×
13.02.2018
218.016.23e7

Результат интеллектуальной деятельности: ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ

Вид РИД

Изобретение

№ охранного документа
0002642522
Дата охранного документа
25.01.2018
Аннотация: Изобретение относится к способам с использованием двойной метки для определения местоположения движущихся объектов в шахте. Достигаемый технический результат – повышение точности определения местоположения движущегося объекта в шахте. Указанный результат достигается за счет того, что высокоточный способ определения местоположения с использованием двойной метки включает в себя способ определения местоположения движущегося объекта первого типа в шахте и способ определения местоположения движущегося объекта второго типа в шахте; способ включает в себя этапы, на которых: осуществляют установку двух меток определения местоположения по горизонтали или по вертикали на движущемся объекте и выполняют их с возможностью осуществления связи с двумя базовыми станциями определения местоположения, установленными вдоль потолка выработки, и получают местоположение движущегося объекта в реальном времени с помощью построения функции оптимизации между расстоянием, определенным по показателю уровня принимаемого сигнала, и расчетным расстоянием между меткой и базовой станцией определения местоположения и поиска минимального значения; решают функцию оптимизации с помощью итерационного процесса, включающего этап определения начального итерационного значения и шага итерации в левом/правом направлении. Способ применим для определения местоположения объектов с профилем в виде полосы, параллельным плоскости выработки (например, шахтная тележка или врубовая машина), или объектов с профилем в виде полосы, перпендикулярным плоскости выработки (например, рабочий). 1 з.п. ф-лы, 2 ил.

Область техники

Настоящее изобретение относится к высокоточным способам с использованием двойной метки для определения местоположения, в частности к высокоточным способам с использованием двойной метки для определения местоположения движущихся объектов в шахте.

Уровень техники

В известных системах определения местоположения в шахтах, как правило, расстояние между позиционируемым объектом и базовой станцией определения местоположения определяется посредством измерения показателя уровня принимаемого сигнала (RSSI), а затем положение объекта вычисляется с использованием геометрического способа (например, методом трилатерации). Однако влияние эффекта затухания на точность измерения расстояний по показателю уровня принимаемого сигнала является очень существенным, что приводит к очень низкой точности измерения расстояний. Следовательно, при использовании в шахте систем определения местоположения, использующих единственную метку, точность измерений является очень низкой, результат определения местоположения является изменчивым, и возникают сильные отклонения определения местоположения.

Движущиеся объекты в шахтах могут быть классифицированы по их форме на два типа: первым типом движущихся объектов в шахтах являются объекты с профилем в виде полосы, параллельным плоскости выработки (например, вагонетки и врубовые машины); вторым типом движущихся объектов в шахтах являются объекты с профилем в виде полосы, перпендикулярным плоскости выработки (например, рабочие).

Раскрытие сущности изобретения

Задачей настоящего изобретения является предоставление высокоточного способа с использованием двойной метки для определения местоположения движущегося объекта в шахте, для того чтобы решить проблемы шахтной системы определения местоположения, использующую единственную метку, такие как низкую точность, изменчивый результат определения местоположения и сильные отклонения определения местоположения.

Задача настоящего изобретения решена следующим образом: высокоточный способ определения местоположения с использованием двойной метки включает в себя способ определения местоположения движущегося объекта первого типа в шахте и способ определения местоположения движущегося объекта второго типа в шахте.

Конкретно, способ включает в себя этапы, на которых: осуществляют установку двух меток определения местоположения, по горизонтали или по вертикали, на движущемся объекте и выполняют их с возможностью осуществления связи с двумя базовыми станциями определения местоположения, установленными вдоль потолка выработки, и получают местоположение движущегося объекта в реальном времени с помощью построения функции оптимизации между расстоянием, определенным по показателю уровня принимаемого сигнала, и расчетным расстоянием между меткой и базовой станцией определения местоположения и поиска минимального значения.

