не менее времени тепловой инерции стены. Находится время прохождения t ближайшего локального экстремума температур от наружной до внутренней поверхности стены. Исключается из начала выделенного промежутка t период времени, равный t Дальнейшие операции проводятся с оставшимся промежутком t. В случае, если t>t, данный интервал исключается из рассмотрения. Задаемся допустимой погрешностью Δt Проверяется условие Δt≤Δt для каждого результата измерения. Если условие не выполняется, данный результат исключается из временного интервала t. Если доля исключенных результатов превышает значение Δt, данный интервал t не подходит для определения сопротивления теплопередаче, рассматривается следующий интервал. Технический результат - расширение диапазона определения теплофизических характеристик ограждающих конструкций. 5 ил.

Изобретение относится к области определения теплофизических характеристик ограждающих конструкций и может быть использовано в строительстве для оценки теплозащитных свойств по результатам испытаний в натурных условиях.

Хорошо известен и широко используется на практике способ определения качества объектов по анализу их сопротивления теплопередаче - см. ГОСТ 26254-84. «Здания и сооружения. Методы определения сопротивления теплопередаче ограждающих конструкций». Введен постановлением Государственного комитета СССР по делам строительства от 02 августа 1984 года № 127, УДК 624.01.001.006.354. Описанный здесь способ заключается в измерении плотности теплового потока (q) через контролируемое ограждение и температуры сред около ее поверхностей (Тн) и (Тв) в течение не менее 15 суток при достижении в контролируемом ограждении стационарного или близкого ему теплового режима. Достижение данного режима определяется по поведению измеряемой температуры наружной (Тпн) и внутренней (Тпв) поверхности ограждения.

Согласно ГОСТ 26254-84 в наружных ограждающих конструкциях стационарный процесс теплопередач и в зависимости от их тепловой инерции устанавливается через 1,5-7,5 суток. Однако на практике при контроле строительных конструкций разница температуры наружного воздуха в ночное и дневное время, например, достигает 10-15 градусов. Это вызывает нестационарные процессы теплопередачи в исследуемых конструкциях и делает метод неприменимым.

Известен способ, которым определяют локальные термические сопротивления обследуемых участков при нестационарном режиме теплопередачи (см. патент № 2219534, кл. G01N 25/72, от 12.09.02 г.). Согласно известному способу определяют временной интервал, необходимый и достаточный для получения достоверного результата. В течение всего временного интервала измеряют периодически температуру и плотность теплового потока на наружной и внутренней поверхностях исследуемого ограждения.

Необходимо сказать, что определение временного интервала, при котором обеспечиваются условия стационарной теплопередачи, являются главным условием необходимым для определения термического сопротивления исследуемого ограждения. В то же время обеспечение в течение выбранного временного интервала постоянства температуры на внутренних и наружных поверхностях не может являться необходимым и достаточным условием стационарности режима теплопередачи (см. патент на изобретение № 2454659, кл. G01N 25/28 от 02.08.2010 г.) или возникновение температурных экстремумов по толщине стены (рис. 5), что приводит к некорректным значениям определяемого термического сопротивления.

Известен способ, в котором определяют термическое сопротивление при нестационарном режиме теплопередачи (см. патент РФ № 2316760, кл. G01N 25/72, от 22.08.05 г.). Согласно известному способу выделяют не менее двух термически однородных зон на термограмме внутренней поверхности объекта. На выделенных участках измеряют и рассчитывают температуры их наружной и внутренней поверхностей при задаваемых значениях теплопроводности (λ). Сравнивают эти температуры в одной системе координат. Задают погрешность между сравниваемыми температурами δ±8,5%. Определяют временные интервалы и на выбранных временных интервалах определяют термическое сопротивление всех участков.

Известен способ (см. патент РФ № 2383008, кл. G01N 25/18, от 19.12.08 г.), позволяющий определить состояние конструкций и их теплопотери при исследовании нестационарных процессов. Известный способ включает измерение средних значений температуры и теплового потока на наружной и внутренней поверхностях в течение нескольких интервалов времени, последовательное изменение величины и начальных значений временных интервалов, фиксацию тех временных интервалов и измеренных средних значений температуры и теплового потока, в которых данные величины отличаются на величину, не превышающую величину заранее заданной погрешности.

Известен способ (см. патент РФ № 2262686, кл. G01N 25/72, от 23.04.04 г.), который используется для технической диагностики неоднородных конструкций по термическому сопротивлению.