Способ определения местоположения движущегося объекта первого типа в шахте включает в себя этапы, на которых: осуществляют установку меток U1 и U2 определения местоположения на головной и хвостовой частях объекта, местоположение которого необходимо определить, соответственно, при этом расстояние между меткой U1 определения местоположения и меткой U2 определения местоположения обозначается как L, местоположение объекта в выработке может быть установлено, только если определено местоположение каждой метки, каждая метка может одновременно осуществлять связь с двумя базовыми станциями B1 и В2 определения местоположения, установленными вдоль центральной линии потолка выработки, базовые станции B1 и В2 определения местоположения соединены так, что образуют прямую линию В1В2, проекции меток U1 и U2 определения местоположения на прямой линии В1В2 обозначаются как P1 и Р2 соответственно и |U1P1|=|U2P2|=Н является высотой между меткой и центром потолка выработки; пренебрегают шириной объекта на выработке и принимают одномерную модель определения местоположения, соединяют метки U1 и U2 определения местоположения для образования прямой линии U1U2и выбирают прямую линию U1U2 в качестве горизонтальной оси, при этом горизонтальной координатой U1 является х, а горизонтальной координатой U2 является x+L; выбирают направление вверх в плоскости, продольной центру выработки, в качестве вертикальной оси; определяют значение xopt для х, которое удовлетворяет следующему уравнению, так, чтобы определить местоположение объекта:

xopt=minƒ(х),

Конкретный процесс определения местоположения с использованием способа для определения местоположения движущегося объекта первого типа в шахте включает в себя следующие этапы:

1) осуществляют установку меток U1 и U2 определения местоположения на головной и хвостовой частях объекта, местоположение которого необходимо определить;

2) осуществляют построение функции оптимизации:

координаты (xB, Н) и (xB+LB, H) базовых станций определения местоположения и расстояние |B1B2|=LB между базовыми станциями известны; предполагая, что координатами меток U1 и U2 определения местоположения являются (х, 0) и (x+L, 0) соответственно; xB≤x≤xB+LB; предполагая, что расстояниями между B1 и метками U1 и U2 определения местоположения являются d11 и d12 соответственно, а расстояниями между В2 и метками U1 и U2 определения местоположения являются d21 и d22, ∠В1U1P1=θ, ∠P1U1B2=α;

осуществляют построение функции оптимизации f(x):

целью операции возведения в квадрат и операции извлечения квадратного корня для правой части уравнения (1) является обеспечение того, чтобы каждое слагаемое было положительным, для предотвращения положительного сдвига, отрицательного для операции суммирования; где - координаты меток Ui, i=1, 2, ; - координаты базовой станции Вj, j=1, 2, определения местоположения, ; среди этих значений известны , а dij могут быть определены посредством измерения показателя уровня принимаемого сигнала; величины уровня принимаемого сигнала (RSS) между узлами i и j подчиняются уравнению логнормального затухания:

где

PdBm - величина потерь мощности в тракте передачи энергии, измеренная в дБ, между принимающим узлом и передающим узлом,

- мощность, измеренная на единичном расстоянии d0, и, как правило, d0=1 м;

χ - нулевое гауссово случайное значение вследствие эффекта затенения, и им можно пренебречь в настоящих расчетах;

η - коэффициент потерь мощности сигнала в тракте; следовательно:

тогда только х является неизвестным в уравнении (1); подставляя U1, U2, B1, B2 и dij в уравнение (1), тогда:

если результат определения местоположения является несмещенной оценкой, то тогда |UiBj|=dij и ƒ(x)=0; если результат определения местоположения является смещенной оценкой, должно быть взято значение х, которое может минимизировать f(x), т.е. положение xopt объекта, местоположение которого необходимо определить, может быть определено путем решения задачи нахождения значения х, которое минимизирует f(x):

3) решают функцию оптимизации:

(1) получают начальное итерационное значение x0 с использованием способа определения местоположения, использующего единственную метку, для объекта в шахте:

sinθ=(x-xB)/d11, cosθ=H/d11, sinα=(xB+LB-x)/d21, cosα=H/d21,

cosα=H/d21, sinα=(xB+LB-x)/d21, следовательно,

для ΔB1U1B2, согласно теореме косинусов, тогда:

решают уравнение (7) с радикалом формулы для квадратичного уравнения с одним неизвестным и предполагают решение в виде начального итерационного значения x0, тогда:

где а=1, b=-(2xв+Lв), одно из решений может быть отброшено согласно с xB≤x≤xB+LB, так что получается единственное начальное итерационное значение;

(2) получают оптимальное решение с помощью двунаправленного итерационного способа, в котором:

берут x0 в качестве исходной точки, принимают, что xi+1=xi±Δx, i=0, 1, 2, …, N, и подставляют это в уравнение (4) для решения задачи нахождения значения ƒi+1(xi) функции f(x) в i+1 шаге итерации; где N - заданное значение наибольшего числа итераций, Δх - шаг итерации; если Δх положительное, то итерирование будет выполняться в направлении B2 (т.е. итерирование в правом направлении); в противоположном случае итерирование будет выполняться в направлении B1 (т.е. итерирование в левом направлении); в начале итерирования xopt=x0; в процессе итерирования, если ƒi+1(xi)>ƒi(xi), то пусть хopt=xi+1; в противоположном случае оно оставляется неизменным; для увеличения скорости итерирования здесь используется двунаправленное итерирование; пусть что соответствует итерированию в правом направлении и итерированию в левом направлении соответственно;

процесс итерирования завершается, если выполнены следующие условия: (1) весь процесс итерирования будет завершен, если количество итераций превысит пороговое значение N; (2) если но итерирование в правом направлении будет завершено, тогда как будет выполняться только итерирование в левом направлении; если но итерирование в левом направлении будет завершено, тогда как будет выполняться только итерирование в правом направлении; (3) если и , весь процесс итерирования будет завершен; (4) когда ƒ(x)≤ƒth, весь процесс итерирования будет завершен, где ƒth - заданное пороговое значение ошибки расстояния.

Способ определения местоположения движущегося объекта второго типа в шахте включает в себя этапы, на которых:

1) осуществляют установку меток U1 и U2 определения местоположения на головной и средней частях объекта, местоположение которого необходимо определить, и принимают, что |U1U2|=L, а расстоянием от U1 до проекции Р на В1В2 является |U1P|=H, |B1B2|=LB;

2) строят функцию оптимизации, при этом положением объекта, местоположение которого необходимо определить, является xopt=minƒ(x);

3) находят оптимальное решение:

(1) используя

для нахождения начального итерационного значения,

где а=1, b=-(2xB+LB), ; одно из решений может быть отброшено согласно с xB≤x≤xB+LB, так что получается единственное начальное итерационное значение;

(2) получают оптимальное решение xopt с помощью двунаправленного итерационного способа.

Положительные эффекты

По указанной выше схеме устанавливают две метки определения местоположения, по горизонтали или по вертикали, на движущемся объекте, и выполняют их с возможностью осуществления связи с двумя базовыми станциями определения местоположения, установленными вдоль потолка выработки, и получают местоположение движущегося объекта в реальном времени с помощью построения функции оптимизации между расстоянием, определенным по показателю уровня принимаемого сигнала, и расчетным расстоянием между меткой и базовой станцией определения местоположения и поиска минимального значения. Функцию оптимизации определяют с помощью процесса итераций, включая этап, на котором определяют начальное итерационное значение и шаг итерации в левом/правом направлении. Способ преодолевает существенный недостаток определения местоположения, использующего единственную метку, т.е. высокую восприимчивость к факторам окружающей среды в шахте, и замечательно повышает точность определения местоположения. Две или даже более метки определения местоположения могут быть установлены на оборудовании и персонале для повышения точности определения местоположения с использованием пространственного ограничения между метками. Способ решает проблемы низкой точности, изменчивого результата определения местоположения и сильных отклонений определения местоположения, присущих шахтным системам определения местоположения, использующих единственную метку, и достигает цели настоящего изобретения.

Преимущества

Настоящее изобретение использует способ с двумя сметками для определения местоположения движущихся объектов в шахте. С помощью способа, раскрытого в настоящем изобретении, точность определения местоположения может быть замечательно улучшена простым добавлением метки определения местоположения на объект, местоположение которого необходимо определить. Таким образом, цена усовершенствования низка, а ввод в действие легок. Способ применим для определения местоположения объектов с профилем в виде полосы, параллельным плоскости выработки (например, шахтная тележка или врубовая машина), или объектов с профилем в виде полосы, перпендикулярным плоскости выработки (например, рабочий).

Краткое описание чертежей

На Фиг. 1 представлена принципиальная схема определения местоположения с использованием двух меток движущегося объекта первого типа в шахте в соответствии с настоящим изобретением.

На Фиг. 2 представлена принципиальная схема определения местоположения с использованием двух меток движущегося в шахте объекта второго типа в соответствии с настоящим изобретением.