В известном способе из нестационарного процесса теплопередачи в течение времени (t) определяют интервал времени, в течение которого в исследуемом объекте реализуется квазистационарный процесс. Для этого рассматривают тепловые потоки qн(t), qв(t) и определяют моменты времени, в которые величины плотности тепловых потоков на противоположных поверхностях ограждения равны с погрешностью Δq≤Δqmax.

Во всех перечисленных способах из нестационарного процесса теплопередачи в течение времени (Т) определяют интервал времени, в течение которого процесс теплопередачи становится стационарным или с небольшой погрешностью, близкой к стационарному. В то же время не учитываются те процессы, которые происходят в толще стены (возникновение физического эффекта встречных тепловых потоков или возникновение локальных температурных экстремумов, которые могут иметь место в выбранном интервале времени и характеризуемый как стационарный по условиям теплопередачи, что и приводит к некорректным значениям определения термического сопротивления.

Ближайшим техническим решением (прототипом) является способ определения термического сопротивления участка элемента конструкции при нестационарном режиме теплопередачи (см. патент РФ № 2457471, кл. G01N 25/18, от 27.07.2012 г.), используется в области измерительной техники. Сущность заключается в определении условий существования квазистационарного режима теплопередачи и его критерия . Из определенных условий квазистационарного режима для конкретного участка выбирают продолжительность временного интервала измерений τmin в зависимости от времени тепловой инерционности участка τин и общую продолжительность интервала измерений τ≥τmin≥3τин. Определяют предельную величину критерия квазистационарности , произвольно выделяют временные промежутки τi и из множества значений (τi) выделяют те временные промежутки τij, где критерий квазистационарности меньше . Эти временные промежутки τij и будут близки к стационарным. При этом сложный для диагностики и обсчета нестационарный режим исключается и известный стационарный способ находит свое применение при определении термического сопротивления участка конструкции.

Общие признаки прототипа и заявленного способа состоят в том, что определяют временной интервал измерений, необходимый и достаточный для обеспечения требуемого уровня достоверности результата. В течение этого временного интервала непрерывно регистрируют на поверхностях исследуемого участка мгновенные значения температур и плотности тепловых потоков, из полученных значений определяют термическое сопротивление участка.

Недостатком прототипа является то, что в изобретении определенный интервал времени, в течение которого процесс теплопередачи определяется условиями существования квазистационарного режима теплопередачи, в то же время не учитываются при выборе временного интервала с квазистационарными условиями существования процессов, которые происходят в толще стены (возникновение эффекта встречных тепловых потоков, возникновение локальных температурных экстремумов), которые могут привести к некорректным значениям определения термического сопротивления.

Техническим результатом является определение при проведении натурных теплофизических исследований натурных наружных стен зданий, выполненных из кирпича, временного интервала, при котором в толще наружной стены возникают квазистационарные условия теплопередачи.

Технический результат достигается тем, что в качестве контролируемых величин принимаются: температура и влажность наружного и внутреннего воздуха; температура наружной и внутренней поверхностей наружной стены; температура и влажность в 5 точках, расположенных на равных расстояниях в толще стены; величина теплового потока, проходящего через толщу стены, данные по указанным величинам через адаптеры поступают в центр управления, а затем на ПК с интервалом измерений - 1 мин (рис. 1).

На рис. 1 показана схема лабораторной установки для определения фактического сопротивления теплопередаче; на рис. 2 - график распределения температур на поверхности и в толще стенового ограждения (01.11.14-25.04.15 г.); на рис. 3 - распределение значений относительной влажности по сечениям толщи стенового ограждения; на рис. 4 - возможное фактическое и теоретическое распределение температуры в толще стены; на рис. 5 - распределение температуры в толще стенового ограждения по времени с выделением временных промежутков со стационарным режимом теплопередачи.

На рисунке 1 показана принципиальная схема установки: 1-5 - датчики температуры и влажности материала, расположенные в толще ограждающей конструкции через 110 мм; 6 - датчик температуры и влажности воздуха в помещении; 7 - датчик температуры и влажности наружного воздуха; 8 - датчик температуры внутренней поверхности; 9 - датчик температуры наружной поверхности; 10 - датчик теплового потока; 11 - адаптеры; 12 - центр управления (теплограф).