Осуществление изобретения

Первый вариант реализации

Высокоточный способ определения местоположения с использованием двойной метки включает в себя способ определения местоположения движущегося объекта первого типа шахте и способ определения местоположения движущегося объекта второго типа в шахте; конкретно, способ включает в себя этапы, на которых: осуществляют установку двух меток определения местоположения, по горизонтали или по вертикали, на движущемся объекте и выполняют их с возможностью осуществления связи с двумя базовыми станциями определения местоположения, установленными вдоль потолка выработки, и получают местоположение движущегося объекта в реальном времени с помощью построения функции оптимизации между расстоянием, определенным по показателю уровня принимаемого сигнала, и расчетным расстоянием между меткой и базовой станцией определения местоположения и поиска минимального значения.

Способ определения местоположения движущегося объекта первого типа в шахте включает в себя этапы, на которых: осуществляют установку меток U1 и U2 определения местоположения на головной и хвостовой частях объекта, местоположение которого необходимо определить, соответственно, при этом расстояние между меткой U1 определения местоположения и меткой U2 определения местоположения обозначается как L, местоположение объекта в выработке может быть установлено, только если определено местоположение каждой метки, каждая метка может одновременно осуществлять связь с двумя базовыми станциями B1 и В2 определения местоположения, установленными вдоль центральной линии потолка выработки, базовые станции B1 и B2 определения местоположения соединены так, что образуют прямую линию В1В2, проекции меток U1 и U2 определения местоположения на прямой линии В1В2 обозначаются как P1 и Р2 соответственно и |U1P1|=|U2P2|=Н является высотой между меткой и центром потолка выработки; пренебрегают шириной объекта на выработке и принимают одномерную модель определения местоположения, соединяют метки U1 и U2 определения местоположения для образования прямой линии U1U2, и выбирают прямую линию U1U2 в качестве горизонтальной оси, при этом горизонтальной координатой U1 является х, а горизонтальной координатой U2 является x+L; выбирают направление вверх в плоскости, продольной центру выработки, в качестве вертикальной оси; решают задачу определения значения xopt для x, которое удовлетворяет следующему уравнению, так, чтобы определить местоположение объекта:

xopt=minƒ(x).

Конкретный процесс определения местоположения с использованием способа для определения местоположения движущегося объекта первого типа в шахте включает в себя следующие этапы:

1) осуществляют установку меток U1 и U2 определения местоположения на головной и хвостовой частях объекта, местоположение которого необходимо определить;

2) осуществляют построение функции оптимизации:

координаты (хB, H) и (xB+LB, Н) базовых станций определения местоположения и расстояние |B1B2|=LB между базовыми станциями известны; предполагая, что координатами меток U1 и U2 определения местоположения являются (х, 0) и (х+L, 0) соответственно; хB≤х≤хB+LB, предполагая, что расстояниями между B1 и метками U1 и U2 определения местоположения являются d11 и d12 соответственно, а расстояниями между B2 и метками U1 и U2 определения местоположения являются d21 и d22, ∠B1U1P1=θ, ∠P1U1B2=α;

осуществляют построение функции оптимизации f(x):

целью операции возведения в квадрат и операции извлечения квадратного корня для правой части уравнения (1) является обеспечение того, чтобы каждое слагаемое было положительным, для предотвращения положительного сдвига, отрицательного для операции суммирования; где - координаты меток и Ui, i=1, 2, ; - координаты базовой станции Bj, j=1, 2, определения местоположения, ; среди этих значений известны , а dij могут быть определены посредством измерения показателя уровня принимаемого сигнала; величины уровня принимаемого сигнала (RSS) между узлами i и j подчиняются уравнению логнормального затухания:

где

PdBm - величина потерь мощности в тракте передачи энергии, измеренная в дБ, между принимающим узлом и передающим узлом,

- мощность, измеренная на единичном расстоянии d0, и, как правило, d0=1 м;

χ - нулевое гауссово случайное значение вследствие эффекта затенения, и им можно пренебречь в настоящих расчетах;

η - коэффициент потерь мощности сигнала в тракте; следовательно,

тогда только х является неизвестным в уравнении (1); подставляя U1, U2, В1, B2 и dij в уравнение (1), тогда:

если результат определения местоположения является несмещенной оценкой, то тогда |UiBj|=dij и ƒ(x)=0; если результат определения местоположения является смещенной оценкой, должно быть взято значение х, которое может минимизировать f(x), т.е. положение xopt объекта, местоположение которого необходимо определить, может быть определено путем решения задачи нахождения значения х, которое минимизирует f(x):

3) решают функцию оптимизации:

(1) получают начальное итерационное значение x0 с использованием способа определения местоположения, использующего единственную метку, для объекта в шахте.

Как видно из Фиг. 1, sinθ=(x-xB)/d11, cosθ=H/d11, sinα=(xB+LB-x)/d21, cosα=H/d21,

cosα=H/d21, sinα=(xB+LB-x)/d21, следовательно,

для ΔB1U1B2, согласно теореме косинусов, тогда:

решают уравнение (7) с радикалом формулы для квадратичного уравнения с одним неизвестным и предполагают решение в виде начального итерационного значения x0, тогда:

где а=1, b=-(2хB+LB), одно из решений может быть отброшено согласно с xB≤x≤xB+LB, так что получается единственное начальное итерационное значение;

(2) получают оптимальное решение с помощью двунаправленного итерационного способа, в котором:

берут x0 в качестве исходной точки, принимают, что хi+1i±Δх, i=0, 1, 2, …, N, и подставляют это в уравнение (4) для решения задачи нахождения значения ƒi+1(xi) функции f(x) в i+1 шаге итерации; где N - заданное значение наибольшего числа итераций, Δx - шаг итерации; если Δх положительное, то итерирование будет выполняться в направлении B2 (т.е. итерирование в правом направлении); в противоположном случае итерирование будет выполняться в направлении B1 (т.е. итерирование в левом направлении); в начале итерирования xopt=x0, в процессе итерирования, если ƒi+1(x1)>ƒi(xi), то пусть хopt=xi+1, в противоположном случае оно оставляется неизменным; для увеличения скорости итерирования здесь используется двунаправленное итерирование; пусть что соответствует итерированию в правом направлении и итерированию в левом направлении соответственно;

процесс итерирования завершается, если выполнены следующие условия: (1) весь процесс итерирования будет завершен, если количество итераций превысит пороговое значение N; (2) если, но , итерирование в правом направлении будет завершено, тогда как будет выполняться только итерирование в левом направлении; если но итерирование в левом направлении будет завершено, тогда как будет выполняться только итерирование в правом направлении; (3) если и , весь процесс итерирования будет завершен; (4) когда ƒ(x)≤ƒth, весь процесс итерирования будет завершен, где ƒth - заданное пороговое значение ошибки расстояния.

Способ определения местоположения движущегося объекта второго типа в шахте включает в себя этапы, на которых:

1) осуществляют установку меток U1 и U2 определения местоположения на головной и средней частях объекта, местоположение которого необходимо определить, и принимают, что |U1U2|=L, а расстоянием от U1 до проекции Р на В1В2 является |U1P|=H, |B1B2|=LB;

2) строят функцию оптимизации, при этом положением объекта, местоположение которого необходимо определить, является xopt=minƒ(x).

3) находят оптимальное решение:

(1) используя

для нахождения начального итерационного значения,

где a=1, b=-(2xB+LB), одно из решений может быть отброшено согласно с xB≤x≤xB+LB, так что получается единственное начальное итерационное значение;

(2) получают оптимальное решение xopt с помощью двунаправленного итерационного способа.


ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
ВЫСОКОТОЧНЫЙ СПОСОБ С ИСПОЛЬЗОВАНИЕМ ДВОЙНОЙ МЕТКИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ В ШАХТЕ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 104.
02.11.2018
№218.016.9990

Индексы структурного различия верхних зон заполнения ордовикского известняка и способ их определения

Изобретение относится к исследованию водосодержащих геологических структур. Представлен способ определения индексов структурного различия верхних зон заполнения Ордовикского известняка, согласно которому: сначала определяют три типа структур зоны заполнения, а именно структуру с непрерывным...
Тип: Изобретение
Номер охранного документа: 0002671502
Дата охранного документа: 01.11.2018
21.11.2018
№218.016.9f98

Двунаправленный циркулирующий наклонный эскалатор

Двунаправленный циркулирующий наклонный эскалатор содержит соединительное устройство и множество опорных ступеней, соединенных последовательно посредством соединительного устройства, причем основной опорный вал расположен на нижней поверхности каждой опорной ступени. Эскалатор содержит также...
Тип: Изобретение
Номер охранного документа: 0002672824
Дата охранного документа: 19.11.2018
30.11.2018
№218.016.a1de