Данные, получаемые с экспериментальной установки, отслеживают изменения температуры и влажности снаружи, на поверхности и в толще стенового ограждения (Рис. 2, Рис. 3).

Выбираем для рассмотрения интервалы с постоянной температурой, тепловой поток будет постоянным, если разность tв-tн=const, но это не может быть достаточным условием стационарности режима теплопередачи (см. патент № 2454659, кл. G01N 25/58 от 02.08.2010 г.).

Для исключения временных интервалов с непостоянным тепловым потоком необходимо оставить лишь те интервалы, где распределение температур в толще стенового ограждения будет по прямой (рис. 4).

Среди всего периода измерений количество временных промежутков, удовлетворяющих этому требованию, будет мало или не будет совсем, введем коэффициент Δt:

,

где tф i - фактическое значение температуры в i-ом слое, °С,

tт i - теоретическое значение температуры в i-ом слое, °С, т.е. при линейном распределении температуры в толще стены.

Распределение температур будем считать линейным, если Δt≤Δtтреб, где Δtтреб - допустимая погрешность получения результатов измерения, возможен случай (рис. 4), когда локальные экстремумы будут располагаться не в точках контроля, а между ними, т.е. условие Δt≤Δtтреб будет выполняться, но распределение температур не будет линейным с заданной допустимой погрешностью Δtтреб.

Для нахождения длительности периода, в котором температура в толще стенового ограждения будет распределяться с заданной погрешностью Δtтреб по прямой, определяем время прохождения локального экстремума температуры от наружной поверхности до i-ой измеряемой плоскости, сумма этих временных интервалов tv будет временем прохождения локального экстремума до внутренней поверхности стены.

Выделяем промежутки времени tстац, в период которых амплитуда колебаний температуры наружного воздуха не более 2°С и длительность которых не менее времени тепловой инерции стены (рис. 5).

Находим время прохождения tν ближайшего локального экстремума температур от наружной до внутренней поверхности стены (рис. 5).

Исключаем из начала выделенного промежутка tстац период времени, равный tν. Дальнейшие операции проводим с оставшимся промежутком tстац 1. В случае если tν>tстац, данный интервал исключается из рассмотрения.

Задаемся допустимой погрешностью Δtтреб.

Проверяем условие Δt≤Δtтреб для каждого результата измерения. Если условие не выполняется, данный результат исключается из временного интервала tстац 1. Если доля исключенных результатов превышает значение Δtтреб, данный интервал tстац 1 не подходит для определения сопротивления теплопередаче, рассматривается следующий интервал.

Рассмотрим промежуток времени с 18 по 21 декабря 2014 года. Как видно из рисунка 19, промежуток времени с 18:00 18 декабря по 2:00 20 декабря длительностью 32 часа удовлетворяет условию 1 алгоритма, т.е. больше 24 часов, и амплитуда колебаний температуры не превышает 2°С. Принимаем этот промежуток за tстац (для стен из силикатного кирпича время тепловой инерции 24 часа).

Величина ближайшего локального экстремума температуры наружного воздуха составляет -1°С. Из рисунка 19 величина tv составляет 13 часов.

Исключаем из периода tстац с 18:00 18 декабря по 2:00 20 декабря промежуток времени tv длительностью 13 часов. Оставшийся промежуток времени с 7:00 19 декабря по 2:00 20 декабря принимаем за tстац 1. Длительность промежутка 32-13=19 часов.

Способ определения временного интервала при проведении натурных теплофизических исследований наружных стен зданий, выполненных из кирпича, при котором в толще стенового ограждения возникают условия квазистационарного режима теплопередачи, заключающийся в том, что для исследуемого участка элемента наружной стены по показаниям датчиков строим график распределения температуры в толще стены; определяем временной интервал измерений, обеспечивающий квазистационарные условия теплопередачи; на выбранном временном интервале выделяем промежутки времени t, в период которых амплитуда колебаний температуры наружного воздуха не более 2°C и длительность которых не менее времени тепловой инерции; находим время прохождения t ближайшего локального экстремума температур от наружной до внутренней поверхности; исключаем из выделенного промежутка t период времени t и дальнейшие вычисления проводим с оставшимся промежутком t, в случае если t>t, то данный интервал исключается из рассмотрения и рассматривается следующий временной интервал.
Способ определения временного интервала при проведении натурных теплофизических исследований наружных стен зданий, выполненных из кирпича, при котором в толще стенового ограждения возникают условия квазистационарного режима теплопередачи
Способ определения временного интервала при проведении натурных теплофизических исследований наружных стен зданий, выполненных из кирпича, при котором в толще стенового ограждения возникают условия квазистационарного режима теплопередачи
Способ определения временного интервала при проведении натурных теплофизических исследований наружных стен зданий, выполненных из кирпича, при котором в толще стенового ограждения возникают условия квазистационарного режима теплопередачи
Способ определения временного интервала при проведении натурных теплофизических исследований наружных стен зданий, выполненных из кирпича, при котором в толще стенового ограждения возникают условия квазистационарного режима теплопередачи
Источник поступления информации: Роспатент