Буровзрывная проходческая машина

Изобретение относится к проходческим машинам, в частности к буровзрывной проходческой машине. Буровзрывная проходческая машина содержит буровзрывное устройство, устройство регулирования угла, телескопическое устройство с возвратно-поступательным движением и проходческую машину консольного типа....
Тип: Изобретение
Номер охранного документа: 0002673569
Дата охранного документа: 28.11.2018
19.12.2018
№218.016.a8d3

Модульный крупногабаритный вибрационный грохот с изменяемым пролетом и переменной амплитудой

Предложенное изобретение относится к оборудованию для просеивания, в частности к модульному крупногабаритному вибрационному грохоту с изменяемым пролетом и переменной амплитудой. Модульный крупногабаритный вибрационный грохот с изменяемым пролетом и переменной амплитудой содержит короб...
Тип: Изобретение
Номер охранного документа: 0002675274
Дата охранного документа: 18.12.2018
13.01.2019
№219.016.aec6

Способ определения длины заполняемой секции полностью механизированного угледобывающего заполняющего смешивающего шахтного комбайна

Изобретение относится к способу определения длины заполняемой секции полностью механизированного угледобывающего заполняющего смешивающего шахтного комбайна. Техническим результатом является обеспечение простого безопасного надежного и высокопроизводительного способа. Способ включает,...
Тип: Изобретение
Номер охранного документа: 0002676770
Дата охранного документа: 11.01.2019
13.01.2019
№219.016.aef4

Направляющее устройство троса с ограничением скорости, характеризующееся изменяемым наклоном, и способ направления троса

Изобретение относится к направляющему устройству троса с ограничением скорости, характеризующемуся изменяемым наклоном, и способу его осуществления, которые применимы для направления троса с ограничением скорости для перемещения контейнера наклонно, в зависимости от формы здания или состояния...
Тип: Изобретение
Номер охранного документа: 0002676852
Дата охранного документа: 11.01.2019
18.01.2019
№219.016.b0f0

Способ высвобождения и обогащения угольной мелочи, полученной от коксования

Изобретение относится к области высвобождения и обогащения угля. Осуществляют подачу угольной мелочи в качестве сырья в реверсивную молотковую дробилку для предварительного дробления и высвобождения. Производят подачу дробленого продукта, полученного в результате предварительного дробления и...
Тип: Изобретение
Номер охранного документа: 0002677339
Дата охранного документа: 16.01.2019
24.01.2019
№219.016.b38d

Станок для получения железной оправы для кисти

Изобретение относится к области оборудования для изготовления железных оправ для кистей. Станок содержит основание, шаблон для формирования оправы, расположенный на основании, направляющий скользящий стержень для железной оправы и механизм подачи/разгрузки оправы, расположенный на конце...
Тип: Изобретение
Номер охранного документа: 0002677899
Дата охранного документа: 22.01.2019
29.03.2019
№219.016.ecc5

Система диагностики цепи и способ диагностики скребковых конвейеров

Данное изобретение представляет собой систему диагностики неисправностей цепных скребковых конвейеров, содержащую розетку тензодатчиков, прикрепленных к верхней торцевой поверхности зубцов звездочки скребкового конвейера. Розетка тензодатчиков соединена с блоком сбора сигналов, закрепленным на...
Тип: Изобретение
Номер охранного документа: 0002682952
Дата охранного документа: 22.03.2019
30.03.2019
№219.016.fa1d

Способ увеличения газопроницаемости для скважин метана угольных пластов с использованием технологии разрыва при помощи взрыва под воздействием электрических импульсов

Способ увеличения газопроницаемости для скважин метана угольных пластов с использованием технологии разрыва при помощи взрыва под воздействием электрических импульсов применим для эксплуатации скважин метана угольных пластов с низкой газопроницаемостью. Сначала от поверхности земли до угольного...
Тип: Изобретение
Номер охранного документа: 0002683438
Дата охранного документа: 28.03.2019
Показаны записи 41-50 из 50.
19.01.2018
№218.016.09ed

Способ разработки угля со ступенчатой выемкой и закладкой в ответвляющихся очистных штреках по типу wangeviry

Изобретение относится к области разработки угольных месторождений. Способ ступенчатой разработки угля с закладкой в ответвляющихся очистных штреках по типу wangeviry. Главный транспортный штрек и ответвляющиеся очистные штреки располагают согласно способу wangeviry, назначают местоположение...
Тип: Изобретение
Номер охранного документа: 0002632087
Дата охранного документа: 02.10.2017
19.01.2018
№218.016.0cf7

Режущий модуль туннелепроходческой машины для крепкой горной породы

Изобретение относится к режущему модулю. Техническим результатом является повышение производительности работы. Режущий модуль буровой туннелепроходческой машины для крепкой горной породы содержит редуктор режущего устройства, лапу режущего устройства, соединенную с редуктором режущего...
Тип: Изобретение
Номер охранного документа: 0002632833
Дата охранного документа: 10.10.2017
20.01.2018
№218.016.0f2e

Способ выявления неисправности силового преобразователя вентильно-индукторного двигателя на основе среднеквадратичного отклонения детализирующего коэффициента

Изобретение относится к контролю неисправности силового преобразователя вентильно-индукторного двигателя. Сущность: способ включает нахождение мгновенного значения фазного тока силового преобразователя вентильно-индукторного двигателя для вычисления среднеквадратичного отклонения σ...
Тип: Изобретение
Номер охранного документа: 0002633297
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.1429

Способ диагностирования неисправности в силовом преобразователе вентильно-индукторного двигателя методом интегрирования фазного тока

В способе диагностирования неисправности в силовом преобразователе вентильно-индукторного двигателя методом интегрирования фазного тока наличие короткого замыкания или обрыва цепи главного переключателя силового преобразователя вентильно-индукторного двигателя диагностируют посредством...
Тип: Изобретение
Номер охранного документа: 0002634741
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1b08

Способ закладки открытого забоя эоловым песком в угольном пласте неглубокого залегания в западных опустыненных районах горных работ

Предложен способ закладки открытого забоя эоловым песком в угольном пласте неглубокого залегания в западных опустыненных районах горных работ, который подходит для очистного забоя добычи угля, имеющего улучшенную самостабилизацию кровли и обладающего функциональными возможностями формирования...
Тип: Изобретение
Номер охранного документа: 0002635927
Дата охранного документа: 17.11.2017
13.02.2018
№218.016.2137

Способ трехуровневого подавления пульсаций крутящего момента трехфазного вентильного реактивного электродвигателя

Изобретение относится к области электротехники и может быть использовано в системах привода трехфазного вентильного реактивного электродвигателя. Техническим результатом является расширение диапазона подавления пульсаций крутящего момента вентильного реактивного электродвигателя. Предложен...
Тип: Изобретение
Номер охранного документа: 0002641674
Дата охранного документа: 19.01.2018
13.02.2018
№218.016.2656

Способ двухуровневого подавления пульсации крутящего момента четырехфазного вентильного реактивного двигателя

Изобретение относится к области электротехники и может быть использовано для двухуровневого подавления пульсации крутящего момента четырехфазного вентильного реактивного двигателя. Техническим результатом является обеспечение подавления пульсаций крутящего момента четырехфазного вентильного...
Тип: Изобретение
Номер охранного документа: 0002643800
Дата охранного документа: 07.02.2018
04.04.2018
№218.016.3183

Вертикальная машина для получения суспензии для предотвращения и тушения пожаров для горнодобывающей промышленности

Предложена вертикальная машина для получения суспензии для предотвращения и тушения пожара для горнодобывающей промышленности. Наружный край внутреннего цилиндра расположен на внешнем краю верхней части наружного цилиндра через качающиеся подшипники, и обеспечен зазор между наружной стенкой...
Тип: Изобретение
Номер охранного документа: 0002645050
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3385

Способ раздельной разработки и транспортировки мощных угольных пластов с пустой породой и закладки выработанного пространства пустой породой

Изобретение относится к области горного дела. Способ раздельной разработки и транспортировки мощных угольных пластов с пустой породой и засыпки выработанного пространства пустой породой включает прокладку транспортного штрека (1) и дорожного полотна (2), расположенных параллельно в шахте....
Тип: Изобретение
Номер охранного документа: 0002645694
Дата охранного документа: 27.02.2018
04.04.2018
№218.016.35eb

Устройство натяжения цепи скреперного конвейера, имеющее функцию очистки

Устройство натяжения цепи скреперного конвейера, имеющее функцию очистки, включает в себя передающее устройство, управляющую звездочку, скреперную цепь и планки. Устройство натяжения цепи скреперного конвейера расположено над скреперной цепью на управляющей звездочке. Аппараты очистки...
Тип: Изобретение
Номер охранного документа: 0002646212
Дата охранного документа: 01.03.2018
+ добавить свой РИД