Показаны записи 141-150 из 156.
20.04.2023
№223.018.4efa

Вибрационный насос

Изобретение относится к вибрационным насосам для водоподъема в различных отраслях народного хозяйства. Вибрационный насос содержит корпус 1, крышки 2, 3 с отверстиями 4 для всасывания воды, электромагнит 6, размещенный в корпусе 1 и установленный на каркасе 7, в котором размещен магнитопровод...
Тип: Изобретение
Номер охранного документа: 0002793377
Дата охранного документа: 31.03.2023
11.05.2023
№223.018.53c7

Способ измерения объема и определения плотности пористых материалов

Изобретение относится к технике измерения объемов и определения плотностей пористых тел произвольной формы, различной влажности, а также фракционного состава и может использоваться во всех областях исследования или применения пористых объектов. Технический результат - повышение точности...
Тип: Изобретение
Номер охранного документа: 0002795370
Дата охранного документа: 03.05.2023
15.05.2023
№223.018.59bb

Способ выборочных рубок и рубок ухода за лесом машинами на возобновленных искусственным путем лесных площадях

Изобретение относится к лесной промышленности, в частности к проведению выборочных рубок и рубок ухода за лесом на возобновленных искусственным путем площадях с посадками, предусматривающими чередование узких полос с рядным размещением лесных культур в каждой из них и междурядий между ними с...
Тип: Изобретение
Номер охранного документа: 0002761407
Дата охранного документа: 08.12.2021
20.05.2023
№223.018.6751

Комбинированный моноблочный насос с мокрым электродвигателем

Изобретение относится к машиностроению и может быть использовано для перекачивания жидкости, в частности, шнековым насосам с мокрым ротором. Комбинированный моноблочный насос с мокрым электродвигателем, включающий в себя корпус с крышками, подшипники качения, установленные в крышках, а также...
Тип: Изобретение
Номер охранного документа: 0002794619
Дата охранного документа: 24.04.2023
20.05.2023
№223.018.677f

Способ получения фотокаталитических пленок оксида титана и установка для его осуществления

Изобретение относится к способу получения фотокаталитической пленки оксида титана и установке магнетронного распыления для осуществления указанного способа. Подложку из стекла толщиной 2-8 мм промывают в ультразвуковой ванне с дистиллированной водой, затем чистят в парах этилового спирта....
Тип: Изобретение
Номер охранного документа: 0002794659
Дата охранного документа: 24.04.2023
21.05.2023
№223.018.6ae2

Набор синтетических олигонуклеотидов для определения уровня экспрессии генов dhn1, dhn7, sgs3, cpk, cyp450, erd3, ccoaomt1, lea и act сосны обыкновенной (pinus sylvestris l.) методом пцр в реальном времени

Изобретение относится к области биотехнологии, в частности к наборам синтетических олигонуклеотидов, и может быть использовано для определения уровня экспрессии генов сосны обыкновенной (.) методом ПЦР в реальном времени. Технический результат заключается в повышении надежности оценки уровня...
Тип: Изобретение
Номер охранного документа: 0002795627
Дата охранного документа: 05.05.2023
23.05.2023
№223.018.6d61

Способ изготовления конструкционного материала

Изобретение относится к деревообрабатывающей промышленности, в частности к клееным деревянным конструкциям. Технический результат – снижение удельного веса конструкционного материала, рациональное использование отходов фанерного производства за счет эффективной переработки отходов от форматной...
Тип: Изобретение
Номер охранного документа: 0002760899
Дата охранного документа: 01.12.2021
16.06.2023
№223.018.7c18

Продольное соединение оцилиндрованных бревен с повышенным тепловым сопротивлением

Изобретение относится к деревообрабатывающей промышленности, в частности к деревянному малоэтажному домостроению. Продольное соединение оцилиндрованных бревен с повышенным тепловым сопротивлением включает выполненные в месте соединения бревен продольные пазы. Продольные пазы расположены сверху...
Тип: Изобретение
Номер охранного документа: 0002744792
Дата охранного документа: 15.03.2021
17.06.2023
№223.018.7ee1

Аппаратно-программный радиокомплекс для дистанционного зондирования атмосферы

Изобретение относится к радиотехнике, предназначено для дистанционного зондирования атмосферы Земли и может использоваться в радиокомплексах для краткосрочного прогнозирования условий распространения радиоволн на трассах связи. Технический результат состоит в обеспечении получения оперативной...
Тип: Изобретение
Номер охранного документа: 0002774313
Дата охранного документа: 17.06.2022
17.06.2023
№223.018.8000

Установка для отделения бересты от луба

Изобретение относится к деревоперерабатывающей промышленности, в частности к оборудованию для отделения бересты от луба. Устройство снабжено станиной, в противоположных углах которой шарнирно установлены секции, каждая из которых снабжена г–образным корпусом, на свободных концах которого с...
Тип: Изобретение
Номер охранного документа: 0002760591
Дата охранного документа: 29.11.2021
Показаны записи 31-36 из 36.
10.05.2018
№218.016.44c1

Измерительный комплекс контроля теплотехнических параметров наружной стены при длительных режимах испытаний в натурных условиях

Изобретение относится к тепловым испытаниям и может быть использовано для в процессе испытаний ограждающих конструкций. Предложен комплекс контроля теплотехнических параметров наружной стены при длительных режимах испытаний в натурных условиях, который включает датчики температуры (ДТП) и...
Тип: Изобретение
Номер охранного документа: 0002650054
Дата охранного документа: 06.04.2018
20.02.2019
№219.016.c272

Устройство для заполнения длинномерных оболочек порошковым материалом

Изобретение может быть использовано в химической, энергетической и других отраслях промышленности. Устройство содержит вибрационный уплотнитель, длинномерные оболочки и узел распределения порошкового материала. Узел распределения материала выполнен в виде чаши, в днище которой выполнены...
Тип: Изобретение
Номер охранного документа: 0002457988
Дата охранного документа: 10.08.2012
12.08.2019
№219.017.bef9

Способ определения изменения термического сопротивления и коэффициента теплопроводности при возникновении в наружной стене физического эффекта встречных тепловых потоков по результатам теплофизических испытаний в натурных условиях

Изобретение относится к области определения теплофизических характеристик ограждающих конструкций и может быть использовано в строительстве для оценки теплозащитных свойств по результатам испытаний в натурных условиях. Заявлен способ определения изменения термического сопротивления (R) и...
Тип: Изобретение
Номер охранного документа: 0002696674
Дата охранного документа: 05.08.2019
24.11.2019
№219.017.e61c

Система и способ анализа содержимого зашифрованного сетевого трафика

Настоящее изобретение предназначено для получения доступа к зашифрованным данным в рамках защищенного сетевого соединения между процессами. Технический результат настоящего изобретения заключается в расширении арсенала средств, предназначенных для реализации назначения заявленного изобретения....
Тип: Изобретение
Номер охранного документа: 0002706894
Дата охранного документа: 21.11.2019
17.01.2020
№220.017.f6a5

Способ прогноза развития гипербилирубинемии у доношенных новорожденных, родившихся способом операции кесарева сечения

Изобретение относится к медицине, а именно к педиатрии, анестезиологии и реаниматологии, акушерству и гинекологии, и может быть использовано для прогноза развития гипербилирубинемии у доношенных новорожденных, родившихся путем операции кесарева сечения. Для этого в пуповинной крови определяют...
Тип: Изобретение
Номер охранного документа: 0002711107
Дата охранного документа: 15.01.2020
18.07.2020
№220.018.341b

Система и способ подключения протокола безопасного разрешения dns

Изобретение относится к области вычислительной техники. Технический результат заключается в повышении конфиденциальности, безопасности и обеспечении доступности сетевого соединения при использовании системы доменных имен. Технический результат достигается за счет подключения протокола...
Тип: Изобретение
Номер охранного документа: 0002726879
Дата охранного документа: 16.07.2020
+ добавить свой РИД